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Abstract: Canopy water interception is a key parameter to study the hydrological cycle, water
utilization efficiency, and energy balance in terrestrial ecosystems. Especially in sprinkler-irrigated
farmlands, the canopy interception further influences field energy distribution and microclimate,
then plant transpiration and photosynthesis, and finally crop yield and water productivity. To reduce
the field damage and increase measurement accuracy under traditional canopy water interception
measurement, UAVs equipped with multispectral cameras were used to extract in situ crop canopy
information. Based on the correlation coefficient (r), vegetative indices that are sensitive to canopy
interception were screened out and then used to develop canopy interception models using linear
regression (LR), random forest (RF), and back propagation neural network (BPNN) methods, and
lastly these models were evaluated by root mean square error (RMSE) and mean relative error (MRE).
Results show the canopy water interception is first closely related to relative normalized difference
vegetation index (R△NDVI) with r of 0.76. The first seven indices with r from high to low are R△NDVI,
reflectance values of the blue band (Blue), reflectance values of the near-infrared band (Nir), three-
band gradient difference vegetation index (TGDVI), difference vegetation index (DVI), normalized
difference red edge index (NDRE), and soil-adjusted vegetation index (SAVI) were chosen to develop
canopy interception models. All the developed linear regression models based on three indices
(R△NDVI, Blue, and NDRE), the RF model, and the BPNN model performed well in canopy water
interception estimation (r: 0.53–0.76, RMSE: 0.18–0.27 mm, MRE: 21–27%) when the interception
is less than 1.4 mm. The three methods underestimate the canopy interception by 18–32% when
interception is higher than 1.4 mm, which could be due to the saturation of NDVI when leaf area
index is higher than 4.0. Because linear regression is easy to perform, then the linear regression
method with NDVI is recommended for canopy interception estimation of sprinkler-irrigated winter
wheat. The proposed linear regression method and the R△NDVI index can further be used to estimate
the canopy water interception of other plants as well as forest canopy.

Keywords: canopy interception; UAV; multispectral image data; vegetation indices; model performance

1. Introduction

Canopy water interception is the water amount that is intercepted then stored for a
while in the canopy of a plant, tree, or bush during rainfall or sprinkler irrigation, and
a key component in the land water cycle [1]. The canopy water interception has been
measured from 10% to 50% of total rainfall in different types of forest [2,3], 7–36% in
crops [4], and 10–40% in bushes [5]. The large variations in canopy interception depend on
plant and forest species and growth characteristics. Compared to the natural forest and
bush ecosystems, the sustainable development of farmland systems mainly depends on
irrigation, especially in semiarid and arid regions. The North China Plain (NCP) is one
of the main grain production regions in China, producing approximately 60% of wheat
and 25% of maize of China’s total amount [6]. Most wheat in the NCP is irrigated because
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the precipitation (approximately 150 mm) cannot meet the wheat ET of approximately
450 mm [7,8]. Sprinkler irrigation has now been increasingly used to irrigate wheat fields
in the NCP to reduce the labor cost and improve field water and nutrient conditions
by combining with the fertigation system [9]. Unlike the surface and drip irrigation
methods, a part of sprinkler irrigation water can be intercepted by crop canopy, which then
influences the irrigation water distribution and water use efficiency [10]. The evaporation
of canopy interception further influences the field energy balance and microclimate, then
crop physiological function of photosynthesis and transpiration, and finally crop yield and
evapotranspiration [11–14]. Therefore, quantifying the canopy water interception under
sprinkler irrigation is critical to understanding the mechanism of crops response to field
microclimate change, crop evapotranspiration, and water use efficiency.

