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Abstract: The hydrological system of thebasin of Lake Urmia is complex, deriving its supply from a
network comprising 13 perennial rivers, along withnumerous small springs and direct precipitation
onto the lake’s surface. Among these contributors, approximately half of the inflow is attributed to
the Zarrineh River and the Simineh River. Remarkably, Lake Urmia lacks a natural outlet, with its
water loss occurring solely through evaporation processes. This study employed a comprehensive
methodology integrating ground surveys, remote sensing analyses, and meticulous documentation
of historical landslides within the basin as primary information sources. Through this investigative
approach, we preciselyidentified and geolocated a total of 512 historical landslide occurrences across
the Urmia Lake drainage basin, leveraging GPS technology for precision. Thisarticle introduces a
suite of hybrid machine learning predictive models, such as support-vector machine (SVM), random
forest (RF), decision trees (DT), logistic regression (LR), fuzzy logic (FL), and the technique for order
of preference by similarity to the ideal solution (TOPSIS). These models were strategically deployed
to assess landslide susceptibility within the region. The outcomes of the landslide susceptibility
assessment reveal that the main high susceptible zones for landslide occurrence are concentrated in
the northwestern, northern, northeastern, and some southern and southeastern areas of the region.
Moreover, when considering the implementation of predictions using different algorithms, it became
evident that SVM exhibited superior performance regardingboth accuracy (0.89) and precision (0.89),
followed by RF, with and accuracy of 0.83 and a precision of 0.83. However, it is noteworthy that
TOPSIS yielded the lowest accuracy value among the algorithms assessed.

Keywords: landslide susceptibility; hybrid artificial intelligence models; soft computing; Urmia Lake
drainage basin; geographic information systems; machine learning algorithms

1. Introduction

Landslides are a common and serious geological hazard, posing a significant threat to
both life and finances [1–3]. A landslide is a geological phenomenon characterized by the
downhill movement of rock, soil, or debris along a slope. The mechanism underlying a
landslide involves a delicate balance between gravitational forces and the stability of the
materials on the slope. When the gravitational force acting on a slope becomes greater than
the resisting forces holding the materials in place, a landslide can occur. This imbalance
is often triggered or exacerbated by various factors such as heavy rainfall, snowmelt,
earthquakes, or human activities that weaken the materials or increase their vulnerability [4].
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Several critical parameters interact to influence the likelihood and severity of landslides.
First, the slope angle plays a significant role, as steeper slopes are more susceptible to
landslides due to stronger gravitational forces. Geological and soil properties are also
essential; loose, unconsolidated materials are more prone to sliding than cohesive, well-
consolidated soils or rocks. Water content is a critical factor, as excess water reduces
friction and increases pore water pressure within the materials, making them more likely
to move downslope [5–8]. Vegetation can either stabilize or weaken slopes, depending
on its presence or absence. Earthquakes can trigger landslides by weakening materials,
while human activities such as construction, mining, and deforestation can alter landscapes
and increase risk. The underlying geology, previous landslide history, and the degree of
saturation in the soil or rock also influence landslide susceptibility [9,10]. Additionally, fault
zone activity and seismic vibrations can disrupt the geological and soil structure, reducing
the normal gravitational force on potential landslide surfaces, while increasing the shear
force, ultimately resulting in landslides [11]. Recognizing the complex interplay of these
parameters is crucial for landslide prediction, mitigation, and prevention. Scientists and
engineers use various methods, such as slope stability analysis and monitoring systems, to
assess and manage landslide risk. Mitigation strategies may include implementing effective
drainage systems, reinforcing slopes, planting vegetation for stabilization, and regulating
construction in landslide-prone areas. Public awareness and early warning systems also
play a vital role in reducing the risks associated with landslides, helping communities
effectively prepare for and respond to these hazardous events [12].

The study of landslides and susceptibility analysis is of paramount importance due
to the inherent risks they pose [6]. Landslides can result in tragic loss of human lives and
endanger public safety [11]. Through rigorous analysis, we can identify areas susceptible
to landslides and implement preventive measures, including engineered slope stabilization
and early warning systems [13,14]. Landslides can have far-reaching environmental im-
pacts, including habitat destruction and soil erosion. The process of susceptibility analysis
aids in pinpointing regions at risk and informs land-use planning and the development
of zoning regulations [15,16]. Research on landslide susceptibility mapping (LSM) is un-
dertaken with the goal of predicting the spatial distribution and likelihood of landslide
occurrences [16]. LSM identifies areas prone to landslides, and this information can be
used by policymakers, scientists, engineers, and the general public to prevent catastrophic
landslides [17]. This represents a fundamental step towards evaluating landslide hazards
and developing reduction strategies [18,19]. Therefore, conducting landslide susceptibility
modeling and mapping research is imperative.

