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Abstract: Adsorption desalination (AD) has emerged as a novel technique for desalination, which
works cyclically and via switching, and various variables have an effect on its performance. This study
uses machine learning procedures to present a model predictive approach for adsorption desalination
systems. The adsorption desalination system will be modeled through the utilization of multilayer
perceptron (MLP) and radial-based function (RBF) neural network approach hes. The purpose of
this research is to provide valuable insights into optimizing system efficiency and expanding the
applicability of adsorption desalination technologies by investigating the strengths and limitations of
each model. Hence, the Specific Daily Water Production (SDWP), coefficient of performance (COP),
and specific cooling power (SCP) are determined. There are 55 instances in the dataset, each with
five input variables: temperatures of the evaporator and condenser, adsorption beds, and inlet hot
saltwater. Additionally, three output variables are recorded: COP, SCP, and SDWP. The results of
this investigation show that the MLP is more effective for simulating the AD system, and the Roots
of Mean Square Error of COP, SCP, and SDWP are 0.002, 0.5921, and 0.0465, respectively. Then, the
impact of input factors on output parameters was examined. The results show that the inlet hot
saltwater temperature parameter affected the output parameters the most. Subsequently, the COP
parameter is mainly affected by the adsorption beds, evaporator, and condenser temperature. The
SCP parameter is primarily influenced by the inlet hot saltwater temperature, condenser temperature,
temperatures of the two adsorption beds, and evaporator temperature.

Keywords: desalination; adsorption desalination system; artificial neural network; model predictive

1. Introduction

Water is regarded as the fundamental substance necessary for sustaining life. Water
covers about 71% of the surface of the earth. Approximately 97% of the earth’s seawater is
characterized by its salinity, while the remaining 2% comprises frozen water in the nature
of glaciers and ice. Therefore, the remaining global water resources are a valuable and
indispensable asset crucial for our continued existence [1]. The issue of inadequate access
to clean water for a livelihood is a significant global challenge that necessitates immediate
consideration. The global demand for freshwater is increasingly emerging as a significant
concern. Access to drinkable water is critical for establishing human habitats in dry regions
where water scarcity is prevalent [2]. Water consumption can be checked in two parts:
The first part is the consumption of water for drinking and domestic use, which uses the
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water of some lakes and rivers and is finally purified and used. The second part of water
consumption is in cooling and water needed by industries, which mainly use salty sea
and ocean waters, which must first be desalinated with the help of industrial desalination
methods. Various techniques have been developed and implemented for the desalination
of saltwater, including multi-effect distillation (MED), multi-stage flash (MSF), and reverse
osmosis (RO), which have entered the commercial market. One emerging desalination
technique is adsorption desalination (AD), which exhibits significantly reduced energy
usage compared to conventional desalination technologies commonly employed in the
industry. The approach exhibits several advantages that facilitate the industrialization of
this technology because it does not necessitate a significant amount of energy, uses wasteful
and renewable energy sources, produces little pollution, and has low maintenance and
repair costs. A schematic of desalination methods is depicted in the Figure 1, which shows
that the adsorption desalination method is a subset of the thermal method.

Water 2025, 17, x FOR PEER REVIEW 2 of 23 
 

 

is characterized by its salinity, while the remaining 2% comprises frozen water in the na-
ture of glaciers and ice. Therefore, the remaining global water resources are a valuable 
and indispensable asset crucial for our continued existence [1]. The issue of inadequate 
access to clean water for a livelihood is a significant global challenge that necessitates im-
mediate consideration. The global demand for freshwater is increasingly emerging as a 
significant concern. Access to drinkable water is critical for establishing human habitats 
in dry regions where water scarcity is prevalent [2]. Water consumption can be checked 
in two parts: The first part is the consumption of water for drinking and domestic use, 
which uses the water of some lakes and rivers and is finally purified and used. The second 
part of water consumption is in cooling and water needed by industries, which mainly 
use salty sea and ocean waters, which must first be desalinated with the help of industrial 
desalination methods. Various techniques have been developed and implemented for the 
desalination of saltwater, including multi-effect distillation (MED), multi-stage flash 
(MSF), and reverse osmosis (RO), which have entered the commercial market. One emerg-
ing desalination technique is adsorption desalination (AD), which exhibits significantly 
reduced energy usage compared to conventional desalination technologies commonly 
employed in the industry. The approach exhibits several advantages that facilitate the in-
dustrialization of this technology because it does not necessitate a significant amount of 
energy, uses wasteful and renewable energy sources, produces little pollution, and has 
low maintenance and repair costs. A schematic of desalination methods is depicted in the 
Figure 1, which shows that the adsorption desalination method is a subset of the thermal 
method. 

