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Abstract: Large plastic items in the environment are degraded into tiny pieces known as microplastics
(MPs). MP contamination in tropical lagoon ecosystems poses a significant pollution threat. The
mud crab, Scylla serrata, is an important crustacean in the tropical lagoon, valued as a key source
of edible seafood in Asia and Europe. The potential MPs of one hundred samples were examined
using the stereomicroscope for characterisation, and further analysis was conducted using µ-FTIR. A
total of 1157 MPs were found in the gills and gastrointestinal tract. The mean abundance (±SD) of
MP in mud crabs was 11.57 ± 6.29 items/individual. MPs were detected in both tissues, displaying
a variety of colours. Transparent MPs dominated the gills at 43.9%, while blue microplastics were
prevalent in the gastrointestinal tract at 32.8%. The filament (fibre) was the most prominent MP type
found in the gills and gastrointestinal tract. The collected MPs from both tissues were categorised
into four size ranges: 0.05–0.25 mm and 1.00–5.00 mm were the common size ranges in the gills and
gastrointestinal tract, respectively. The prominent polymer type was rayon. These findings provide
considerable proof of MP contamination in the mud crab species Scylla serrata and its implications for
food security.

Keywords: Scylla serrata; tropical lagoon; µ-FTIR; microplastic; mud crab; rayon

1. Introduction

Anthropogenic activities are producing more and more waste, which is filling up
landfills at an alarming rate [1]. Many waste dumps are composed of plastic [2]. Plastic is a
kind of synthetic polymer that is made by using a broad assortment of chemicals added
to the monomers derived from oil or gas [3]. PE and PP are the most abundant types of
plastics, due to their high production, with PE leading the global market and PP following
closely behind [4]. Currently, the worldwide plastic industry yields approximately USD
600 billion in earnings each year [5]. Plastic consumption in Asia currently stands at
20 kg per person and is expected to rise steadily shortly [6]. Plastic possesses distinctive
characteristics like lightweight, strength, heat resistance, aesthetic appeal, and low thermal
conductivity [7]. These qualities contribute to their extensive utilisation across 79 industrial
sectors [8–13].

The accumulation of plastic waste in the environment is a major pollution threat [14].
Waste electronics, electrical equipment, and other life vehicles are expected to become a
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prominent type of plastic in waste [15]. Due to inland waterways, tidal, and wastewa-
ter outflows, mismanaged waste is released into the aquatic ecosystem [16–19]. Several
factors [20–24] contribute to reducing the molecular weight of large plastics [25]. Minute
plastic particles within the size range of 1 µm to 5 mm are called microplastics (MPs) [26].
Tiny particles at the microscale are employed in the industrial sector and classified as
primary MPs [27]. Secondary MPs emerge because of the degradation of large plastic ob-
jects [28]. MPs pose environmental risks, but the degree of threat varies depending on their
shape and size [29]. MPs are globally distributed and travel long distances [30]. Because of
the small size range of MPs, microorganisms can thrive by utilising MPs as habitats [31].
MPs are widely distributed in the marine environment because of their low density, nature
of floating and incessant properties [32,33]. MPs of primary origin are directly introduced
into the environment as small pellets, used as abrasives in both industrial and domestic
settings [34]. Additionally, facial cleansers, commonly used by millions, contribute to the
release of MPs [35,36]. Consequently, MPs can be detected in several ecosystems [37–53].

As a vital aquatic ecosystem, lagoons serve as multifunctional environments and
support a wide array of organisms through various processes [54–56]. Tropical lagoons are
inland water bodies separated from the ocean by a physical barrier [57]. Nearby urban areas
contribute to numerous non-natural pressures on tropical lagoons [16,58]. These lagoons
are crucial for economic activities including fisheries, tourism, agriculture and leisure [59],
as well as other services [60–67]. Lagoons can serve as conduits for transporting plastic
waste from terrestrial to marine ecosystems [68]. Numerous studies provide evidence for
global MP contamination in lagoon ecosystems [69–73]. MPs in sediments are vertically
distributed in the lagoon because of the bioturbation process [74]. This bioturbation
process of the lagoon encompasses burrowing, ventilation and movements of benthic
fauna [75,76]. MPs can move vertically within water columns and penetrate deep into
benthic sediments [77,78]. The vertical distribution is significant for assessing the impact of
the MPs on the biota, and this distribution acts as a transport medium for the MPs [79–81].