The used methods for canopy water interception include direct and indirect meth-
ods. Most indirect methods are based on water balance theory. For indirect method
measurement, water collectors are placed above and under the plant canopy, and the
canopy interception is determined as the water difference in the collectors between above
and under the canopy. By using the water balance method, the canopy interception was
measured at 2.9–4.7 mm for wheat [15], 1.1–2.31 mm for maize [1,16], and 0.8–7.6 mm for
soybean [17]. Because the stem flow water is not considered in the water balance method,
therefore the measured water interception is overestimated. The wiping water method is
directly collecting water on the canopy and then can get a much more accurate canopy
interception amount. For example, Kang, Wang [10] used the wiping method within the
wheat field under sprinkler irrigation and reported that the canopy interception varied
from 0.3 to 1.0 mm with an average of 0.6 mm when the wheat leaf area index (LAI) is
2.3–6.7. Compared to the wiping method, the water balance method greatly overestimates
the canopy interception. Liu, Chang [18] measured the stem flow of wheat and found it is
approximately 30% of the irrigation water above the canopy. When the stem flow water
is considered in the water balance method, the canopy interception ranges from 0.6 to
1.3 mm with an average of 0.9 mm, which is close to the amount (0.6 mm) using the wiping
method. Both the wiping method and improved water balance method can accurately
determine the canopy interception of plants in the field, while they are time consuming
and show great variations among the samples. Further, both methods could destroy plants
in the field, and then the measurement cannot be repeated in the same place with the same
plants, so the uncertainty of the results is increased. Therefore, an improved water balance
method was used to get the real canopy interception data in the study. The advantage of
the improved method over the traditional one is that it measures the water amounts on
all stems, leaves, ears, and shoots, effectively avoiding the risk of overestimating canopy
interception. Although this method also causes damage to crops, it provides more accurate
data, thus facilitating the acquisition of a more accurate model.

Unmanned aerial vehicles (UAVs) combined with professional equipment (for example,
multispectral cameras and sensors, etc.) could implement the aim of in situ data acqui-
sition/perception, decision making, and action performance [19]. In comparison with
traditional remote sensing technologies (such as satellites and manned airborne systems),
UAVs possess technological advancement, high efficiency, low cost, and the ability to
perform real-time actions [20]. Therefore, the UAVs have been widely used in all walks of
life. In the agriculture industry, the UAVs equipped with multispectral sensors are able
to perform high-precision monitoring of canopy characteristics over large areas [21]. A
series of spectral index and spectral derivative models have been developed to estimate
the water content of different crops [22,23]. Ceccato [24] and Mohammad et al. [25] re-
ported that near-infrared (Nir) and shortwave infrared (SWIR) are the more ideal bands
for studying the vegetation water changes. Liu et al. [26] constructed a water sensitivity
index using hyperspectral data, and the results showed that the near infrared shoulder
region spectral ratio index (NSRI) is a suitable vegetation index for wheat water content
estimation. However, there are fewer research reports on canopy water interception using
UAV technologies, especially timely and precise monitoring of the canopy interception
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under sprinkler irrigation conditions. Rainfall and snow interception in forests or shrubs
have been estimated using unmanned aerial vehicles (UAVs) technology and satellite re-
mote sensing data [27,28]. To date, research on estimating canopy interception of winter
wheat under sprinkler irrigation using multispectral technology is limited. One of the
major challenges is the lack of reliable indices. Although various vegetation indices (such
as NDVI, SAVI, Vogelmann Red Edge Index 1, and so on) have been tested in studies, none
have been identified that reflect canopy interception accurately and immediately, and the
selected indices show instability across different vegetation types and environments [29].
Another challenge is that no good algorithms are developed. Most models at present are
based on complex physical processes and remote sensing data, which greatly reduces the
convenience of timely estimating canopy interception [27]. Thus, further improvement of
multispectral technology for canopy interception estimation is crucial.

For improving the accuracy of crop canopy monitoring and fusing remote sensing data
from various bands, three regression algorithms—linear regression (LR), random forest
(RF), and back propagation neural network (BPNN)—have been widely used [30]. The
LR method effectively captures the direct relationship between predictor and response
variables, with a simple underlying principle and wide applicability. Liu et al. [31] demon-
strated the feasibility of using the RF and BPNN methods to analyze canopy interception
because this approach has the advantage of effectively capturing the nonlinear relation-
ships between remote sensing data features and crop phenotypes while being relatively
unaffected by noise and the number of input variables [32]. Therefore, the three methods
of LR, RF, and BPNN could be employed to develop prediction models of water canopy
interception using multispectral data.

In this study, UAVs equipped with multispectral cameras were used to get multi-
spectral images of winter wheat canopy after sprinkler irrigation; then, parameters were
calculated using the multispectral images data and screened out based on the correlation
coefficient with the measured canopy water interception. Lastly, the prediction models of
winter wheat canopy interception based on unary, multivariate linear regression, random
forest, and back propagation neural network algorithms were developed and evaluated.
The results in this study could help researchers and water resource managers timely and
precisely determine the in situ canopy water interception in farmland and forests using
UAV technology.