The assessment of landslide risk methods can be broadly categorized into three
primary approaches, i.e., qualitative, quantitative, and semi-quantitative. Qualitative
approaches often rely on aerial imagery, field interpretation, and expert/engineering
judgment [20–23].Despite the logical outcomes and high performance of various models,
geologists always seek new methods for more precise identification of landslide-prone
areas and the creation of reliable maps required for environmental planning. Therefore,
introducing a novel approach based on artificial intelligence algorithms, deep learning,
and remote sensing (RS) and geographic information systems (GIS) techniques for land-
slide modeling is of paramount importance in landslide risk management [24]. In recent
decades, with the rapid development of RS, GIS, and the enhancement of computational
power in artificial intelligence algorithms, machine learning has played a pivotal role
in improving the accuracy and reliability of landslide prediction [23]. Machine learning
methods rely on field observations and statistical computations [24]. Additionally, machine
learning employs computer algorithms to analyze and predict information by learning
from a training dataset [25]. These methods exhibit a high capability for detecting landslide
occurrence behavior using estimation distribution algorithms, are data-centric in nature,
and often involve extensive modeling process iterations. In several studies, these methods
have demonstrated a relative advantage over two-variable and multivariable statistical
models [26,27]. Various machine learning-based hybrid methods, such as logistic regression
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(LR), naïve Bayes (NB), fuzzy logic (FL), support-vector machines (SVM), k-nearest neigh-
bors (k-NN), kernel logistic regression (KLR), Bayesian logistic regression (BLR), random
forest (RF), rotational forest, random subspace, adaptive neuro-fuzzy inference system
(ANFIS), decision tree (DT), classification and regression trees (CART), and many other
methods [28–32], have been employed in landslide susceptibility assessment.

The presented study objective is the use of combined machine learning and soft com-
puting techniques to analysis landslide susceptibility mapping for the Urmia Lake drainage
basin. Combining machine learning and soft computing techniques in landslide suscep-
tibility mapping offers several compelling advantages: (1) it significantly enhances the
accuracy of susceptibility models. Machine learning algorithms excel at capturing intricate
relationships within data, while soft computing techniques, like fuzzy logic and neural
networks, adeptly handle uncertainties and vague input parameters, resulting in more
reliable predictions; (2) the hybrid approach ensures model robustness by accommodating
a wide range of input data, including geological, topographical, and environmental factors.
This versatility is vital in addressing the multifaceted nature of landslide susceptibility
within drainage basins. Moreover, the hybrid model’s ability to adapt to changing environ-
mental conditions and data availability makes it versatile for different regions and drainage
basins, where climate patterns and terrain characteristics may vary significantly. How-
ever, adopting a hybrid approach comes with its share of challenges. First and foremost,
it can introduce complexity. Integrating multiple techniques may necessitate advanced
computational resources, both in terms of processing power and data availability. Man-
aging the intricacies of such models can be demanding in terms of implementation and
maintenance. Second, data requirements can be substantial. Constructing an effective
hybrid model demands a substantial volume of high-quality data, encompassing historical
landslide records, geological information, topographic data, and environmental variables.
Collecting and maintaining these datasets can be resource-intensive. Third, expertise is
crucial. Developing and fine-tuning a hybrid model requires proficiency in both machine
learning and soft computing techniques, which may not be readily accessible in all research
or application contexts. Additionally, while hybrid models provide high accuracy, they
may sacrifice interpretability, potentially complicating communication with stakeholders or
decisionmakers. Finally, there is a risk of overfitting due to the complexity of hybrid models,
necessitating careful regularization and validation procedures to ensure generalizability
beyond the training data.

The novel concept of employing a hybrid approach that merges machine learning
and soft computing techniques for landslide susceptibility mapping in drainage basins
underscores the innovative and distinct qualities of this methodology as compared to
traditional practices. Novelty, in this context, can be delineated through several key factors.
First, the methodology’s novelty resides in its seamless integration of machine learning
and soft computing techniques, effectively uniting two distinct computational paradigms.
This synthesis capitalizes on the capabilities of machine learning to handle intricate data
relationships and soft computing technique’s prowess in modeling the inherent uncer-
tainties and vagueness present in geological and environmental data. This amalgamation
represents a pioneering aspect of the methodology, as it combines the strengths of both
disciplines to yield susceptibility maps that are not only more precise but also more reliable.
Second, the methodology’s novelty is underscored by its remarkable ability to significantly
enhance the performance of susceptibility mapping models. By synergizing machine learn-
ing algorithms, known for their proficiency in processing large and complex datasets, with
soft computing techniques that adeptly capture the nuanced uncertainties prevalent in geo-
logical and environmental information, the hybrid model achieves a marked improvement
over conventional methods. This heightened performance sets it apart as a pioneering
approach in landslide susceptibility assessments, promising more accurate and dependable
results for landslide susceptibility mapping in drainage basins.
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2. Studied Drainage Basin
2.1. Geological Setting