MPs can interact with flora and fauna in the lagoons [72,73,82,83]. Some habitats
within lagoons are known to trap and accumulate microplastics such as seagrass [84,85]
and mangroves [86,87]. Lots of studies also evidence MP contamination in organisms
inhibiting lagoons, including crabs [88,89], shrimp [90,91], bivalves [92–94], oysters [95,96]
and fish species [97–99]. The extent of this interaction depends on animals consuming MPs,
influenced by the feeding, human activities and pollution levels in their habitat [36]. Due to
their small size, comparable to that of plankton, MPs can be consumed by various aquatic
organisms [100] regardless of their distinct feeding strategy, including filter feeders [101],
deposit feeders [102] and detritivores [103]. MPs can carry and amass chemical additives
tainted in water due to their elevated surface area-to-volume ratio [104]. Also, consuming
MPs can elevate oxidative stress, alter metabolic functions, impact immune defences and
affect reproductive rates in organisms [20]. MP presence in the intestinal tract of the
organisms can be translocated to the circulatory system [105].

Decapod crustaceans, including crabs, are particularly affected by microplastics, with
several studies reporting large numbers and tangles of plastic in their gastrointestinal
system [106–109]. Mud crabs Scylla serrata inhabit the lagoons and estuaries in tropical and
subtropical countries [110] which are situated in the Indo-West Pacific region [111]. The
excellent nutritional value and irresistible taste of mud crabs have made them highly palat-
able and in global demand [112–114]. The mud crab, Scylla serrata, significantly contributes
to the local Sri Lankan seafood industry through commercial harvesting [115]. The report
of the Ministry of Fisheries states that the average monthly household consumption of
crab was 7.6 g [116]. Crabs play a role in essential functions [117,118]. Mud crabs disturb
sediments in ecosystems by burrowing and digging in the soil. They are highly efficient
scavengers, consuming a diverse range of organisms [119,120].

The present study aimed to quantify and describe the physical characteristics of
microplastics (MPs) present in the mud crab species Scylla serrata, found in the Negombo
Lagoon. This research focused on identifying the morphological features of the MPs,
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including their shape, size, type, and colour, specifically in the gills and gastrointestinal
tract of the mud crab. Additionally, the study sought to determine the polymer types of the
MPs found in the mud crabs. The findings of this research will contribute to future studies
in the Negombo Lagoon, Sri Lanka.

2. Materials and Methods
2.1. Study Area and Sampling Locations

This study carried out a sprawling brackish water lagoon ecosystem between North
Latitude 7◦10′ and East Coast Latitude 79◦50′ situated in Negombo, Sri Lanka following on
from [121]. This largest brackish water ecosystem is one of the coastal lagoons extending
alongside the western shoreline of Sri Lanka. The northern end of the lagoon extremity
links with the Indian Ocean via a narrow channel, while its southern end is linked to the
Muthurajawela marsh [64]. The Negombo Lagoon is a thriving ecosystem, supporting a
rich diversity of species, therefore benefiting local communities [64]. It has been exposed
to pollution through several activities including fishing [65], poor management of waste
dumps [66] and the X-Press Pearl ship disaster [67]. The Negombo Lagoon serves as a
home for several aquatic organisms. Among the 142 species in the lagoon, 112 are edible
comprising 100 species of finfish, 4 types of molluscs, 7 species of shrimp, and 1 type of
crab [64]. In Negombo, the mud crab Scylla serrata significantly contributes to the local
seafood industry through commercial harvesting [115]. Hence mud crab samples were
collected from five fishing grounds (L1 to L5) in the Negombo Lagoon (Figure 1). The
samples were transported in a cool box to the laboratory.
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2.2. Sample Collection, Preparation, and Digestion

A total of one hundred (n = 100) samples of mud crabs were collected from November
2022 to June 2023 within five fishing grounds (twenty crabs in each location) inside the
Negombo Lagoon. The weight and carapace width of the crabs were measured using
an electrical scale (BSA224S-CW) and a vernier calliper. The gills and gastrointestinal
tract were dissected on a metal tray. The weight of the gills and gastrointestinal tract was
recorded. The dissected and separated samples were stored in the glass bottles, and to
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prevent contamination, the glass bottles were covered with aluminium foil. The sample
underwent soft tissue digestion with a volume of 10% KOH (Sigma-Aldrich, Saint Louis,
MO, USA) that was added at least twice the volume of the sample. The solution was heated
to 55 ± 5 ◦C and allowed to undergo overnight digestion in an oven (GALLENKAMP
SANYO OMT, Lough-borough, UK) [106].

