Utilizing Hybrid Machine Learning and Soft Computing Techniques for Landslide Susceptibility Mapping in a Drainage Basin
Abstract
:1. Introduction
2. Studied Drainage Basin
2.1. Geological Setting
2.2. Triggering Factors Selection
2.3. Adjustment of Triggering Factors
3. Materials and Methods
3.1. Data Preparations
3.2. Data Normalization and Modifications
3.3. Predictive Modeling Principles
3.4. Hybrid Model Implementation
3.5. Model Verification
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LSM | landslide susceptibility mapping |
RS | remote sensing |
GIS | geographic information systems |
LR | logistic regression |
NB | naïve Bayes |
FL | fuzzy logic |
SVM | support vector machines |
KLR | kernel logistic regression |
BLR | Bayesian logistic regression |
RF | random forest |
ANFIS | adaptive neuro-fuzzy inference system |
DT | decision tree |
IMO | Iran Meteorological Organization |
TOPSIS | technique for order of preference by similarity to ideal solution |
PIS | positive-ideal solution |
NIS | negative-ideal solution |
GPS | Global Positioning System |
References
- Nanehkaran, Y.A.; Chen, B.; Cemiloglu, A.; Chen, J.; Anwar, S.; Azarafza, M.; Derakhshani, R. Riverside Landslide Susceptibility Overview: Leveraging Artificial Neural Networks and Machine Learning in Accordance with the United Nations (UN) Sustainable Development Goals. Water 2023, 15, 2707. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L. Review on landslide susceptibility mapping using support vector machines. Catena 2018, 165, 520–529. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I.; Sahin, E.K. Machine learning techniques in landslide susceptibility mapping: A survey and a case study. In Landslides: Theory, Practice Modelling; Springer: Heidelberg, Germany, 2019; pp. 283–301. [Google Scholar]
- Azarafza, M.; Azarafz, M.; Akgün, H.; Atkinson, P.M.; Derakhshani, R. Deep learning-based landslide susceptibility mapping. Sci. Rep. 2021, 11, 24112. [Google Scholar] [CrossRef] [PubMed]
- Broeckx, J.; Vanmaercke, M.; Duchateau, R.; Poesen, J. A data-based landslide susceptibility map of Africa. Earth-Sci. Rev. 2018, 185, 102–121. [Google Scholar] [CrossRef]
- Yeon, Y.K.; Han, J.G.; Ryu, K.H. Landslide susceptibility mapping in Injae, Korea, using a decision tree. Eng. Geol. 2010, 116, 274–283. [Google Scholar] [CrossRef]
- Zhu, C.; He, M.C.; Jiang, B.; Qin, X.Z.; Yin, Q.; Zhou, Y. Numerical investigation on the fatigue failure characteristics of water-bearing sandstone under cyclic loading. J. Mount. Sci. 2021, 18, 3348–3365. [Google Scholar] [CrossRef]
- Zhu, C.; He, M.; Karakus, M.; Cui, X.; Tao, Z. Investigating toppling failure mechanism of anti-dip layered slope due to excavation by physical modelling. Rock Mech. Rock Eng. 2020, 53, 5029–5050. [Google Scholar] [CrossRef]
- Lee, S.; Ryu, J.H.; Won, J.S.; Park, H.J. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng. Geol. 2004, 71, 289–302. [Google Scholar] [CrossRef]
- Azarafza, M.; Ghazifard, A.; Akgün, H.; Asghari-Kaljahi, E. Landslide susceptibility assessment of South Pars Special Zone, southwest Iran. Environ. Earth Sci. 2018, 77, 805. [Google Scholar] [CrossRef]
- Lee, S.A.R.O. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int. J. Remote Sens. 2005, 26, 1477–1491. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Zhang, W.; He, Y.; Pijush, S. A comprehensive review of machine learning-based methods in landslide susceptibility mapping. Geol. J. 2023, 58, 2283–2301. [Google Scholar] [CrossRef]
- Ado, M.; Amitab, K.; Maji, A.K.; Jasińska, E.; Gono, R.; Leonowicz, Z.; Jasiński, M. Landslide susceptibility mapping using machine learning: A literature survey. Remote Sens. 2022, 14, 3029. [Google Scholar] [CrossRef]
- Nanehkaran, Y.A.; Mao, Y.; Azarafza, M.; Kockar, M.K.; Zhu, H.H. Fuzzy-based multiple decision method for landslide susceptibility and hazard assessment: A case study of Tabriz, Iran. Geomech. Eng. 2021, 24, 407–418. [Google Scholar]