Urmia Lake is located in northwestern Iran and is one of the largest saltwater lakes
in the world. Lake Urmia receives its water supply from a network of 13 perennial rivers
and numerous small springs, along with direct rainfall over the lake’s surface.A substantial
portion of this inflow, nearly half, originates from the Zarrineh River and the Simineh
River. In recent years, the region surrounding Lake Urmia has prompted ecological and
environmental concern due to decreasing water levels and environmental degradation.
Efforts have been made to address these issues and restore the health of the lake and its
drainage basin [33]. Figure 1 shows the Urmia Lake drainage basin in Iran. During its peak
size, Lake Urmia held the distinction of being the most expansive lake in the Middle East
and ranked as the sixth-largest saltwater lake globally, boasting a surface area spanning
approximately 5200 km2 [34]. Notably, Lake Urmia does not have any natural outflow,
meaning that water loss occurs solely through the process of evaporation.
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The climate within the Urmia Lake drainage basin exhibits notable seasonal variations.
Summers are typically warm to hot, with temperatures frequently soaring above 30 ◦C
(86 ◦F). Figure 2 provides information regarding climate changes that occurred in the
Urmia Lake drainage basin, displaying data collected from different stations of the Iran
Meteorological Organization (IMO) database [35]. During this season, rainfall is relatively
scarce [36]. Conversely, winters in the region are marked by cold temperatures, often
dropping below freezing, leading to substantial snowfall, especially in higher elevations.
Spring and autumn serve as transitional periods, offering milder temperatures and sporadic
rainfall. Spring is of particular significance as it plays a crucial role in replenishing Lake Ur-
mia’s water levels. Rainfall is unevenly distributed across the basin, with more substantial
amounts observed in the northwestern and western sectors, while the southern and eastern
regions receive comparatively less precipitation, contributing to arid conditions [34]. The
geological landscape of the Urmia Lake drainage basin is intricate and shaped by various
natural processes. Tectonic activity is a prominent factor, given the region’s proximity to the
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convergence of tectonic plates. This activity has led to the formation of geological features
such as fault lines, folded rock structures, and uplifted mountain ranges. A geological map
of the studied area, which is adapted from a geological survey of Iran [37], is provided
in Figure 3. Additionally, volcanic activity has left its mark on the basin, resulting in the
presence of volcanic rocks and expansive basalt plateaus in certain areas [33]. Sedimentary
deposits are also prevalent, including alluvial plains and terraces formed as rivers and
streams have transported and deposited materials over time [35]. Notably, salt deposits
are a significant geological feature, both within and around Lake Urmia. These vast salt
flats contribute to the high salinity of the lake and play a central role in the region’s ge-
ology. Lastly, karst topography is found in select locations, characterized by limestone
formations featuring sinkholes and caves [36]. In summary, the climate within the Urmia
Lake drainage basin exhibits distinct seasons, and the region’s geology reflects a complex
interplay of tectonic forces, volcanic history, sedimentary processes, salt deposits, and karst
landscapes. Together, these factors shape the hydrology, environmental dynamics, and
geological diversity of this remarkable region.