Methods of desalination

ThermalMembrane

MD ElectrodialysisReverse 
osmosis

MEDTVCMSFFreeze Solar MVC
Adsorption 

Desalination
 

Figure 1. Different methods for the desalination of seawater and saltwater. 

In this study, the performance of an adsorption desalination system, which has a cy-
clic operation with a complex control system, was modeled via a machine learning proce-
dure. This research used two different machine learning models, including the multilayer 
perceptron (MLP) and radial-based function (RBF) neural network approaches. These 
models are used to predict critical parameters, such as COP, SCP, and SDWP, using input 
data that include evaporator and condenser temperatures, adsorption beds, and hot water 
entering the system. This study makes a significant contribution by conducting a compre-
hensive comparative analysis of these machine learning models, revealing their efficacy 
in predicting key performance indicators of the adsorption desalination system. The pur-
pose of this research is to provide valuable insights into optimizing system efficiency and 
expanding the applicability of adsorption desalination technologies by investigating the 
strengths and limitations of each model. As a result, this comparative study could add a 
new perspective to ongoing efforts to address water scarcity through sustainable and en-
ergy-efficient means. Meanwhile, due to the limited amount of data required for machine 

Figure 1. Different methods for the desalination of seawater and saltwater.

In this study, the performance of an adsorption desalination system, which has a
cyclic operation with a complex control system, was modeled via a machine learning
procedure. This research used two different machine learning models, including the
multilayer perceptron (MLP) and radial-based function (RBF) neural network approaches.
These models are used to predict critical parameters, such as COP, SCP, and SDWP, using
input data that include evaporator and condenser temperatures, adsorption beds, and hot
water entering the system. This study makes a significant contribution by conducting a
comprehensive comparative analysis of these machine learning models, revealing their
efficacy in predicting key performance indicators of the adsorption desalination system.
The purpose of this research is to provide valuable insights into optimizing system efficiency
and expanding the applicability of adsorption desalination technologies by investigating
the strengths and limitations of each model. As a result, this comparative study could add
a new perspective to ongoing efforts to address water scarcity through sustainable and
energy-efficient means. Meanwhile, due to the limited amount of data required for machine
learning models in such scenarios, selecting an appropriate model capable of effectively
training and predicting data is crucial. Considering the complexity of the adsorption
desalination system, the effect of various parameters on the performance of the system in
terms of water production and energy consumption is another goal of this research.

This technique aims to develop a more streamlined model to address the intricate
challenges associated with multi-domain molecular and numerical simulation. The sub-
sequent analysis presents an outline of the organizational framework. Section 2 provides
an introduction to the background of the research. The adsorption desalination system
is briefly presented in Section 3. Based on objectives defined to predict the model, the
artificial neural network, and its algorithms, the MLP and RBF are discussed in Section 4.
In Section 5, these approaches are simulated and compared with the analytical approach.
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Then, in Section 6, based on predefined criteria, the performance of the predicted model is
evaluated, and the efficacy of input parameters on each output is investigated.

2. Background

Given the substantial investment and high energy requirements associated with desali-
nation systems, researchers have explored approaches to mitigate energy usage [3–8]. Here,
the history of the adsorption desalination system (ADS), a subset of thermal desalination,
was investigated. Before 2004, extensive studies had been conducted on adsorption chillers.
However, the potential integration of these chillers with desalination systems has not been
previously explored. The first studies focusing on the production of freshwater using
adsorption systems were conducted by Zejli et al. (2004), who simulated adsorption desali-
nation systems with the help of plan transfer from adsorption chillers, with the difference
that in chillers, adsorption is a closed thermodynamic cycle. However, in desalinated water,
the thermodynamic cycle is open. In this system, the adsorbent material used is zeolite,
and the amount of energy consumption and produced water is studied [9].