2. Materials and Methods
2.1. Overview of the Study Area and Experiment

The experiment was carried out in April and May in winter wheat growth periods
in 2021 and 2022 at Dacaozhuang National Seed Experiment Station (37◦29′49.25′′ N,
114◦55′40.59′′ E, altitude 26 m) in Ningjin County, Xingtai City, Hebei Province, China
(Figure 1). The study region is located on the North China Plain (NCP) with a warm
temperate semi-arid monsoon climate. The average annual precipitation is 430 mm, with
around 60–70% occurring between June and September. The average annual temperature is
13 ◦C, the average sunshine duration is 2428 h, and the frost-free period is about 250 d [33].

The winter wheat experimental field is 200 m long from north to south and 60 m
wide. The solid-set sprinkler irrigation system [34] is widely used to irrigate winter wheat
and was then used in this study. Three pipe laterals were deployed along the long side of
the field, with the distances to the west field edge of 12, 30, and 48 m, respectively. The
spacing between pipe laterals was 18 m. Impact sprinklers (model PXS20-D, Tonghua
Zhenyu Sprinkler Irrigation Equipment Factory, Zhengzhou, China) were mounted on
1.1 m height risers and approximately 0.4 m higher than the wheat canopy when the wheat
reached its full height of approximately 0.8 m. The discharge of the sprinkler is 2.2 m3 h−1

under the normal working pressure of 0.25 MPa. The spacing between sprinklers is 18 m.
In this sprinkler irrigation arrangement, the intensity of irrigation is 7 mm h−1. The
Christiansen coefficient [35] of the sprinkler water distribution was 0.8 and higher than the
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lowest requirement of 0.75 in the Chinese sprinkler irrigation standard [36], indicating the
sprinkler irrigation system is in normal working condition.

The winter wheat variety of Yingbo 700 was used with sowing spacing of 20 cm. The
sowing rate was 100 and 120 kg ha−1 on October 20 and 30 in 2021 and 2022, respectively.
The wheat was harvested on June 10 in both wheat seasons. The measured wheat yields in
the 2021 and 2022 seasons were 9.75 and 9.34 t ha−1, respectively, which are higher than
the mean yield of 7.49 t ha−1 reported by the local government (Hebei Bureau of Statistics
data, http://www.hetj.gov.cn/hbstjj/ (accessed on 30 October 2024)).
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Figure 1. Map of experimental location and experimental field in this study.

2.2. Canopy Water Interception Measurement

During the two-year experiment period (2021 and 2022 wheat seasons), a total of four
canopy interception measurements after sprinkler irrigation events were conducted on May
6 and 23 in 2021 and April 25 and May 16 in 2022. The main environmental data for the
day of the experiment are shown in Table 1. The four measurements are referring to Test A,
Test B, Test C, and Test D, respectively. In each measurement, three subplots with a size of
18 m × 18 m for each were chosen. The experiments were mostly conducted in the morning
and midday. After approximately 4–5 h of sprinkler irrigation, the wheat canopy was fully
wetted, and the canopy water interception reached its maximum capacity. One-quarter of
the experimental plot was selected for canopy interception measurement to minimize the
influence of field measurement on the wheat plants surrounding the measurement sites.

http://www.hetj.gov.cn/hbstjj/
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Table 1. The main environmental data for the day of the experiment.

Test Name Date

Total
Radiation

Relative
Humidity

Average Air
Temperature

Maximum
Temperature

Minimum
Temperature

Average
Wind Speed

MJ × m−2 × d−1 (%) (◦C) (◦C) (◦C) (m/s)

Test A 6 May 2021 23.42 41.42 21.83 30.64 14.69 3.38
Test B 23 May 2021 20.84 67.70 20.66 26.35 16.79 2.46
Test C 25 April 2022 15.94 85.30 21.24 27.86 15.56 1.34
Test D 16 May 2022 29.97 53.42 19.21 28.18 9.01 1.31

Canopy water interception was defined as the variation in canopy masses pre- and
post-sprinkler irrigation. The measurement procedure involved the following steps: (1) as-
certaining canopy water content of wheat before irrigation: firstly, around 20 wheat stems
were severed at the stem base near ground surface, then the total fresh and oven-dried
masses of the 20 stems were gauged, and finally the water content (θ) of the fresh plant
was calculated as θ =