2.2. Triggering Factors Selection

Landslides manifest under specific triggering conditions, often referred to as ”con-
ditioning” or “triggering” factors [14–17]. These factors initiate or expedite the landslide
process. Gaining a comprehensive understanding of the influence and varieties of these
triggering factors is crucial for crafting precise and detailed susceptibility maps [19]. Trig-
gering factors are pivotal elements in landslide susceptibility analysis, representing the
specific conditions or events that have the potential to initiate or hasten landslide occur-
rences [24,25]. These factors hold paramount importance in landslide assessment for several
compelling reasons [27]. They serve as the linchpin for identifying areas that are at height-
ened risk of landslides. By meticulously evaluating these triggering factors, experts and
researchers can precisely pinpoint geographic locations in which conditions are inherently
conducive to landslide events [14,16]. This targeted assessment enables the development
of susceptibility maps that offer a clear visualization of vulnerability across a given region.
The identification of triggering factors significantly enhances the assessment of landslide
risk [3]. It empowers experts to gauge the likelihood of landslides transpiring in a particular
locale and to assess the potential consequences of such events, including their impact on
communities, infrastructure, and the environment [5–11]. Furthermore, the awareness
of these factors plays a pivotal role in the establishment of early warning systems. By
continuously monitoring conditions known to trigger landslides, authorities can proac-
tively issue warnings to communities, thus mitigating the risk of casualties and damage.
Moreover, triggering factors inform land use planning and zoning regulations, ensuring
that areas prone to landslides are designated for less critical purposes, thereby diminishing
exposure to risk. Finally, they inform the development of tailored mitigation strategies,
such as enhanced drainage systems or slope stabilization, based on the specific triggering
factors prevalent in an area [20]. In essence, triggering factors are the foundation upon
which informed decision making, risk mitigation, and community safety in landslide-prone
regions are built.
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In the extensive analysis of factors influencing landslide occurrence within the stud-
ied region, a comprehensive framework has been established, delineating five distinct
groups of triggering factors. These factors have been meticulously identified through
a combination of remote-sensing techniques and exhaustive field survey studies. The
resultant parameters within these groups include geomorphological characteristics, ge-
ological attributes, climatic conditions, seismic activity, and human-induced activities.
These triggering factors can be further categorized into specific variables that play pivotal
roles in landslide susceptibility. Within the morphological group, variables such as slope
aspect, slope angle, and slope elevation have been scrutinized. The geological category
encompasses parameters like lithology, drainage density, landuse/landcover, and weath-
ering conditions. Climatic considerations revolve around precipitation, temperature, and
evaporation patterns. Seismicity is assessed through the analysis of factors like the unsafe
radius of faults and seismic activity earthquake dispersion. Lastly, human activities are
evaluated based on variables including the proximity to roads and the distance to urban
centers. Figure 4 provides the GIS-based information maps showing the triggering factors
used to analyze the susceptibility for landslides in the studied area. In totality, there are
a total of eleven distinct triggering factors identified, each contributing uniquely to the
occurrence of landslides within the Urmia Lake drainage basin, and these factors can be
categorized into the five overarching groups previously outlined.

It should be noted that in this analysis, the selection of triggering factors involves a
thorough assessment of various criteria to ensure the accuracy and dependability of the
analysis. These criteria typically focus on factors that play a role in initiating landslides.
Key considerations include the relevance of factors to landslide occurrences, the availability
and quality of the data, the need for correlations without interdependence between factors,
the determination of spatial and temporal variations, validation through expert knowledge
and field observations, enhancement of model performance, and ensuring reproducibility
and consistency across different studies or areas. By carefully evaluating these criteria, this
article aim to identify triggering factors that significantly impact LSM, thereby enhancing
the precision and reliability of landslide susceptibility analyses.
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2.3. Adjustment of Triggering Factors

Adjusting triggering factors in landslide susceptibility analysis is a critical step to
ensure that the assessment aligns with the specific conditions and nuances of the study
area. These adjustments are imperative for enhancing the accuracy and applicability of
landslide susceptibility assessments. Here, we provide a detailed breakdown of how these
adjustments are carried out. (i) Parameterization is a key adjustment process. It involves
fine-tuning the parameters within each triggering factor category to accurately reflect the
unique geological, topographical, and climatic characteristics of the study area. For instance,
if the region exhibits distinct lithological variations, the parameters related to geology must
be tailored to effectively capture these specific lithological attributes. Parameterization
ensures that the factors considered in the analysis are customized to the region’s geological
and environmental intricacies. (ii) Weighting is another essential adjustment mechanism.
Not all triggering factors exert the same level of influence across different regions. Adjust-
ing the weights assigned to each factor based on their relative importance in the study area
allows for a more nuanced susceptibility assessment. For example, in regions where heavy
rainfall is a predominant factor contributing to landslides, it may be assigned a higher
weight in the analysis, thereby giving it more significance in the susceptibility assessment.
Lastly, data resolution and temporal considerations play a crucial role in the adjustment
of triggering factors. By adapting the resolution of the data used for triggering factors,
such as utilizing higher-resolution topographic or rainfall data, the analysis becomes more
precise. Additionally, accounting for temporal changes in susceptibility due to factors like
land-use alterations, climate variations, or seismic activity ensures that the assessment
reflects the current conditions and provides a dynamic understanding of landslide sus-
ceptibility over time. Table 1 provides information regarding data adjustments made for
landslide susceptibility analysis in this study. In summary, triggering factor adjustments
are indispensable for tailoring landslide susceptibility assessments to the specific attributes
of the study area. These adjustments include parameterization, weighting, data resolution,
temporal considerations, and the incorporation of local knowledge, all of which collectively
enhance the accuracy and contextual relevance of the analysis. The goal is to provide a
highly accurate and region-specific assessment of landslide susceptibility, contributing to
effective risk management and mitigation strategies in areas prone to landslides.

Table 1. The triggering factor adjustments used in this study.