In a study conducted in 2007, Wang et al. studied the impact of a mass and energy re-
covery strategy on the efficiency of an AD system. Through two simultaneous experimental
investigations, one with the implementation of the recovery strategy and the other without,
the researchers observed a significant enhancement in process performance. Specifically,
the recovery strategy resulted in a 42.7% improvement in overall system performance
and a 15.7% increase in water production [10]. In a study conducted in 2016, Mitra et al.
employed a simulation of a two-stage system consisting of adsorbent beds. Their research
aimed to investigate this system’s impact on the thermodynamic cycle’s continuity and
the quantity of water generated. Their findings revealed a favorable influence in both
aspects [11]. Research by Ali et al. in 2016 sought to examine the function of two distinct
adsorbents inside a two-stage desalination cycle. In this manner, the researchers evalu-
ated the advantages and superiority of various materials concerning the requirement for
increased production of water or cooling [12].

Adsorption desalination systems (ADSs) have captured much attention due to the
utility of waste heat as well as renewable energy resources. Amir Fakhraei et al. [13]
proposed various scenarios for mass and heat recovery inside the ADS. Compared to the
conventional systems, without a heat and mass recovery mode, improvements of about 200
and 51 percent, regarding the amount of water produced and the performance ratio, were
observed, respectively.

Also, some research has been conducted in the domain of saltwater desalination
utilizing machine learning. In 2019, Zarei et al. employed neural networks for modeling
and optimizing a seawater greenhouse that was employed from HDH desalination. They
further examined the impact of changes in the dimensions of the greenhouse across both the
complete cycle and half cycle on the system’s output parameters. The outcome entailed a
decrease in the temperature of the generated water, an increase in the amount of generated
water, and an improvement in the system’s efficiency [14,15].

Essa et al. [16] modeled a type of solar desalination with the help of ANN and a
support vector machine network (SVM) and, in that model, predicted the quantity of water
generated by the system. In 2018, Cabrera et al. modeled the seawater reverse osmosis
(SWRO) desalination system using three methods: artificial ANN, SVM, and random forest.
They then evaluated the performance of this system [17]. A solar desalination system,
featuring a single-slope solar still, was studied in [18]. For the mentioned design, Al2O3
nanofluid is employed, and the optimal conditions for maximizing both efficiency and cost-
effectiveness are determined through the application of a reinforcement learning technique
known as a deep Q-value neural network (DQN). The efficacy of an RO desalination plant
based on permeate conductivity was investigated using deep learning long short-term
memory (LSTM) in conjunction with an optimized crow search algorithm (CSA), and the
results proved that ANN could optimize energy consumption [19]. The integration of
advanced computational techniques and machine learning (ML) has been employed to
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enhance the design of materials for desalination purposes. Global optimization algorithms
have been utilized to improve the desalination efficiency of membranes. A promising
candidate for desalination membranes, composed of Ti3C2O2, has been identified, featur-
ing a specific charge at the mouth of its nanopores. Furthermore, a physical–chemical
analysis investigated how the charge at the MXene nanopore mouth influences the overall
desalination performance [20].

In 2021, Faegh et al. [21], for the first time, investigated a humidification–
dehumidification desalination system with the help of neural networks; in this research,
they designed three models of MLP, RBF, and the adaptive neuro-fuzzy inference system
(ANFIS) with 180 test samples. The gain output ratio (GOR), heat transfer rates of the
evaporator, and evaporative condenser were considered outputs. Out of the several models
that were built, it was found that the MLP exhibited the most accurate predictions for the
target parameters. Shahouni et al. [22] summarized the utilization of artificial intelligence
in forecasting the behavior of membranes, highlighting their advantages, limitations,
and prospective advancements in the application of artificial intelligence (AI) for water
desalination processes.

As seen, the use of an artificial neural network (ANN) has been used in various
desalination systems. In recent years, this ability has been used to predict the behavior
of absorption desalination. For the first time, in 2021, Alhumade et al. [23] modelled the
output performance of ADS in terms of switching and cycle time using artificial intelligence.
The outcomes confirmed the superiority of ANFIS modeling of the output performance of
the adsorption desalination system compared with regression. Zayed et al. [24] investigated
the performance of a solar adsorption desalination system (SADS). The system produced
6.30 m3/ton-day with a specific cooling power of 153 W/kg. An ANFIS was employed to
model the system, and a manta ray foraging optimizer (MRFO) was used to explore the
optimal ANFIS structure. This ANFIS-MRFO approach demonstrated exceptional accuracy
in predicting the performance of the SADS.

Numerous theoretical and experimental studies with different numerical solutions
have been proposed in the literature to develop models and analyze parameters in various
systems. Due to the complexity of the dynamical and molecular modeling of desalination
systems, numerical solution approaches are costly, time-consuming, and susceptible to
calculation errors. Machine learning approaches are characterized by their reliance on
data and ability to operate independently of the underlying system dynamics, even when
knowledge is insufficient. These abilities enable the prediction of accurate models and the
analysis of parameter efficiency on outputs.