2.3. Quality Control

To prevent possible contamination during the treatment process, KOH and distilled
water were vacuum-filtered through a support membrane filter with a pore size of 1.2 µm
before being utilised. To avoid contamination, all laboratory instruments, including the
metal tray, forceps and dissecting scissors, were thoroughly rinsed with distilled water
before utilisation. And before storing the samples in the glass bottles, they were cleaned
using a bath sonicator. Samples were covered by using Aluminium foils extensively to
minimize exposure to airborne contaminants. A blank sample was used in each set of
samples (n = 10) to quantify airborne contamination.

2.4. Sample Filtration and Microscopic Analysis

Following the digestion process, clear and slightly yellow supernatant was filtered un-
der vacuum through glass filament microfilter papers with a pore size of 1.2 µm (Whatman
Grade GF/C Glass Microfiber Filter Papers, 1.2 µm, 21 mm Diameter Circles, Binder-Free).
The filters were stained with Nile Red (Sigma-Aldrich, Saint Louis, MO, USA) and exam-
ined using a stereo microscope (Euromex StereoBlueSB.1902-P, Euromex Microscopen by,
Arnhem, The Netherlands). Every visually identified microplastic item was photographed
and categorized based on colour, morphology and size (length) using the image-focus alpha
software. The quantity and variety of microplastics present in the gills and gastrointestinal
tract were documented.

2.5. Micro FTIR Analysis

A subset of visually identified particles was analysed with a Lumos II µFTIR (Bruker,
UK). Using an MCT detector and ATR-µFTIR analysis, 32 scans were collected in reflectance
mode between 4000 and 500 cm−1 at a resolution of 4 cm−1. A 60% match against polymer
libraries (ATR-FTIR-library vol. 1–4; Bruker Optics ATR-Polymer Library; IR-Spectra of
Polymers, Diamond-ATR, Geranium-AT and IR-Spectra of Additives, Diamond-ATR) was
required for the confirmed polymer type, in line with previous standards [122].

2.6. Statistical Analysis

To assess the prevalence of MPs in both the gills and gastrointestinal tract of mud
crabs, initial evaluations were calculated to determine normality using the Shapiro–Wilk
test and homogeneity of variance using Levene’s test. To determine statistical significance,
a p-value threshold of 0.05 was set. The data failed to meet the criteria for parametric
statistics, as indicated by p < 0.05 in the Shapiro–Wilk test and homogeneity of variance
using Levene’s test. As a result, the Wilcoxon test was applied to examine variations in the
abundance of MP presence between the gills and gastrointestinal tracts. A one-way analysis
of variance (ANOVA) was applied to assess differences in MP abundance between the
different sampling locations. A Spearman’s rank-order correlation test was conducted to
determine the relationship between crab weight and MP abundance. A confidence interval
of 95% was used for all tests.

3. Results
3.1. MP Abundance in Mud Crab at Different Locations

The average net weight of the one hundred mud crabs collected from all five locations
was 149.25 ± 67.9 g. The average cephalothorax length and width were 97.51 ± 16.09 mm
and 67.69 ± 10 mm, respectively. Twenty (n = 20) crab samples were collected from each
of the five locations. The mean abundance of MP in the five sampling locations was
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expressed as the number of items per individual (items/individual) and items per gram
(items/grams) (Table 1). The results revealed that the crabs collected from L3 had the
highest mean abundance of MPs, with a value of 12.50 ± 7.40 items/individuals. L2 had
the highest mean abundance of MPs with a value of 0.10 ± 0.04 items/grams. The mean
abundance of MPs in mud crabs was lower at L5 (10.60 ± 4.60 items/individuals) and
L1 (0.07 ± 0.03 items/grams) than at the other sites (Figure 2). There was no significant
difference between these five locations (p > 0.05).

Table 1. Characteristics of the mud crab Scylla serrata from five locations.