- Nohani, E.; Moharrami, M.; Sharafi, S.; Khosravi, K.; Pradhan, B.; Pham, B.T.; Melesse, A. Landslide susceptibility mapping using different GIS-based bivariate models. Water 2019, 11, 1402. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Wang, M.; Peng, L.; Hong, H. Comparative study of landslide susceptibility mapping with different recurrent neural networks. Comput. Geosci. 2020, 138, 104445. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geosci. Front. 2021, 12, 639–655. [Google Scholar] [CrossRef]
- Nikoobakht, S.; Azarafza, M.; Akgün, H.; Derakhshani, R. Landslide susceptibility assessment by using convolutional neural network. Appl. Sci. 2022, 12, 5992. [Google Scholar] [CrossRef]
- Achour, Y.; Pourghasemi, H.R. How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geosci. Front. 2020, 11, 871–883. [Google Scholar] [CrossRef]
- Cemiloglu, A.; Zhu, L.; Mohammednour, A.B.; Azarafza, M.; Nanehkaran, Y.A. Landslide Susceptibility Assessment for Maragheh County, Iran, Using the Logistic Regression Algorithm. Land 2023, 12, 1397. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat. Hazards 2012, 63, 965–996. [Google Scholar] [CrossRef]
- Nanehkaran, Y.A.; Licai, Z.; Chen, J.; Azarafza, M.; Yimin, M. Application of artificial neural networks and geographic information system to provide hazard susceptibility maps for rockfall failures. Environ. Earth Sci. 2022, 81, 475. [Google Scholar] [CrossRef]
- Di Napoli, M.; Carotenuto, F.; Cevasco, A.; Confuorto, P.; Di Martire, D.; Firpo, M.; Calcaterra, D. Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides 2020, 17, 1897–1914. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Peng, L.; Hong, H. A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping. Int. J. Geograph. Inform. Sci. 2021, 35, 321–347. [Google Scholar] [CrossRef]
- Mersha, T.; Meten, M. GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, northwestern Ethiopia. Geoenviron. Disasters 2020, 7, 20. [Google Scholar] [CrossRef]
- Małka, A. Landslide susceptibility mapping of Gdynia using geographic information system-based statistical models. Nat. Hazards 2021, 107, 639–674. [Google Scholar] [CrossRef]
- Bourenane, H.; Meziani, A.A.; Benamar, D.A. Application of GIS-based statistical modeling for landslide susceptibility mapping in the city of Azazga, Northern Algeria. Bull. Eng. Geol. Environ. 2021, 80, 7333–7359. [Google Scholar] [CrossRef]
- Ali, S.A.; Parvin, F.; Vojteková, J.; Costache, R.; Linh, N.T.T.; Pham, Q.B.; Ghorbani, M.A. GIS-based landslide susceptibility modeling: A comparison between fuzzy multi-criteria and machine learning algorithms. Geosci. Front. 2021, 12, 857–876. [Google Scholar] [CrossRef]
- Mehrabi, M. Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy. Nat. Hazards 2022, 111, 901–937. [Google Scholar] [CrossRef]
- Pham, Q.B.; Achour, Y.; Ali, S.A.; Parvin, F.; Vojtek, M.; Vojteková, J.; Anh, D.T. A comparison among fuzzy multi-criteria decision making, bivariate, multivariate and machine learning models in landslide susceptibility mapping. Geomat. Nat. Hazards Risk 2021, 12, 1741–1777. [Google Scholar] [CrossRef]
- Sadighi, M.; Motamedvaziri, B.; Ahmadi, H.; Moeini, A. Assessing landslide susceptibility using machine learning models: A comparison between ANN, ANFIS, and ANFIS-ICA. Environ. Earth Sci. 2020, 79, 536. [Google Scholar] [CrossRef]
- Abdollahizad, S.; Balafar, M.A.; Feizizadeh, B.; Babazadeh Sangar, A.; Samadzamini, K. Using hybrid artificial intelligence approach based on a neuro-fuzzy system and evolutionary algorithms for modeling landslide susceptibility in East Azerbaijan Province, Iran. Earth Sci. Inform. 2021, 14, 1861–1882. [Google Scholar] [CrossRef]
- Javadzadeh, H.; Ataie-Ashtiani, B.; Hosseini, S.M.; Simmons, C.T. Interaction of lake-groundwater levels using cross-correlation analysis: A case study of Lake Urmia Basin, Iran. Sci. Total Environ. 2020, 729, 138822. [Google Scholar] [CrossRef] [PubMed]
- Tudryn, A.; Motavalli-Anbaran, S.H.; Tucholka, P.; Gibert-Brunet, E.; Lankarani, M.; Ahmady-Birgani, H.; Dufaure, O. Late Quaternary environmental changes of Lake Urmia basin (NW Iran) inferred from sedimentological and magnetic records. Quat. Int. 2021, 589, 83–94. [Google Scholar] [CrossRef]
- Iran Meteorological Organization, IMO. Meteorological Data for Urmia Lake, Tabriz, Urmia, Bonab, Maragheh Stations. 2023. Available online: https://www.irimo.ir (accessed on 3 April 2023).