3. Adsorption Desalination System

Adsorptive desalination (AD) is a newly emerging method that uses low-temperature
heat sources and waste heat energy to desalinate saline waters, usually including one
or more distillation steps to produce steam. Since the AD system is mainly started with
low energy, this system can be used with low-temperature renewable energy sources,
especially solar energy and industrial waste heat. In adsorption systems, it is possible to
place a cooling cycle; therefore, compared to alternative desalination technologies, it may be
argued that this particular approach exhibits a comparatively higher level of efficiency and
environmental friendliness [11]. Solid adsorbent materials, such as silica gel and zeolite,
absorb and store steam and maintain steam’s partial pressure to accelerate evaporation.
Hot water is almost always used in this process, and sometimes electricity is needed to run
the pumps.

Furthermore, the utilization of heat within a temperature range of 55–85 ◦C proves to
be advantageous in this process. This is particularly notable as it allows for the utilization of
heat derived from renewable energy sources or waste heat generated by industrial activities.
A typical AD system is depicted in Figure 2. The main components of adsorption systems
encompass sorption elements (SEs) in the form of adsorption beds and condensers, along
with additional components, such as condensers, evaporators, hot water tanks, cooling tow-
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ers, and auxiliary elements, including pumps, feeding tanks, collection tanks, and saltwater
tanks. SE intermittently occurs between the adsorption and excretion phases [5,9,11,25,26].
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A prototypical two-bed adsorption–desorption cycle can be delineated as follows:
The seawater is conveyed from the feeding tank to the evaporator, which undergoes
heating. Subsequently, the adsorbent in bed one continually absorbs the resulting steam
until it reaches saturation. During this time, the cooling water is circulated throughout
the bed in order to remove the heat that has been adsorbed. During the subsequent
phase, bed one undergoes a transition into rejection mode, wherein the circulation of hot
water inside it raises the adsorbent material temperature, finally releasing steam. Then,
the regenerated steam is sent towards the condenser, where it undergoes condensation
before being transferred to the flow collection tank [28]. In specialized adsorption systems,
internal heat recovery is utilized to recover energy during the transition phase when the
adsorption bed and disposal bed are exchanged. During the exchange period, there exists a
significant disparity in temperature between the adsorbent bed, which remains at elevated
levels, and the adsorbent bed, which experiences a notable decrease in temperature. Direct
displacement results in a notable rise in the temperature of the cooling water outlet while
concurrently causing a fall in the hot water outlet. In the given situation, an internal heat
recovery cycle is employed to enable the transfer of surplus heat from the desorption
bed to the adsorption bed, hence allowing for its efficient utilization. Both numerical
and experimental investigations have provided evidence that the integration of this heat
recovery approach significantly improves the energy efficiency of the anaerobic digestion
system [3].

4. Artificial Neural Networks

Artificial neural networks (ANNs) are highly effective at approximating nonlinear
multi-input and multi-output functions with the desired accuracy using supervised input–
output pair data. Moreover, ANNs work independently of the system structure, resulting
in stable implementation, regardless of unforeseen alterations. Artificial neural networks
are widely recognized as a prominent machine learning methodology utilized for data
processing via successive layers of analysis. The nomenclature of artificial neural networks
is derived from their resemblance to the organization and operation of the human brain. The
human brain comprises a network of interconnected neurons, each possessing dendrites
that serve as receptors for receiving inputs. The neuron receives input signals, which it
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subsequently transforms into electrical signals. These electrical signals are then transmitted
through the axon and propagated to other neurons via the axon terminals. The artificial
neuron serves as the essential component within an ANN. It is a mathematical construct
designed to emulate the functionality of a biological neuron.