Location L1 L2 L3 L4 L5

Sample size (n) 20 20 20 20 20

Average net weight of crabs (g) ± SD 169.32 ± 79.09 132.17 ± 74.62 149.85 ± 62.42 142.85 ± 49.01 151.57 ± 71.70

Average cephalothorax width of
crabs (mm) ± SD 69.35 ± 11.74 65.8 ± 9.71 67.95 ± 9.53 67.25 ± 7.69 68.10 ± 11.51

Average cephalothorax length of
crabs (mm) ± SD 100.82 ± 19.36 94.15 ± 14.2 97.15 ± 12.02 98.95 ± 19.92 96.45 ± 14.27

Mean abundance (item/grams) ± SD 0.07 ± 0.03 0.10 ± 0.04 0.09 ± 0.05 0.08 ± 0.05 0.08 ± 0.04

Mean abundance (item/individual) ± SD 11.15 ± 5.10 11.15 ± 5.10 12.50 ± 7.40 11.30 ± 8.10 10.60 ± 4.60
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3.2. Abundance of MPs

This study explored the occurrence of MPs in both the gills and gastrointestinal tract
of Scylla serrata, a mud crab species. A total of 1157 MP items were detected from total mud
crab samples (n = 100). This investigation revealed the presence of MPs in all 100 evaluated
samples. The mean abundance (±SD) of MP in mud crabs was 0.09 ± 0.05 items/g. This
value significantly exceeds the mean abundance observed in many crabs from diverse loca-
tions globally (Table 2). MPs presence in the gills and gastrointestinal tract of the mud crab
was significantly different (p < 0.05) with a mean abundance (±SD) of 2.12 ± 1.56 items/g
in the gastrointestinal tract and 0.99 ± 0.89 items/g in the gills. Moreover, a greater pro-
portion of MPs (63%) were in the gastrointestinal tract compared to the gills (37%). This
study aimed to investigate whether MP consumption increases with the body weight of the
crab species. The results indicated a weak positive correlation between the weight and MP
count of mud crabs, which was not statistically significant (rs = 0.139, p = 0.169) (Figure 3).
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Table 2. The contamination of diverse crab species worldwide with MPs varies based on geographical locations.

Name of Species The Main Size of MPs
in Gills and GIT

The Main Colour of
MP (GIT)

The Main Colour
of MP (Gills)

The Main Type of MP
in Gills and GIT

Total Number of
MPs

Items/Individual
Study Area References

MP Abundance

Mangrove Crab,
Ucides occidentalis 0.002–0.25 mm Clear Clear Filament 921 11.35 ± 7.91 Local Markets in

Tumbes, Peru
Aguirre-Sanchez

et al., 2022 [26]

Ghost Crab,
Ocypode quadrata NA Black and Blue NA Filament NA 1 to 158 Grussai Beach Arch,

Brazil
Costa et al., 2019

[123]

C. maenas and E.
sinensis 2.1–3.0 mm Clear Clear Filament 874 1 ± 0.82–11.35 ± 7.91 Thames Estuary at

Erith Rands, UK
McGoran et al.,

2020 [106]

Chiromantes
dehaani 1–20 µm White Transparent Filament NA 0.39 ± 2.83 The Beibu Gulf of

the South China Sea
S. Zhang et al.,

2021 [124]

Blue Swimming
Crab, Portunus pe-

lagicus
0.09 µm up to 38.6 mm Red NA Filament 216 0.73 ± 1.4 Wonnapha Coastal

Wetland, Thailand
Kleawkla, 2019

[125]

Wild Crabs, P.
trituberculatus, C.

japonica, D.
japonica, M. planes

<1000 µm Black–Grey Black–Grey Filament 631 5.17 ± 4.43 Yellow Sea and East
China Sea, China

T. Zhang et al.,
2021 [126]

Intertidal Crab, Chi-
romantes dehaani <1000 µm Dark Colours Dark Colours Filament 592 1.48 ± 0.45

Intertidal zone in
Chongming Island,

Yangtze Estuary

Wu et al., 2023
[127]

Mud Crab, Scylla
serrata 0.0002–0.25 and 1–5 mm Blue Transparent Filament 1157 11.57 ± 6.29 Negombo Lagoon in

Sri Lanka Present Study
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3.3. Characteristics of MPs
3.3.1. Size of MPs

The MPs compiled from both the gills and the gastrointestinal tract were sorted
into four different size categories, including 0.05–0.25 mm, 0.25–0.50 mm, 0.50–1.00 mm
and 1.00–5.00 mm. This investigation demonstrated that MP particles with dimensions
0.05–0.25 mm were the most prevalent in the gills of mud crabs, comprising 34.39% of the
total. The 1.00–5.00 mm size range was the most prevalent in the gastrointestinal tract
(Figure 4).
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3.3.2. Types and Colours of MPs