Triggering
Factors Adjustment Target Point of

Adjustment Advantages Limitations

Elevation Data Resolution Fine-tuning elevation
data

More accurate slope assessment,
better representation of local
terrain.

Limited to the
resolution of available
data.

Slope aspect Weighting Relative importance
Reflects regional topographical
influences; nuanced susceptibility
mapping.

Assumes uniform
importance if not
adjusted.

Slope angle Parameterization Slope categories
Captures slope variations;
customized susceptibility
assessment.

May oversimplify slope
variability.

Lithology Parameterization Lithological
attributes

Accounts for local geological
diversity; precise susceptibility
assessment.

May require extensive
geological data.

Drainage
density Data Resolution Fine-tuning density

data

Accurate representation of local
drainage patterns; better
assessment.

Limited by resolution
of available data.

Landuse/
Landcover Data Resolution Fine-tuning land-use

data

Improved representation of land
use; precise susceptibility
mapping.

Limited by the
resolution of land-use
datasets.
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Table 1. Cont.

Triggering
Factors Adjustment Target Point of

Adjustment Advantages Limitations

Weathering Parameterization Weathering
conditions

Reflects local weathering
characteristics; customized
assessment.

Requires detailed
weathering data.

Precipitation Temporal Adjustment Update historical
records

Reflects changing rainfall patterns,
dynamic susceptibility assessment

Assumes stationary
precipitation patterns

Temperature Parameterization Temperature ranges Considers local temperature
variations; tailored assessment.

Requires historical
temperature data.

Evaporation Parameterization Evaporation rates Accounts for regional evaporation
dynamics; precise assessment.

Requires historical
evaporation data.

Distance to
faults Data Resolution Fine-tuning density

data
Accurate representation of fault
proximity; better assessment.

Limited by the
resolution of fault
datasets.

Seismic
activities Data Resolution Fine-tuning land-use

data
Improved representation of
seismic activity; precise mapping.

Limited by the
resolution of
earthquake data.

Distance to
roads Data Resolution Fine-tuning land-use

data
Enhanced representation of road
proximity; nuanced assessment.

Limited by the
resolution of road
datasets.

Distance to
cities Data Resolution Fine-tuning land-use

data

Better representation of urban
proximity; refined susceptibility
mapping.

Limited by the
resolution of city
datasets.

3. Materials and Methods
3.1. Data Preparations

Data preparation is of immense importance in the context of landslide susceptibility
mapping for the Urmia Lake drainage basin due to its pivotal role in ensuring the accuracy
and reliability of the modeling process. This significance can be illuminated through vari-
ous key facets: (i) data quality assurance is paramount, as it involves meticulous cleaning,
validation, and rectification of input data to eliminate inaccuracies and inconsistencies.
Given the intricate and diverse nature of the Urmia Lake drainage basin, even minor errors
can lead to misleading susceptibility assessments. Therefore, rigorous data quality mea-
sures are imperative. (ii) The comprehensive integration of diverse datasets from various
sources and formats is crucial to capture the multifaceted nature of landslide triggers and
predisposing factors within the basin. This integration spans geological, topographical,
environmental, and hydrological variables, ensuring a holistic understanding of the sus-
ceptibility landscape. Spatial data, facilitated by GIS tools, must be adeptly prepared,
ensuring georeferencing and standardization for seamless compatibility and consistency
in spatial analysis and modeling. Moreover, the consideration of temporal data, such
as rainfall records and historical landslide events, accommodates the dynamic nature of
the basin, permitting the identification of temporal patterns regarding susceptibility. In
essence, data preparation is the cornerstone that enables the modeling process to yield
accurate, actionable, and reliable landslide susceptibility assessments for the Urmia Lake
drainage basin.

The study was meticulously executed in several distinct stages, which can be catego-
rized as follows. The initial stage involved a comprehensive ground survey, remote-sensing
analysis, and the meticulous documentation of historical landslide occurrences within the
study area. Subsequently, we assembled the primary dataset, which was rooted in both
landslide-triggering factors and the precise geolocation of historical landslide incidents.
This dataset served as the foundation for our supervised learning approaches. To facilitate
the implementation of our predictive model, we meticulously prepared training and testing
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datasets. These datasets were utilized in the development of a hybrid machine learning and
soft computing predictive model, which in turn enabled the generation of susceptibility
maps for the study region. The predictive model was then deployed and subjected to
rigorous verification procedures to ensure its accuracy and reliability in assessing landslide
susceptibility. Lastly, the culmination of our efforts resulted in the production of landslide
susceptibility assessments for the entirety of the Urmia Lake drainage basin. A visual
representation of the data preparation flow for this landslide susceptibility assessment can
be found in the flowchart presented in Figure 5.
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Figure 5. The flowchart showing the data preparation regarding the landslide susceptibility assess-
ment for the studied area.