Hence, the input data are transmitted to the artificial neuron, and after mathematical
processing, it can result in an output. Before the neuron receives the input data, weights are
assigned to the input parameters to replicate the stochastic characteristics of the biological
neuron. The model prediction process using ANN is introduced in Figure 3.
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4.1. Multilayer Perceptron Neural Network

The multilayer perceptron (MLP) is the most commonly employed artificial neural
network (ANN) for addressing linear and nonlinear problems. MLP is a computational
model typically consisting of three distinct phases: an input layer, a hidden layer, and an
output layer. Each layer comprises a varying number of neurons (Figure 4). The hidden
layer(s) is responsible for processing data received from the input layer and transmitting
these signals to the output layer. Nonlinear and continuously differentiable functions
such as sigmoid, hyperbolic tangent, or any other suitable function can be utilized in the
hidden layer. In order to optimize the effectiveness of training, it is standard to choose
the linear function for the output layer. An essential concern in perceptron networks is
determining the optimal number of hidden layers and neurons, typically achieved by
iterative experimentation [29].
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4.2. Radial Basis Function Neural Network

Radial basis function (RBF) neural networks were introduced in 1988. These networks
have garnered considerable attention due to their strong generalization capabilities and
straightforward network construction, which minimizes unnecessary and lengthy computa-
tions compared to MLP networks. Previous studies on universal approximation theorems in
the context of RBF have demonstrated that it is possible to estimate any nonlinear function
over a compact set with high accuracy [30].

The configuration of layers of an RBF neural network is identical to that of an MLP.
The activation of neurons in the hidden layer is achieved by employing a radial basis
function. The hidden layer comprises a set of computational units known as hidden nodes.
Figure 5 illustrates the structure of a conventional three-layer radial basis function (RBF)
neural network [30].

In the RBF neural network, x = [xi]
T is the input vector. Assuming there are m-th

neural nets, and the radial basis function vector in the hidden layer of RBF is h =
[
hj
]T , hj

is a Gaussian function value for neural net j in the hidden layer, and

hj = exp

(
−
∥∥x − cij

∥∥2

2b2
j

)
(1)

where c =
[
cij
]
=

c11 · · · c1m
... · · ·

...
cn1 · · · cnm

 represents the coordinate value of the center point of

the Gaussian function of neural net j for the ith input, i = 1, 2, . . ., n, j = 1, 2, . . ., m.
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The vector b =
[
b1 . . . bm

]T represents the width value of the Gaussian function
for neural net j.

The weight value of RBF is

W = [W1. . . . .Wm]
T . (2)

The output of the RBF neural network is

y(t) = WTh = W1h1 + W2h2 + · · ·+ Wmhm (3)

The Levenberg–Marquardt backpropagation (LM-BP) algorithm is arguably one of the
most popular learning algorithms. LM optimization is often the fastest BP algorithm and is
highly recommended as a first-choice supervised algorithm. During this procedure, the
weight and bias variables are modified based on the Levenberg–Marquardt (LM) method,
while the backpropagation (BP) algorithm is employed to compute the Jacobian matrix of
the performance function concerning the weight and bias variables [30].
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5. Simulation

In this study, the present ADS without mass and heat recovery model is based on
Alsaman et al.’s [5] experimental work. Table 1 shows the operating conditions of this AD
cycle [5].

Table 1. Operating conditions of conventional AD cycle [5].

Parameters Value Unit

Bed heat transfer coefficient 600 W/K
Evaporator heat transfer coefficient 350 W/K
Condenser heat transfer coefficient 500 W/K

Weight of bed hex fin (Al) 0.72 Kg
Weight of bed hex tube (Cu) 2.97 Kg

Weight of evaporator hex tube (Cu) 1.3 Kg
Silica gel Weight 6.75 Kg

Weight of condenser hex tube (Cu) 1.535 Kg
Cover weight of bed (Iron) 15 Kg

Evaporator Liquid seawater 3 Kg
Silica gel particle radius 0.00175 m

Temperature of cold source 30 (◦C)
Temperature of chilled water 30 (◦C)

Temperature of hot source 75–95 (◦C)
Flow rate of cold water 0.3 Kg/s

Flow rate of chilled water 0.025 Kg/s
Flow rate of hot water 0.2 Kg/s

Cycle time 650 s
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This research focuses on analyzing an adsorption desalination system, aiming to
develop a predictive model and evaluate the influence of different parameters on the
system’s outputs. The system incorporates five input variables, including the temperature
parameters of the AD equipment. These variables consist of the inlet hot water temperature,
evaporator temperature, condenser temperature, and the temperatures of adsorption beds
one and two. The output variables include the COP, SCP, and SDWP.

Since the ANN is data-driven, 55 data are extracted from Al-Saman et al.’s article [5].
The dataset is partitioned into three subsets, namely training, validation, and test data, to
evaluate the model’s efficacy and avoid the issues of underfitting and overfitting. Moreover,
due to the varying ranges of variables, it is recommended to employ data normaliza-
tion techniques.