In mud crab samples, approximately 80% of the items comprised filaments, while the
remaining 20% comprised films and fragments. The MP analysis of this study revealed the
presence of MPs in both tissues, exhibiting a range of colours, including blue, transparent,
red, black, yellow, green, white, and purple (Figure 5). MPs identified in both the gills
and gastrointestinal tract were sorted based on their shapes as filaments (fibre), films and
fragments. The predominant type of MP detected in both the gills and gastrointestinal
tract was filaments, accounting for 63.60% and 85.70%, respectively (Figure 6). In the
gills, transparent (43.90%) was the dominant colour, while blue (32.80%) prevailed in the
gastrointestinal tract. In both the gills and the gastrointestinal tract, the prevalent MPs
consisted of blue filaments, transparent films and transparent fragments (Figures 7 and 8).
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3.4. Polymer Characterisation of MPs

Out of the total crab samples, polymer characterisation was carried out in only 27 (27%)
samples. µ-FTIR analysis revealed that 74% of visually identified items were synthetic,
and 26% were classified as anthropogenic. The analysis further unveiled that the synthetic
polymers were rayon (51%), polyester (PES) (11%), polypropylene (PP) (5%), paint (5%),
polyethylene (PE) (1%), polyethylene terephthalate (PET) (1%) and a rayon–cotton blend
(13%). On the other hand, the anthropogenic polymers consisted of cellulose, cotton and
rubber (Figures 9 and 10).
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4. Discussion

This study investigated the presence of MPs in the gills and digestive tract of the
mud crab species Scylla serrata inhibited in the Negombo Lagoon, Sri Lanka. The results
presented demonstrate that microplastics are highly abundant in the biota of the lagoon and
may be negatively affecting the mud crabs living there. This study had several limitations.
During the research period, fluctuations in waste pollution occurred due to tidal ventilation.
Additionally, in certain months, crab yields were lower, which made it challenging to
collect crabs of consistent sizes. Samples were gathered from five fishing grounds, each
with varying physical and chemical conditions. Furthermore, FTIR analysis was performed
on only 27 of the total crab samples.

In this study, the mean abundance (±SD) of MP in mud crabs was
11.57 ± 6.29 items/individual. According to the other studies of crabs, this value is no-
tably high. The crab species Chiromantes dehaani inhabiting the Beibu Gulf of the South
China Sea (0.39 ± 2.83 items/individual) [124], Blue Swimming Crab, Portunus pelagi-
cus in Wonnapha Coastal Wetland, Thailand (0.73 ± 1.40 item/individual) [125], Inter-
tidal crab, Chiromantes dehaani in Intertidal zone in Chongming Island, Yangtze Estuary
(1.48 ± 0.45 items/individual) [127] and Wild crabs, P. trituberculatus, C. japonica, D. japonica
and M. planes in the Yellow Sea and East China sea, China (5.17 ± 4.43 items/individual) [126].
The results of the present study are in line with estimates from crabs in urbanised estuaries
in the UK [106] and those collected from markets in Peru [26]. This suggests that some
regions or aquatic systems are more prone to contamination, and therefore the local wildlife
are more likely to ingest microplastics. Indeed, Negombo Lagoon is contaminated by MPs
in its water (2.46 ± 1.13 items m−3), sediment (62.33 ± 45.16 items/kg) [128] and mangrove
habitats [72].

The outcome of this study was anticipated, considering the numerous industrial and
anthropological activities occurring in the lagoon vicinity [129]. The proximity of the fish
market to the Negombo Lagoon leads to waste and carbonic by-products being directly
released into the lagoon, posing a potential pollution threat [130]. Furthermore, food waste
and untreated sewage from hotels and densely populated urban areas are also directly
discharged into the lagoon [131]. The results of the correlation test of this study indicate
that there is no relationship between the crab weight and the MP count of the mud crabs.
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The findings of this study showed that there was a notably lower abundance of MPs in
the gills compared to the MPs found in the digestive tract, likely attributed to the cleaning
mechanism present in crab gills. This mechanism aids in the removal of foreign objects
from the gill chambers, reducing the likelihood of MP particles entering the gills [132].
Typically, mud crabs are benthic organisms closely linked with other creatures in the benthic
environment [133]. Crab species, including S. serrata, dwell in soil and sediment habitats.
Crabs exhibit a unique behaviour of pulling decaying plant material into the sediment,
where they leave it for a few weeks before consuming it [134]. Crab burrows serve as traps
for MPs, leading to an elevated presence and detection rate of these particles in the deeper
sediment layer instead of solely the surface layer [135]. Indeed, Iribarne et al. [136] reported
that burrowing crabs ingest more MPs and McGoran et al. [106] reported that the burrowing
Eriocheir sinensis ingested more MPs than Carcinus maenas. Hence, the burrowing habits
and dietary content of mud crabs offer substantial evidence supporting the existence of the
highest abundance of MPs in their digestive tract. The mud crabs consume food along with
mud particles, and they capture sediments during burrowing, potentially leading to the
uptake of MPs into the digestive tract.