fresh mass−dry mass
dry mass ; (2) clearing stems around the measurement sites,

at each selected site, plants within a 15 cm length row were retained, while other plants,
spaced 20 cm from the selected samples, were cut to minimize their impact on the plant
samples’ measurement; (3) determining the wet biomass of the sampled stems in the 15 cm
length row, after sprinkler irrigation, the plant samples were immediately covered with
large plastic bags (0.6 m in width and 0.8 m in height) from top to bottom and cut at the
stem base, then the bags were tightly sealed once all plants were placed inside; finally,
the total wet stem mass (W1, g) was measured using a 0.01 g precision balance; (4) de-
termining the dry mass of the sampling stems in the 15 cm length row, the number (n)
of the sampled plants in the 15 cm length row was recorded, then all plants were dried
in an oven and the dry mass were measured as W2 (g); (5) determining the total canopy
water interception in the sampling stems, assuming the water content of plants remains
unchanged pre- and post-sprinkler irrigation, the total canopy water interception (W3, g) is
represented by the increase in mass following sprinkler irrigation, and was calculated by
the equation W3 = W1 − (1 + θ)W2; (6) last, determining the canopy interception depth
(CI, mm) following a sprinkler irrigation in the field, it was calculated as CI = 10−3* W3

n N,
where N is the plant density, plants m−2.

The leaf area index (LAI) in each canopy interception measurement site was deter-
mined. Twenty stems were chosen, and every leaf thereon was detached, and the entire
leaf area (LA, cm2) was gauged with the LI-3000C portable leaf area meter (LI-COR, Inc.,
Lincoln, NE, USA). Then the LAI was calculated as LAI = 10−4* LA

20 N, where LA is the total
active leaf area of the sampled plants in cm2, and N is the plant density in plants m−2.

2.3. UAV Image Acquisition and Processing

A UAV system (model DJI P4 Multispectral Version, Dajiang Innovation Technology
Co., Ltd., Shenzhen, China) was used to collect high temporal and spatial resolution
multispectral images and RGB images in the experimental area. The P4 UAV system is
equipped with a multispectral camera, which has one visible light imaging sensor channel
and five multispectral imaging channels, namely blue (450 ± 16 nm), green (560 ± 16 nm),
red (650 ± 16 nm), red edge (730 ± 16 nm), and near infrared (840 ± 16 nm). Six images
were obtained in one shot, and the effective pixels of each image are approximately 2 million.
Flight height above ground surface was set to 50 m, and the acquisition period was between
11:00 and 15:00 under the circumstances of clear and cloudless weather. The multispectral
image data of the entire test area were collected prior to each irrigation as background
values. Immediately after each sprinkler irrigation, the multispectral image data in the
three subplots with canopy interception measurement were obtained.

The multispectral images were calibrated using a standard reflectance calibration
panel [37]. The Pix4D mapper (Pix4D, Prilly, Switzerland), a specialized processing software
for processing UAV aerial photograph data, was employed to perform orthorectification
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and image stitching on the acquired images [38]. As a result, a single-band orthophoto with
a ground resolution of 3.52 cm per pixel, along with RGB images, was obtained. During
remote sensing image acquisition, due to the limitations of the equipment itself and the
influence of soil background on plant canopy reflectance spectra [39], the pre-processing of
soil background rejection was performed on the multispectral images. ENVI 5.3 software
(Exelis Visual Information Solutions, Broomfield, CO, USA) was utilized to distinguish
winter wheat from non-vegetation (including soil and other features) by applying a thresh-
old segmentation method based on the differences in reflectance among the various bands
between winter wheat and soil. In ArcMap 10.5 software (ESRI, California, CA, USA),
buffer zones were built around the sampling points, with a 1 m2 area generation, which
were distributed in relatively uniform positions around the sampling point. Afterwards,
the mean reflectance value of all raster cells within each buffer zone was computed and
taken as the reflectance value for the corresponding sampling point [40]. Reflectance data
of 48 sampling points per test were obtained via this procedure. The vegetation indices
were calculated using the band math function in ENVI 5.3, which used the same extraction
method of the reflectance value of the respective sample points.

2.4. Vegetation Indices Calculation

The vegetation spectral index, a dimensionless parameter, is formed by linearly or
non-linearly combining the reflectance of different bands of remote sensing images based on
vegetation spectral absorption characteristics. Furthermore, the combination of reflectance
from multiple bands can mitigate the influence of leaf physical properties, such as struc-
ture, orientation, and radiation angle, on canopy spectra. Therefore, vegetation spectral
index can provide a simple and effective measure of the vegetation status of the plant
canopy. In this study, seven vegetation indices (VIs) that have shown good performance
in predicting canopy water status and reflecting the characteristics of vegetation canopy
were selected. They are the difference vegetation index (DVI), normalized difference red
edge index (NDRE), soil adjusted vegetation index (SAVI), three-band gradient difference
vegetation index (TGDVI), normalized difference vegetation index (NDVI), normalized dif-
ference water index (NDWI), and relative normalized difference vegetation index (R△NDVI)
(Table 2). The calculation equations are also listed in Table 2. The NDVI index is widely
used for monitoring plant growth and correcting specific radiometric errors with ranges
from −1 to 1 [41]. We found in the experiment that there are obvious variations in NDVI
in the sprinkler-irrigated and no-irrigated canopy. Then we calculated the relative nor-
malized difference vegetation index (R△NDVI) as a vegetation spectral index for canopy
interception estimation.