This study utilizes MLP and RBF neural networks to address the specified research
objectives. In order to evaluate the efficacy and accuracy of the prediction model, a range
of statistical measures are employed, such as the maximum absolute error, Mean Absolute
Error (MAE), the Roots of Mean Square Error (RMSE), the standard deviation of the error,
and linear regression.

The examined AD system comprises five inputs and three outputs. Therefore, an ANN
is taken into consideration for every output. This structure has several benefits, namely a
reduced learning period and enhanced precision, as ANN weights are specifically designed
for a singular objective. The configuration of MLP consists of a layer with five neurons
with a sigmoid tangent activation function. The available data are divided so that 85%
were used for training and validating and 15% for testing the model. The configuration
of RBF consists of a layer with 55 neurons with a spread of 2. The available data are
divided so that 80% are used for training and validating and 20% for evaluating the model.
Levenberg–Marquardt backpropagation (LM-BP) was used in this method due to its better
efficiency and quick response.

The Levenberg–Marquardt backpropagation (LM-BP) algorithm is arguably one of the
most popular learning algorithms. LM optimization is often the fastest BP algorithm and
is highly recommended as a first-choice supervised algorithm. In this process, the weight
and bias variables are adjusted according to the LM method, and the BP algorithm is used
to calculate the Jacobian matrix of the performance function concerning the weight and
bias variables.

The BP algorithm consists of two phases: The feedforward pass involves the computa-
tion of the ANN’s output value(s) for each training pattern. On the other hand, backward
propagation refers to propagating an erroneous signal from the output layer towards the
input layer. The adjustment of weights is performed based on the backpropagated error
signal. The LM optimization method combines the advantages of Newton’s approach,
which exhibits quick convergence towards a minimum but may potentially diverge, and
Gradient descent, which ensures convergence by appropriately selecting the step-size
parameter but converges gradually. Consider optimizing a second-order function F(x),
and let g be its gradient vector and H be its Hessian. According to the LM method, the
optimum adjustment ∆x applied to the parameter vector x is defined by [31,32]

F(x) = xk+1 − xk = [H + µI]−1g (4)

where I is the identity matrix of the same dimensions as H, and µ is a regularizing or loading
parameter that forces the sum matrix to be positive definite and safely well-conditioned
throughout the computation.

The regularization parameter determines which method of LM is more effective; if
the scalar µ is zero, Newton’s method employs an approximate Hessian matrix. When µ is
large, gradient descent with a small step size occurs. Consequently, this study considers
a range of [0.001, 1000] for the regularization parameter. The learning rate of the ANN
calculates the number of weights developed for each training iteration. In general, it can be
observed that when the learning rate is set at a low value, the algorithm tends to require
a significant amount of time to converge. Conversely, the method’s stability becomes
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compromised if the learning rate is set considerably high. Therefore, a learning rate in the
[0.01, 0.8] range is recommended to ensure the system’s stability.

6. Results of the Predicted Models with Neural Networks

The preceding phase involved examining the adsorption desalination system with
two beds, utilizing the MATLAB 2018b software’s artificial neural networks (ANNs).
This study encompasses the design of six distinct models, with subsequent presentation
of the outcomes and corresponding diagrams for each model. In the context of neural
networks, determining the optimal number of neurons and hidden layers is typically
achieved through an iterative process of experimentation and refinement. In order to assess
the effectiveness of neural networks, multiple metrics are employed to analyze the network
and its performance. Subsequently, the optimal model is chosen based on the evaluation
criteria and the resultant graphical representations.

6.1. Results of the Predicted Models for the System Outputs
6.1.1. Results of the Predicted Models for the COP Parameter

In order to evaluate the predicted models, the test data are used. Figures 6 and 7
present the output results for the COP output parameter obtained from the MLP and RBF
neural network models, respectively:
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Figure 6. (a) Regression diagram of test data of MLP neural network for COP parameter. (b) The test
data error for the MLP model in predicting the COP parameter.

Considering that a better model is designed whose regression (R) is closer to one and
the value of its error indicators is closer to zero, from examining the regression diagram of
both methods, it is concluded that the performance of the MLP is better and has a regression
value of R = 0.9905 and RMSE value of 0.00203. Based on the analysis of error graphs and
error histograms, it was observed that the radius-based functional neural network (RBF)
had limited predictive capability for both the test and experimental data. Furthermore, by
examining the RMSE indices, MAE, and other parameters in Figure 8, it was found that the
MLP neural network exhibited superior performance for predicting the COP parameter
over the RBF neural network.
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6.1.2. Results of the Predicted Models for the SCP Parameter

In order to evaluate the predicted models, the test data are used. Figures 9 and 10
present the output results for the SCP output parameter obtained from the MLP and RBF
neural network models, respectively:
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Figure 9. (a) Regression diagram of test data of MLP neural network for SCP parameter. (b) The test
data error for the MLP model in predicting the SCP parameter.