The primary source of information for this study was a thorough and all-encompassing
approach that encompassed a ground survey, a remote-sensing analysis, and the meticulous
documentation of historical landslides that have transpired within the basin. These are
all provided in Table 2. The historical is records of landslides within the studied region
or in close proximity to it offer invaluable insights into the spatial distribution of these
events. This historical data serves as a critical resource for susceptibility assessments when
identifying areas prone to landslides. Furthermore, these past landslide occurrences act as
milestones in understanding the behavior of landslides, essentially allowing us to witness
how history repeats itself. By studying these events, we gain essential knowledge about
landslide dynamics and can more effectively detect areas at risk. Moreover, establishing a
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clear link between the triggering factors, such as geological, topographical, and environ-
mental conditions, and the historical landslides is of paramount importance. This linkage
provides a foundation for identifying well-founded connections that significantly influence
susceptibility assessments.

Table 2. The main triggering factors and data resources.

Main Origin Triggering Factors Data Sources Resolution

Geomorphologic
Elevation DEM ±30 m
Slope aspect DEM ±30 m
Slope angle DEM ±30 m

Geologic

Lithology Geological data ±30 m
Drainage density DEM, Google Map, IWRM * ±30 m
Landuse/landcover Geological data, Google Map, ±30 m
Weathering Geological data ±30 m

Climatologic
Precipitation IMO † ±30 m
Temperature IMO ±30 m
Evaporation IMO ±30 m

Seismic
Distance to faults Geological data, Google Map ±30 m
Seismic activities IIEES ** data ±30 m

Human works
Distance to roads DEM, Google Map ±30 m
Distance to cities DEM, Google Map ±30 m

Notes: * Iran Water Resources Management Company (IWRM); † Iran Meteorological Organization (IMO);
** International Institute of Earthquake Engineering and Seismology (IIEES).

In our study, we meticulously selected and geolocated a total of 512 historical landslide
events across the Urmia Lake drainage basin, employing GPS technology. These precise
locations were then incorporated into GIS, serving as benchmark sites for our compre-
hensive analysis. This rich historical dataset is instrumental in enhancing the accuracy
and reliability of our susceptibility assessments, offering a deeper understanding of the
complex interplay between environmental factors and landslide occurrences in the region.
To provide the susceptibility map for the Urmia Lake drainage basin, a landslide inventory
database was prepared. This database was obtained from field surveys and remote-sensing
observations. In this regard, the data were collected based on selected triggering factors
from various resources, including satellite images, spatial photogrammetry, variability
maps, geological and meteorological data, etc. Table 2 provides the resources for the LSM
used data in this study.

It should be noted that to achieve an accurate LSM, it is imperative to uphold the
independence of each triggering factor used in the model calculation. By maintaining the
independence of these factors, the reliability and accuracy of the evaluation model are
ensured. This approach allow for a more comprehensive assessment, preventing potential
biases or confounding effects that could compromise the integrity of the susceptibility
mapping. Therefore, ensuring the autonomy and distinctiveness of each triggering factor
contributes significantly to the robustness and precision of the LSM model. Under such
conditions, all data provided is gathered independently, ensuring that it remains uninflu-
enced by, nor reliant upon, other factors. Statistical checks for control and domain-specific
expertise assist in identifying variables that contribute uniquely to LSM, without including
redundant information. The evaluation of multicollinearity among the triggering factors
is essential. Assessing correlation levels helps to eliminate highly correlated variables,
thereby maintaining independence and averting redundancy within the model.

3.2. Data Normalization and Modifications

Normalization serves a pivotal role in achieving feature uniformity, facilitating smoother
convergence during model training, and ultimately enhancing the overall performance
of the model. It entails the adjustment of feature scales to a standardized range, thereby
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mitigating any disparities that may hinder effective model learning. A suite of com-
mon normalization techniques, including min–max scaling, z-score standardization, log
transformation, and others, are at the disposal of researchers. The selection of a specific
normalization approach hinges upon the inherent characteristics of the database under
consideration [38]. In the context of the presented study, min–max scaling and z-score
standardization were judiciously employed as the normalization techniques of choice for
harmonizing the database prior to model implementation. It is important to underscore that
irrespective of the chosen normalization method, the key to success lies in the consistent
application of these normalization transformations to both the training and testing datasets.
This harmonious treatment ensures data coherence and fosters improved outcomes when
employing techniques in the context of the analysis [39].