Table 2. The selected vegetation spectral index and corresponding calculation formula.

Vegetation Index Abridge Formula Literature Sources

Difference vegetation index DVI Nir − Red [42]
Normalized difference red edge index NDRE (Nir − Red Edge)/(Nir + Red Edge) [43]

Soil-adjusted vegetation index SAVI (1 + L) × (Nir − Red)/(Nir + Red + L) [44]

Three-band gradient Difference
vegetation index TGDVI

(Nir − Red)/(λNir − λRed) − (Red −
Green)/(λRed − λGreen))

(If TGDVI < 0, then TGDVI = 0)
[45]

Normalized difference Vegetation index NDVI (Nir − Red)/(Nir + Red) [41]
Normalized difference water index NDWI (Green − Nir)/(Green + Nir) [46]

Relative normalized Difference
vegetation index R△NDVI (NDVI2 − NDVI1)/NDVI1 This study

Note: Nir: reflectance values of near-infrared band; Red: reflectance values of red band; Blue: reflectance values
of blue band; Green: reflectance values of green band; Red Edge: reflectance values of red edge band; L is
taken as 0.5, and λ is the wavelength; NDVI1 is the NDVI value of the winter wheat canopy before the start
of sprinkler irrigation; and NDVI2 is the NDVI value of the winter wheat canopy immediately measured after
sprinkler irrigation.
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2.5. Model Development

The quality of the spectral data in Test B was poorer than that of the other three
experiments due to the influence of weather and clouds during collection and was removed
in the following data analysis. Based on Tests A, C, and D, a total of 128 sets of canopy
interception water samples were selected, along with corresponding values of vegetation
indices and single-band reflectance. Seventy-five percent of the samples were randomly
chosen for model development and the remaining 25% for model validation. Three methods,
including linear regression, random forest, and backpropagation neural network, were
applied to develop the canopy interception model using the vegetation indices listed in
Table 2.

2.5.1. Linear Regression

A linear regression model predicts a response variable as a linear function of one or
more predictor variables, encompassing both unary (ULR) and multivariate (MLR) linear
regression. In unary linear regression, it is assumed that there exists a linear relationship
between the dependent and independent variables, which can be represented by a straight
line. The best-fitting line is determined by minimizing the sum of the squared residuals,
thereby minimizing the error between the predicted values and the actual observations.
Multiple linear regression is a commonly employed statistical model used to predict a
continuous dependent variable based on several independent variables, which enhance
the complexity and accuracy of the predictive model [47]. To assess the applicability and
accuracy of MLR models, it is crucial in practice to carry out regression diagnostics and
model validation [48]. The ULR and MLR models in this study were developed using
Origin 2022 software (OriginLab Co., Northampton, MA, USA).

2.5.2. Random Forest Model (RF)

The random forest (RF) model is an integrated machine learning algorithm for classifi-
cation or regression prediction, which is characterized by high robustness and high learning
ability [49]. It is an integrated learning algorithm based on decision trees. It randomly
selects M subsets of N samples from N training samples by the bootstrap sampling method
in a releasing manner and trains a decision tree for each subset individually and takes
the average of the prediction results of M decision trees as the output value of regression
random forest [50]. After multiple training and optimization of the model by incrementally
increasing the minimum number of leaves nodes starting from the default value of one to
mitigate over-fitting, finally the decision tree of the canopy interception model was set to
100 (default), with the minimum number of leaves nodes being 6. All modeling processes
and analyses of the RF model were conducted using MATLAB R2020a software (Math
Works, Natick, MA, USA).

2.5.3. Back Propagation Neural Network (BPNN)

The backpropagation neural network (BPNN) is a type of artificial neural network
that utilizes an error backpropagation algorithm. Its fundamental architecture consists of
an input layer, one or more hidden layers, and an output layer. By integrating multiple
layers of neurons, BPNN is capable of establishing a nonlinear mapping relationship.
This network can approximate the nonlinear relationship between inputs and outputs
by adjusting the weights and biases of the hidden layers [51]. The hidden layer transfer
function of the BPNN model was set as TANSIG, and the Levenberg–Marquardt (L–M)
algorithm was used as the network training function based on numerical optimization
theory [23].