Considering that a better model is designed whose regression (R) is closer to one and
the value of its error indicators is closer to zero, from examining the regression diagram of
both methods, it is concluded that the performance of the MLP is better and has a regression
value of R = 0.9998 and RMSE value of 0.5921. Based on the analysis of error graphs and
error histograms, it was observed that the radius-based functional neural network (RBF)
had limited predictive capability for both the test and experimental data. Furthermore, by
examining the RMSE indices, MAE, and other parameters in Figure 11, it was found that
the MLP neural network had a better performance for predicting the SCP parameter than
the RBF neural network.
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6.1.3. Results of the Predicted Models for the SDWP Parameter

In order to evaluate the predicted models, the test data are used. Figures 12 and 13
present the output results for the SDWP output parameter obtained from the MLP and RBF
neural network models, respectively:
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Figure 12. (a) Regression diagram of test data of MLP neural network for SWDP parameter. (b) The
test data error for the MLP model in predicting the SWDP parameter.

Considering that a better model is designed whose regression (R) is closer to one and
the value of its error indicators is closer to zero, from examining the regression diagram of
both methods, it is concluded that the performance of the MLP is better and has a regression
value of R=0.999 and RMSE value of 0.0465. Based on the analysis of error graphs and
error histograms, it was observed that the radius-based functional neural network (RBF)
had limited predictive capability for both the test and experimental data. Furthermore,
by examining the RMSE indices, MAE, and other parameters in Figure 14, it was found
that the MLP neural network had a better performance for predicting the SWDP parameter
compared to the RBF neural network.
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test data error for the RBF model in predicting the SWDP parameter.



Water 2024, 16, 3700 19 of 22Water 2025, 17, x FOR PEER REVIEW 20 of 23 
 

 

 

Figure 14. Evaluation metrics of MLP and RBF neural networks for SWDP parameter. 

6.2. The Effect of Input Parameters on Network Output Parameters 

6.2.1. The Result of Investigating the Impact of Input Variables for the COP Parameter 

Based on the conducted investigations, it has been determined that there is a positive 
correlation between the inlet hot water temperature, the adsorption bed temperature, and 
the COP of the system. In other words, as these temperatures increase, the COP of the 
system also increases. Conversely, there is a negative correlation between the evaporator 
temperature and the COP of the system. This implies that as the evaporator temperature 
increases, the COP of the system falls. Eventually, the optimal temperature range for the 
evaporator is 18 °C, while the adsorption bed should be maintained at a temperature of 
70 °C. The inlet hot water temperature is set at 75 °C, resulting in a system performance 
coefficient of 0.58. Based on the findings, it can be concluded that the impact of the inlet 
hot water temperature on the system is more significant than that of other parameters. By 
observing the aforementioned approach, one may discern the impact of the input param-
eters on the COP parameter presented below: 𝑇ுௐ > 𝑇ாଵ > 𝑇ாଶ > 𝑇ா > 𝑇ைே > 0.002 

6.2.2. The Result of Investigating the Impact of Input Variables for the SCP Parameter 

The findings of the investigations indicate that there is a positive correlation between 
the temperature of the adsorption bed, the temperature of the inlet hot water, and the SCP 
of the system. As these temperatures increase, the SCP also increases. Conversely, there is 
a negative correlation between the temperature of the system’s evaporator and the rate of 
SCP. As the temperature of the evaporator increases, the rate of SCP decreases. So, the 
optimal temperature range for the inlet hot water is 75 °C, while the adsorption bed 
should also be maintained at 75 °C. On the other hand, the evaporator should be kept at 
a temperature of 18 °C. 