Min–max scaling, a technique frequently employed for feature scaling, achieves the
transformation of feature values within a dataset to a predefined range, commonly spanning
from 0 to 1. The methodology is grounded in a twofold process: first, subtracting the
minimum value observed within the feature from each individual data point; and second,
dividing this result by the range, which corresponds to the numerical span between the
maximum and minimum feature values. The salient objective of min–max scaling revolves
around the preservation of the intrinsic disparities between data points, while enforcing
a standardized scale for all. Its pertinence is particularly relevant when confronted with
datasets harboring features of diverse units or magnitude ranges, thereby obviating the
risk of certain features overshadowing the learning process due to their more substantial
numerical magnitudes [38]. In essence, min–max scaling serves as an invaluable tool in
homogenizing the feature values, enabling equitable comparisons across features that
may otherwise exhibit vastly dissimilar numerical characteristics. This is presented in
Equation (1). Through this transformation, the relative distinctions among data points
remain intact, fostering an unbiased learning environment wherein all features are afforded
equal prominence, regardless of their initial units or magnitudes.

Ynorm =
Y − Ymin

Ymax − Ymin
(1)

where Ynorm is the normalized value of the feature, Y is the original value of the feature,
Ymin is the minimum value of the feature across the dataset, and Ymax is the maximum value
of the feature across the dataset. This formula rescales each data point (Y) by subtracting the
minimum value and dividing by the range (Ymax − Ymin). Normalization techniques serve
the paramount purpose of rendering data amenable to machine learning algorithms that
exhibit sensitivity to the scale of input features. Min–max scaling, for instance, orchestrates
a transformation wherein values are painstakingly constrained within the [0, 1] range. This
meticulous process caters to the idiosyncrasies of algorithms by homogenizing feature
scales [39]. Conversely, z-score standardization, with its distinctive approach, transmutes
data such that it possesses a mean (average) value of precisely 0 and a standard deviation
of 1. This procedure occurs through the subtraction of the feature’s mean from each
individual data point, followed by division by the standard deviation [40], as illustrated in
Equation (2).

Znorm =
Z − µ

σ
(2)

where Znorm is the standardized value of the feature, Z is the original value of the feature, µ
is the mean (average) of the feature across the dataset, and σ is the standard deviation of
the feature across the dataset. This computational formula serves as a means to ascertain
the extent to which a given data point (Z) diverges from the mean (µ) of the corresponding
feature in terms of standard deviations. When Znorm yields a positive value, it signifies
that Z surpasses the mean, whereas a negative Znorm denotes that Z falls below the mean.
This transformation imparts a pivotal attribute to the data’s distribution, relocating its
center to zero, while conferring a consistent dispersion factor of 1. This pivotal adjust-
ment streamlines the comparative analysis of data across distinct features and datasets,
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particularly when grappling with the intricacies of machine learning algorithms [39]. It is
imperative to underscore that both min–max scaling and z-score standardization have their
unique utility, with each tailored to specific scenarios contingent upon the attributes of
the database and the requisite considerations of the machine learning and soft computing
models. The selection of these normalization techniques hinges upon a judicious assess-
ment of the database’s idiosyncrasies and the compatibility of the chosen method with the
specific algorithmic requirements, fostering a balanced and contextually apt approach to
data preparation. Effective data normalization plays a pivotal role in establishing equitable
contributions from all features during the model’s training process. This proactive mea-
sure effectively mitigates complications stemming from disparities in feature scales, thus
enhancing the overall performance and convergence dynamics of the proposed predictive
model. Figure 6 shows the estimated impact coefficients for data normalization achieved
by these two approaches.
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3.3. Predictive Modeling Principles

As mentioned previously, the presented study used hybrid machine learning classifiers
and soft computing to identify the risk of landslide occurrence in the Urmia Lake drainage
basin. Machine learning is a vast field that has found applications in various domains,
including information technology, statistics, probability, artificial intelligence, psychology,
neuroscience, and many other disciplines. Through machine learning, problems can
be easily solved by creating a model that accurately represents a selected dataset [40].
Machine learning is all about devising algorithms that enable computers to learn. It is a
process of discovering regular statistical patterns or other data-related insights. Machine
learning algorithms are designed to mimic a human approach to learning certain tasks.
These algorithms can also provide insights into the relative complexity of learning in
different environments.