The BPNN method in MATLAB R2020a software was applied to develop canopy inter-
ception prediction models. The quantity of neurons within the hidden layer is computed in
accordance with the subsequent empirical formula [52]:

N =
√

n + m + a (0 < a ≤ 10) (1)



Water 2024, 16, 3609 8 of 16

where N, n, and m are the numbers of nodes in the hidden, input, and output layers, re-
spectively, and a is the empirical value. In the study, the input layer consists of seven nodes,
while the output layer contains one node. According to Equation (1), the range of nodes
within the hidden layer is defined to be between 1 and 12. The model performance testing
began with a hidden layer neuron count of 1, increasing incrementally, and ultimately the
number of hidden layer nodes was set to 12, the maximum number of iterations was 100,
and the learning rate was 0.01.

2.6. Model Evaluation

All developed models were evaluated using three indicators: coefficient of determina-
tion (R2), root mean square error (RMSE), and mean relative error (MRE) [53].

When R2 approaches 1, both RMSE and MRE approach 0, indicating superior model
estimation performance. The accuracy parameters of the models were statistically compared
in this study to identify the optimal model intuitively.

2.7. Figure Preparation

All data were processed in Microsoft Excel. The correlation relationship between
canopy interception and vegetation indices and all figures were prepared using the Origin
2022 software (OriginLab Co., Northampton, MA, USA).

3. Results and Analysis
3.1. Correlation Analysis Between Canopy Water Interception and Vegetation Spectral Indices

The correlation relationship between measured canopy interception and the seven
vegetation indices and five-band reflectance (Blue, Green, Red, Red Edge, and Nir) was
analyzed, and the results are shown in Figure 2. The correlation coefficient is the highest
(0.76) for index R△NDVI, followed by Blue, Nir, TGDVI, DVI, NDRE, and SAVI, with the
corresponding correlation coefficients from 0.43 to 0.33. A correlation coefficient greater
than 0.3 shows moderate and strong correlation [54]. Then the seven vegetation indices
(R△NDVI, Blue, Nir, TGDVI, DVI, NDRE, and SAVI) were used to develop the canopy water
interception models by the linear regression model (Section 3.2), random forest regression
model (Section 3.3), and BP neural network regression model (Section 3.4).
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3.2. Linear Regression Model

The unary and multivariate linear regression models are fitted to estimate canopy
water interception after sprinkler irrigation using the seven vegetation indices selected
in Section 3.1. Table 3 presents the results of the fitted unary and multivariate linear
models. Figure 3 shows the performance of three linear regression models using single,
two, and three vegetative indices. Based on the results of the single-parameter unary
linear regression, the model based on R△NDVI has the optimal fitting performance, with
the maximum determination coefficient (R2) of 0.537 in the model developing process and
0.738 in the model validation process, the corresponding root mean square errors (RMSE) of
0.165 and 0.195 mm, and the average relative errors (MRE) of 18.2% and 22.1% (Figure 3a).
The SAVI-based unary linear regression model has the least R2 in model development
(0.031) and the validation process (0.054) and the highest RMSE of 0.239 and 0.371 mm. The
other linear regression models with a single vegetation index have R2 values between 0.04
and 0.12, RMSE values between 0.23 and 0.24 mm, and MRE values between 23 and 24% in
the model development process, and 0.05 and 0.21, 0.36 and 0.37 mm, and approximately
37% in the model validation process, respectively.

For the linear regression with two vegetation indices, the fitted model based on
R△NDVI and Blue (model 8 in Table 3) has the highest R2 (0.755), the low RMSE (0.189 mm)
and MRE (21.3%) in the model validation process (Figure 3b). The multivariate linear
regression model based on three vegetation indices of Blue, NDRE, and R△NDVI (model 11
in Table 3) has the highest R2 (0.757), the low RMSE (0.188 mm), and MRE (21.4%) in the
model validation process (Figure 3c). Compared to the unary linear regression model based
on R△NDVI (model 7 in Table 3), multivariate linear regression models (models 8–11 in
Table 3) do not greatly improve the accuracy of canopy interception estimation based on
the statistical results (R2, RMSE, and MRE) of models (Table 3).

Table 3. Statistical results of fitted linear models of winter wheat canopy interception using different
vegetation indices.