Additionally, the cooling power rate of the system is measured at 149 W/kg of the 
absorber. Based on the findings, it can be concluded that the impact of the inlet hot water 
temperature on the system is more significant than that of other parameters. By observing 
the aforementioned approach, one may discern the impact of the input parameters on the 
SCP parameter presented below: 𝑇ுௐ > 𝑇ைே > 𝑇ாଶ > 𝑇ாଵ > 𝑇ா > 0.59215 

0

0.1

0.2

0.3

0.4

0.5

0.6

Error_std MAE Max Error RMSE
MLP 0.041103 0.027834 0.12472 0.0465
RBF 0.17677 0.23761 0.50867 0.29062

SDWP performance criteria

Figure 14. Evaluation metrics of MLP and RBF neural networks for SWDP parameter.

6.2. The Effect of Input Parameters on Network Output Parameters
6.2.1. The Result of Investigating the Impact of Input Variables for the COP Parameter

Based on the conducted investigations, it has been determined that there is a positive
correlation between the inlet hot water temperature, the adsorption bed temperature, and
the COP of the system. In other words, as these temperatures increase, the COP of the
system also increases. Conversely, there is a negative correlation between the evaporator
temperature and the COP of the system. This implies that as the evaporator temperature
increases, the COP of the system falls. Eventually, the optimal temperature range for the
evaporator is 18 ◦C, while the adsorption bed should be maintained at a temperature of
70 ◦C. The inlet hot water temperature is set at 75 ◦C, resulting in a system performance
coefficient of 0.58. Based on the findings, it can be concluded that the impact of the inlet
hot water temperature on the system is more significant than that of other parameters.
By observing the aforementioned approach, one may discern the impact of the input
parameters on the COP parameter presented below:

THW > TBED1 > TBED2 > TEVAP > TCOND > 0.002

6.2.2. The Result of Investigating the Impact of Input Variables for the SCP Parameter

The findings of the investigations indicate that there is a positive correlation between
the temperature of the adsorption bed, the temperature of the inlet hot water, and the
SCP of the system. As these temperatures increase, the SCP also increases. Conversely,
there is a negative correlation between the temperature of the system’s evaporator and the
rate of SCP. As the temperature of the evaporator increases, the rate of SCP decreases. So,
the optimal temperature range for the inlet hot water is 75 ◦C, while the adsorption bed
should also be maintained at 75 ◦C. On the other hand, the evaporator should be kept at a
temperature of 18 ◦C.

Additionally, the cooling power rate of the system is measured at 149 W/kg of the
absorber. Based on the findings, it can be concluded that the impact of the inlet hot water
temperature on the system is more significant than that of other parameters. By observing
the aforementioned approach, one may discern the impact of the input parameters on the
SCP parameter presented below:
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THW > TCOND > TBED2 > TBED1 > TEVAP > 0.59215

6.2.3. The Result of Investigating the Impact of Input Variables for the SCWP Parameter

It can be concluded that the specific daily water production (SDWP) is positively
related to both the temperature of the hot water coming in and the temperature of the
evaporator by looking at the parameters that affect it. Conversely, the SDWP demonstrates
a negative relationship between the temperature of the adsorption bed and the temperature
of the condenser. Consequently, the optimal temperature range for the adsorption bed
is 70 ◦C, while the condenser temperature should be maintained at 28 ◦C. Similarly, the
evaporator temperature should be set at 26 ◦C, and the hot water inlet temperature should
be maintained at 75 ◦C. Based on the findings, it can be concluded that the impact of the
inlet hot water temperature on the system is more significant than that of other parameters.
By observing the aforementioned approach, one may discern the impact of the input
parameters on the SDWP parameter presented below:

THW > TEVAP > TCOND > TBED1 > TBED2 > 0.0465

7. Conclusions

This study employs the multilayer perceptron neural network (MLP) and the radius-
based functional neural network (RBF) to predict models for an adsorption desalination
system. Through carrying out an examination of error diagrams and performing a com-
parative study of expected data from neural models, based on the empirical evidence, it is
demonstrated that the MLP neural network outperforms the RBF neural network across
all three output parameters, namely the coefficient of performance (COP), specific cooling
power (SCP), and specific daily water production (SDWP). Considering the complexity of
the adsorption desalination system, the effect of various parameters on the performance
of the system in terms of water production and energy consumption was investigated.
According to the investigation to ascertain the impact of the input parameters on the output
parameters of the neural network, it was concluded that for all three functional parameters,
COP, SCP, and SDWP, the parameter of hot water input to the system has the greatest
impact on the output of the desalination system. The optimal temperature range for the
evaporator is 18 ◦C, while the adsorption bed should be maintained at a temperature of
70 ◦C. The inlet hot water temperature is set at 75 ◦C, resulting in a system performance
coefficient of 0.58.
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