The most prominent type of MP in this study was filaments, which typically emerge
as the predominant MP type detected in crab species around the world (Table 2). Recent
investigations conducted on the Negombo Lagoon offer substantial proof regarding the
prevalence of filaments (fiber) as the predominant form of MPs [73,99]. The prevalence of
filaments among various types of MPs in the environment is mainly due to their lightweight
nature, which enhances their ability for long-distance transportation in the ocean [137].
Synthetic filaments have become widespread globally due to their various applications,
including packaging, textiles, and fishing gear, resulting in nearly 60% of filaments being
consumed [29]. Additionally, their low weight contributes to their accumulation on the
surface of water, where they directly engage with the ventilation systems of crabs [26].

When marine organisms ingest tiny plastic components like microfilaments, it often
leads to physical complications such as digestive tract blockages [138]. When crabs become
ensnared in fishing nets, they utilise their large claws to cut through the nets to escape,
leading to the ingestion of filament-based fishing lines into the digestive tract of crabs [126].
The primary pathways for filaments to enter aquatic ecosystems include the use of fishing
gear like nets and ropes, as well as the improper disposal of industrial and household
waste [30]. The analysis of MPs in this study indicated the presence of MPs in both
tissues, displaying a variety of colours. The predominant type of MP observed in the gills
was transparent, consistent with findings from various studies worldwide. For instance,
research on Mangrove Crab, Ucides occidentalis in Tumbes, Peru [26], Chiromantes dehaani in
the Beibu Gulf of the South China Sea [126] and C. maenas and E. sinensis in Thames Estuary
at Erith Rands, UK [106]. However, some studies showed dark colours as a prominent
colour of MPs in the gills such as Wild crabs, P. trituberculatus, C. japonica, D. japonica and
M. planes in the Yellow Sea and East China Sea, China [126] and Intertidal crab Chiromantes
dehaani in the intertidal zone in Chongming Island, Yangtze Estuary [127]. MPs that are
suspended on the water’s surface tend to be lighter in colour, often appearing transparent
or white [124].

The colouration of MPs in the digestive tract is influenced by the feeding habits and
other ecological traits of the organisms [30] and organisms tend to ingest microplastics that
share similar colours to their natural food sources [139]. The colour of microplastics (MPs)
might resemble that of potential prey, leading visual predators to inadvertently consume
MPs [124]. According to the findings of this study, the digestive tract of the mud crab
contains blue MPs most prominently. This result is similar to the findings of other studies.
Conducted on the ghost crab, Ocypode quadrata in Grussai Beach Arch, Brazil [123], the
Intertidal crab, Chiromantes dehaani in the intertidal zone in Chongming Island, Yangtze
Estuary [127] and Wild crabs, P. trituberculatus, C. japonica, D. japonica and M. planes in the
Yellow Sea and East China Sea, China [126].
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The MPs found in both the gills and digestive tract were classified into four size ranges.
MPs within a smaller size range of 0.05 to 0.25 mm made up 34% of the particles found
in the gills and 19% in the digestive tract of S. serrata. The mud crabs utilise their gills for
respiratory purposes during the ventilation of surrounding water, creating a potential route
for MPs to enter the gills [140]. Due to their lower velocity, smaller MPs tend to undergo
vertical transportation [141]. As water containing MPs flows through the gills, the intricate
structure of the gills facilitates the entrapment of MPs [26]. Most of the MPs in the digestive
tract are in the size range of 1.00–5.00 mm.