Model No. Vegetation Index Used Regression Function
Model Development Model Validation

R2 RMSE/mm MRE/% R2 RMSE/mm MRE/%

1 Blue * y = −20.670x1 + 1.441 0.124 0.227 22.7% 0.210 0.339 34.2%
2 Nir y = −0.506x2 + 1.124 0.044 0.237 24.1% 0.078 0.366 37.3%
3 DVI y = −0.311x3 + 1.091 0.039 0.238 24.2% 0.072 0.367 37.4%
4 SAVI y = − 0.529x4 + 1.289 0.031 0.239 24.6% 0.054 0.371 37.5%
5 NDRE y = −1.058x5 + 1.175 0.121 0.228 22.9% 0.122 0.357 36.9%
6 TGDVI y = −0.0564x6 + 1.106 0.040 0.238 24.1% 0.069 0.368 37.3%
7 R△NDVI y = 10.455x7 + 0.503 0.537 0.165 18.2% 0.738 0.195 22.1%
8 Blue, R△NDVI y = −5.493x1 + 9.960x7 + 0.680 0.545 0.165 17.9% 0.755 0.189 21.3%
9 NDRE, R△NDVI y = −0.337x5 + 9.916x7 + 0.629 0.548 0.164 17.9% 0.749 0.191 21.7%
10 Blue, NDRE y = −13.962x1 − 0.696x5 + 1.469 0.164 0.223 22.0% 0.233 0.334 34.0%

11 Blue, NDRE, R△NDVI
y = −3.276x1 − 0.266x5 +

9.735x7 + 0.708 0.550 0.165 17.9% 0.757 0.188 21.4%

* Note: “x” in the regression functions is the independent variable, and the subscript numbers 1–7 in “x” represent
the indices of blue band (Blue), near-infrared band (Nir), difference vegetation index (DVI), soil adjusted vegetation
index (SAVI), normalized difference red edge index (NDRE), three-band gradient difference vegetation index
(TGDVI), and relative normalized difference vegetation index (R△NDVI) in sequence. “y” refers to the dependent
variable and represents the estimated value of canopy interception.
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3.3. Random Forest Regression Model

Vegetation indices with the first seven high correlation coefficients (Figure 2), R△NDVI,
TGDVI, Blue, Nir, TGDVI, DVI, NDRE, and SAVI, were selected for model development.
In order to avoid over-fitting in model training, all seven parameters were employed as
the feature input to train the RF regression model. The results show that model R2 in the
model-developing and validating process was 0.738 and 0.533; in turn, the corresponding
RMSE were 0.123 and 0.261 mm, and MRE were 12.2% and 25.9% (Figure 4). However, it
should be noted that the canopy interception is underestimated by 31.9% when the canopy
interception is higher than 1.4 mm (the points inside the ellipse on Figure 4).
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Figure 4. The estimated and measured canopy interceptions by RF model in the model developing
and calibrating processes.

3.4. BP Neural Network Regression Model

The BPNN model for canopy interception estimation was trained based on the indices
of R△NDVI, TGDVI, Blue, Nir, TGDVI, DVI, NDRE, and SAVI. Figure 5 shows the estimated
and measured canopy interception in the model training and validation process. Results
show that the R2 in the model training process was 0.691, RMSE is 0.122 mm, and MRE is
14.0%. In the model validation process, the R2, RMSE, and MRE are 0.667, 0.220 mm, and
24.0%, respectively. The high R2 and small MRE in the model validation process indicate
that the developed BPNN model could accurately estimate canopy interception.
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4. Discussion

Canopy interception in sprinkler-irrigated fields is not only a key component in water
balance analysis but also a key factor that influences canopy energy balance and field
microclimate. Previous research indicated that the canopy water interception of winter
wheat varies between 0.59 and 1.33 mm and is influenced by sprinkler droplets, wind speed,
and leaf area index [10,55,56]. The canopy interception for a mean LAI of 4.76 in this study
is between 0.30 and 1.80 mm. The large variation range (0.3–1.8 mm) of canopy interception
could be due to the variation in wind speed (1.3–3.4 m s−1), LAI at different measurement
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sites (2.8–9.3), and droplet distribution along the jet radius. The mean canopy interception
value is 0.63 mm, which is close to the reported mean canopy water interception value of
0.60 mm by Kang [10]. This shows the canopy interception value presented in this study is
reliable. Therefore, we developed models based on the measured canopy interception data.