- Lak, R.; Mirzapour, B.; Aleali, M.; Djamali, M.; Shahbazi, R. Mineralogical reconstruction of Late Pleistocene-Holocene climate and environmental changes in southern wetlands of Lake Urmia. Geopersia 2021, 11, 205–218. [Google Scholar]
- Geological survey of Iran, GSI. Geological Map of Urmia Lake Basin; Geological Survey and Mineral Exploration of Iran Press: Tehran, Iran, 2009. [Google Scholar]
- Suarez-Alvarez, M.M.; Pham, D.T.; Prostov, M.Y.; Prostov, Y.I. Statistical approach to normalization of feature vectors and clustering of mixed datasets. Proc. R. Soc. A Math. Phys. Eng. Sci. 2012, 468, 2630–2651. [Google Scholar] [CrossRef]
- Yaman, O.; Ertam, F.; Tuncer, T. Automated Parkinson’s disease recognition based on statistical pooling method using acoustic features. Med. Hypotheses 2020, 135, 109483. [Google Scholar] [CrossRef]
- Chollet, F. Deep Learning with Python; Manning Publications Company: New York, NY, USA, 2017. [Google Scholar]
- Aggrawal, C. Neural Networks and Deep Learning: A Textbook; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Mittal, K.; Jain, A.; Vaisla, K.S.; Castillo, O.; Kacprzyk, J. A comprehensive review on type 2 fuzzy logic applications: Past, present and future. Engineering Appl. Artif. Intell. 2020, 95, 103916. [Google Scholar] [CrossRef]
- Pandey, V.; Komal, A.; Dincer, H. A review on TOPSIS method and its extensions for different applications with recent development. Soft Comput. 2023, 27, 18011–18039. [Google Scholar] [CrossRef]
Triggering Factors | Adjustment | Target Point of Adjustment | Advantages | Limitations |
---|---|---|---|---|
Elevation | Data Resolution | Fine-tuning elevation data | More accurate slope assessment, better representation of local terrain. | Limited to the resolution of available data. |
Slope aspect | Weighting | Relative importance | Reflects regional topographical influences; nuanced susceptibility mapping. | Assumes uniform importance if not adjusted. |
Slope angle | Parameterization | Slope categories | Captures slope variations; customized susceptibility assessment. | May oversimplify slope variability. |
Lithology | Parameterization | Lithological attributes | Accounts for local geological diversity; precise susceptibility assessment. | May require extensive geological data. |
Drainage density | Data Resolution | Fine-tuning density data | Accurate representation of local drainage patterns; better assessment. | Limited by resolution of available data. |
Landuse/ Landcover | Data Resolution | Fine-tuning land-use data | Improved representation of land use; precise susceptibility mapping. | Limited by the resolution of land-use datasets. |
Weathering | Parameterization | Weathering conditions | Reflects local weathering characteristics; customized assessment. | Requires detailed weathering data. |
Precipitation | Temporal Adjustment | Update historical records | Reflects changing rainfall patterns, dynamic susceptibility assessment | Assumes stationary precipitation patterns |
Temperature | Parameterization | Temperature ranges | Considers local temperature variations; tailored assessment. | Requires historical temperature data. |