The polymer types of MPs detected in the gills and digestive tract included Rayon,
PES, PP, paint, PE, PET and a rayon–cotton blend. Comparison with other studies reveals
consistency in the polymer types of microplastics found in crabs. The main polymers
found in the crabs of the aquaculture pond in the Yangtze River Delta of China were PET,
polystyrene (PS), PE, PP and polyamide (PA) [46]. The mangrove Crab, Ucides occidentalis
in Tumbes, Peru contained both PET and ethylene–vinyl acetate (PEVA) [26]. The most
common polymer types of C. maenas and E. sinensis in Thames Estuary at Erith Rands,
UK were PP and PES [106]. In this study, Rayon was the prominent type of polymer.
Rayon serves as the overarching term referring to fibres, yarns and fabrics produced from
regenerated cellulose [142]. Conventional laundering of textile garments has been identified
as a primary method for releasing synthetic textile fibres into water bodies [143].

Due to their elevated high surface area-to-volume ratio, MPs function as a toxic agent.
Consequently, the ingestion of MPs by organisms leads to the provision of stimuli, nutrient
dilution and ultimately reduced growth within their body [144]. Multiple trophic transfer
investigations offer proof that crabs uptake MPs through their ventilation process and
the ingestion of contaminated prey animals [145]. MPs may be transferred through the
digestive tract of crabs and eventually accumulate in the hepatopancreas [105]. Larger MPs
cannot be transported through the gut lining and can be retained in the foregut for 120 h
(5 days), which is longer than the passage of regular food items [145]. The deposition of
MPs in the digestive tract of crabs has the potential to negatively affect their health by
diminishing nutrient absorption and feeding activity [146]. The retention time of the MPs
in the gills was greater than that in the digestive tract because the gills have a large surface
area, and the gill lamellae provide many folders [140]. The presence and buildup of MPs
in the gills could impair osmoregulation and respiratory function by interfering with gas
exchange processes occurring within the gill chambers. Water within the gill chamber is
recycled and evaporates, leading to a concentration of MPs within the gill chamber as it
trickles down towards the top of the legs [147].

The accumulation of MPs in the crabs not only impacts their health, but may also
facilitate the transfer of MPs into the ecosystem via the food chain, given that crabs are a
major dietary component for humans [124]. The presence of MPs at a lower trophic level,
including plankton, copepods, and slaps, leads to the transfer of MPs to the higher trophic
level [148]. Hence, edible crustaceans such as crabs, lobsters, crayfish and prawns, along
with various edible fish species that encompass pelagic, demersal and reef classifications
offer substantial evidence of the widespread occurrence of MPs [146]. Exposure of MPs to
the human body can occur through the consumption of contaminated foodstuff. MPs, which
are consumed by small fish and bivalves, are frequently concentrated in the gastrointestinal
tract, and eating their entirety increases the likelihood of introducing MPs into the human
diet [149]. But even if the digestive tract and gills are removed, chemical pollutants
associated with plastic may still be transferred. Humans are adversely impacted by the
various harmful effects caused by MPs. MPs offer a conductive surface for the proliferation
of microorganisms, and they function as a medium for transmitting pollutants [31]. Also,
MPs could adhere to external surfaces; as a result, they can clog the digestive tract and
reduce mobility along with disruption of the energy metabolism, harm to genes, oxidative
stress, strain liver and inflammation.
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5. Conclusions

The current study reported evidence of MPs in both the gills and gastrointestinal
tract of the mud crab Scylla serrata inhabited tropical lagoons. The existence of MPs in the
mud crabs was facilitated by the plastic debris present in the sediments and water of the
lagoon. The primary route for microplastics to enter the gastrointestinal tract is through
the burrowing habits and dietary intake of the mud crab, as evidenced by the significantly
greater abundance of microplastics found in the gastrointestinal tract compared to the gills.
The most prominent polymer type found in the mud crab was rayon which comes from
fibres, yarns and fabric products. Additionally, the most common MP type was filaments
(fibres). These types originate from the waste dumps associated with the fisheries and other
household activities. The abundance of mud crabs inhabiting tropical lagoons was greater
than that of crabs found in wetlands, the sea and estuaries. While this study establishes a
preliminary benchmark for the rapid detection of microplastics in mud crabs, these findings
offer a further understanding of contamination levels and raise concerns regarding food
security. Certainly, with negative impacts on growth and reproduction linked to plastic
pollution and its associated chemicals, commercial populations could suffer, negatively
impacting local fishing communities.
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