The UAV, equipped with a multispectral camera, could timely sense the changes
of land surface and therefore is used to extract canopy characteristics. The results in
this study show that the vegetation [10,55,56] indices R△NDVI are highly correlated with
canopy interception, with correlation coefficients of 0.76 (Figure 2). The reason could be
that the calculation of NDVI takes into account the near-infrared and red-light spectral
characteristics, which two are sensitive to plant characteristics [57]. It is reported that the
red and near-infrared light band are strongly correlated with vegetation parameters of
LAI and canopy cover [58,59]. Moreover, H. H. Bulcock [29] evaluated the feasibility of
using NDVI, SAVI, and the Vogelmann Index to estimate LAI and canopy interception
in afforested areas and suggested that NDVI is a viable option for estimating canopy
interception, which is similar to this study. Considering the NDVI variation with land
surface, we suggest using the relative change in NDVI (R△NDVI) before and after sprinkler
irrigation or rainfall to estimate canopy water interception.

In this study, three methods—univariate and multivariate linear regression, BP neural
network, and random forest methods—were developed to estimate canopy interception
of winter wheat under sprinkler irrigation based on five vegetation indices and two-band
reflectance. Results show that the models developed with the three methods (models 7, 8,
and 11 in Table 3, the RF model, and BPNN model) have close values of model evaluation
parameters (R2, RMSE, and MRE). According to the model validation process, the accuracy
of the three linear regression models is generally better than that of the BPNN model and
RF model. The reason may be attributed to the obvious linear relationship between the
index R△NDVI and canopy water interception. Due to the high capabilities for processing
complex nonlinear relationships, the BP neural network and RF methods models, which
usually require a large quantity of data for training and use complex algorithms [60,61],
have been successfully applied in predicting crop biomass and yield [62], assessing crop
health [23], and estimating canopy water content [63]. Regarding the linear relationship
between the vegetation index and canopy interception, the nonlinear characteristics of
BPNN and RF models may lead to over-fitting [64] or performance degradation, especially
when the sample size of the data is insufficient. The three methods of linear regression,
RF, and BPNN models performed well for estimating canopy water interception of winter
wheat when canopy interception is less than 1.4 mm, then show large errors for canopy
interception larger than 1.4 mm. The linear models and RF model underestimated the
canopy interception by 18.0% and 31.9%, in turn (Figures 3 and 4), and the BPNN model
underestimated the canopy interception by 29.2% in two points and overestimated it by
21.7% in another two points (Figure 5). The canopy water interception depends on the leaf
area in the canopy and therefore is closely related to LAI and NDVI. Assuming the water
interception rate per unit leaf area in the canopy is the same, the total canopy interception
could be linearly related to LAI. In the winter wheat field in this study, NDVI is increasing
with the LAI increasing and reached the maximum of approximately 0.9 when LAI ranges
from 4 to 7 (Figure 6), which is called saturation of the NDVI [65]. NDVI saturation at
high LAI values significantly impacts LAI results. As LAI increases, NDVI may reach a
maximum and cease to respond proportionally, leading to an underestimation of actual
LAI [66]. In deciduous canopies, the LAI of the stands may reach a large value, which
saturates the NDVI [67], consequently resulting in a low correlation between NDVI and
LAI. Therefore, when the canopy interception is high (>1.4 mm) with a large LAI (4–6), the
NDVI cannot sensitively reflect the change in LAI and consequently cause a large error
in canopy interception estimation. The 6 large canopy interceptions from 1.48 to 1.80 mm
(data in circle in Figure 4) were observed in LAI from 4.48 to 5.95, while the corresponding
NDVI varied from 0.875 to 0.908. The smaller changes in NDVI (0.875–0.908) and R△NDVI
(0.056–0.096) compared to the larger change in LAI (4.48–5.95) finally induce a large error
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in canopy interception estimation by the three methods for canopy interception higher than
1.4 mm and LAI larger than 4.0 (Figures 3–5).
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5. Conclusions

The vegetative indices of winter wheat canopy before and after sprinkler irrigation
were determined by the UAV image data in two winter wheat seasons and then used
to develop a canopy interception model by three methods. Main conclusions drawn are
as follows.

1. The canopy water interception of winter wheat under sprinkler irrigation conditions
averaged 0.63 mm for an LAI range of 4–6 in the wheat heading and grain-filling
stages.

2. Canopy water interception is first significantly (p < 0.05) related to R△NDVI, and
secondly related to indices of Blue, Nir, TGDVI, DVI, NDRE, and SAVI.

3. Linear regression models performed well to estimate canopy water interception;
however, RF models and BPNN models underestimated canopy interception due to
the saturation of NDVI for large LAI (>4).

4. The UAV technology combined with linear regression models is recommended for
estimating canopy water interception of plants.
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