Evaporation | Parameterization | Evaporation rates | Accounts for regional evaporation dynamics; precise assessment. | Requires historical evaporation data. |
Distance to faults | Data Resolution | Fine-tuning density data | Accurate representation of fault proximity; better assessment. | Limited by the resolution of fault datasets. |
Seismic activities | Data Resolution | Fine-tuning land-use data | Improved representation of seismic activity; precise mapping. | Limited by the resolution of earthquake data. |
Distance to roads | Data Resolution | Fine-tuning land-use data | Enhanced representation of road proximity; nuanced assessment. | Limited by the resolution of road datasets. |
Distance to cities | Data Resolution | Fine-tuning land-use data | Better representation of urban proximity; refined susceptibility mapping. | Limited by the resolution of city datasets. |
Main Origin | Triggering Factors | Data Sources | Resolution |
---|---|---|---|
Geomorphologic | Elevation | DEM | ±30 m |
Slope aspect | DEM | ±30 m | |
Slope angle | DEM | ±30 m | |
Geologic | Lithology | Geological data | ±30 m |
Drainage density | DEM, Google Map, IWRM * | ±30 m | |
Landuse/landcover | Geological data, Google Map, | ±30 m | |
Weathering | Geological data | ±30 m | |
Climatologic | Precipitation | IMO † | ±30 m |
Temperature | IMO | ±30 m | |
Evaporation | IMO | ±30 m | |
Seismic | Distance to faults | Geological data, Google Map | ±30 m |
Seismic activities | IIEES ** data | ±30 m | |
Human works | Distance to roads | DEM, Google Map | ±30 m |
Distance to cities | DEM, Google Map | ±30 m |
Model | Advantages | Limitations |
---|---|---|
SVM |
|
|
RF |
|
|
DT |
|
|
LR |
|
|
FL |
|
|
TOPSIS |
|
|
Classifier | Hyperparameters |
---|---|
SVM |
|
RF |
|
DT |
|
LR |
|
Methods | Dataset | Performance Criteria | Accuracy | ||
---|---|---|---|---|---|
Precision | Recall | F1-Score | |||
SVM | Train | 0.89 | 0.85 | 0.85 | 0.89 |
Test | 0.85 | 0.85 | 0.85 | ||
DT | Train | 0.75 | 0.75 | 0.72 | 0.72 |
Test | 0.72 | 0.70 | 0.70 | ||
RF | Train | 0.83 | 0.80 | 0.83 | 0.83 |
Test | 0.80 | 0.83 | 0.80 | ||
LR | Train | 0.69 | 0.67 | 0.67 | 0.67 |
Test | 0.64 | 0.60 | 0.60 | ||
TOPSIS | Entire data | - | - | - | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y.; Li, Y.; Teng, F.; Sabonchi, A.K.S.; Azarafza, M.; Zhang, M. Utilizing Hybrid Machine Learning and Soft Computing Techniques for Landslide Susceptibility Mapping in a Drainage Basin. Water 2024, 16, 380. https://doi.org/10.3390/w16030380
Mao Y, Li Y, Teng F, Sabonchi AKS, Azarafza M, Zhang M. Utilizing Hybrid Machine Learning and Soft Computing Techniques for Landslide Susceptibility Mapping in a Drainage Basin. Water. 2024; 16(3):380. https://doi.org/10.3390/w16030380
Chicago/Turabian StyleMao, Yimin, Yican Li, Fei Teng, Arkan K. S. Sabonchi, Mohammad Azarafza, and Maosheng Zhang. 2024. "Utilizing Hybrid Machine Learning and Soft Computing Techniques for Landslide Susceptibility Mapping in a Drainage Basin" Water 16, no. 3: 380. https://doi.org/10.3390/w16030380
APA StyleMao, Y., Li, Y., Teng, F., Sabonchi, A. K. S., Azarafza, M., & Zhang, M. (2024). Utilizing Hybrid Machine Learning and Soft Computing Techniques for Landslide Susceptibility Mapping in a Drainage Basin. Water, 16(3), 380. https://doi.org/10.3390/w16030380