The hybrid machine learning predictive models considered in this article can be cate-
gorized as support-vector machine (SVM), random forest (RF), decision trees (DT), logistic
regression (LR), fuzzy logic (FL) and the technique for order of preference by similarity to
the ideal solution (TOPSIS), implemented for landslide susceptibility assessment. SVM
serves as a non-parametric supervised classification method extensively used in satellite
image classification for various mapping tasks. Operating based on mathematical func-
tions called kernels, SVM is designed to categorize multiple classes by determining the
optimal hyperplane that best separates data points, known as support vectors [41]. This
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hyperplane aims to maximize the margin between different classes, maintaining a safety
margin between the hyperplane and the nearest data points, termed “support vectors”. The
orientation of this hyperplane is defined by a weight vector “w” and a bias term “b” within
a feature space. SVM poses this task as an optimization problem, aiming to minimize
“w”, while ensuring the correct classification and adherence to specific constraints for all
data points. In cases of non-separable data, slack variables (“ξi”) allow for controlled
misclassification. The outcome of this optimization problem yields the optimal hyperplane,
win which support vectors contribute to the margin width, and “w” and “b” define the
effective decision boundary that distinguishes between classes. This decision boundary is
expressed through specific equations within the feature space in Equations (3)–(6).

W × x + b = 0 (3)

yi(w × xi + b) ≥ 1 (for support vectors) (4)

yi(w × xi + b) ≥ 1 − ξi (for non-support vectors) (5)

ξi ≥ 0 (slack variables for handling non-separable data) (6)

Here, “∥w∥” represents the Euclidean norm of the weight vector, “w” is the weight
vector, “x” is the feature vector, “b” is the bias term, and “ξi” represents a measure of how
far a data point is from being correctly classified. Table 3 provides the advantages and
limitations of the applied predictive hybrid models.

Table 3. Advantages and limitations of the applied predictive hybrid models.

Model Advantages Limitations

SVM

- Effective for both classification and regression tasks
- High accuracy, especially in high-dimensional spaces
- Works well with small to moderate-sized datasets
- Good at handling non-linear separability through kernel

tricks
- Strong generalization capability, reducing overfitting

- Can be sensitive to the choice of kernel function
- Can be computationally intensive for large datasets
- May require careful parameter tuning for optimal

performance
- Interpretability can be limited, especially with complex

kernels
- Performance may degrade when data is noisy or has

overlapping classes

RF
- High accuracy and robustness
- Handles both classification and regression
- Reduces overfitting through ensemble

- Can be computationally expensive
- Less interpretable compared to decision trees

DT
- Simple to understand and interpret
- Handles both categorical and numerical data
- Useful for feature selection

- Prone to overfitting without pruning
- Sensitive to small variations in data
- Limited expressiveness for complex data

LR
- Interpretable and provides insights
- Suitable for binary and multi-class problems
- Requires relatively few computational resources

- Assumes linearity in relationships
- May not perform well with non-linear data
- Sensitive to multicollinearity

FL

- Handles uncertainty and vagueness in data
- Useful in expert systems and control
- Allows gradual degrees of truth
- Represents ambiguous or imprecise data

- Complexity in defining membership functions
- Lacks a clear mathematical foundation
- May require domain-specific tuning

TOPSIS

- Provides a structured approach for multi-criteria decision
making

- Offers a systematic way to analyze complex decisions
- Balances positive and negative aspects in decision making
- Suitable for applications in various fields, including

business and engineering
- Helps select the most balanced and appropriate solution

- Highly dependent on the accurate definition of criteria,
weights, and ideal solutions

- May not work well with a large number of alternatives or
criteria

- Results can be sensitive to variations in data or criteria
- The method does not inherently consider interactions

between criteria
- Assumes that the criteria are independent and equally

weighted, which might not be realistic, in some cases
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RF is an ensemble learning method combining multiple decision trees for improved
accuracy and robust predictions in both classification and regression tasks. DT a is funda-
mental model for classification and regression, recursively dividing data based on informa-
tive features, forming tree structures, and providing interpretability, but it is susceptible
to overfitting [39,40]. LR is linear model used for binary and multi-class classification,
employing a logistic function to transform features into probability scores between 0 and
1, offering enhanced interpretability. FL addresses uncertainty by allowing gradual truth
degrees (0 to 1) for handling vague or ambiguous data; it is utilized in artificial intelligence
and decision-making processes. The technique for order of preference by similarity to ideal
solution (TOPSIS) assists in ranking alternatives by comparing them to ideal and worst-case
scenarios, aiding systematic decision making, but requiring careful criterion definition and
weight assignment for reliable outcomes [42,43].

Landslide susceptibility assessments often involve multiple criteria or attributes,
known as triggering factors. Machine learning models allow for the integration of these
diverse factors, facilitating a comprehensive analysis. They adopt a data-driven approach,
learning from historical landslide occurrences to uncover hidden patterns and trends, which
are often elusive using traditional methods. Models like SVM, DT, RF, and LR are esteemed
for their accuracy and robustness, ensuring dependable predictions and the ability to gen-
eralized to new and unseen areas (see Figure 7). Furthermore, ensemble methods like RF
mitigate overfitting, elevating the overall accuracy of susceptibility assessments. DT and LR
models offer transparency, enabling geologists and decisionmakers to understand the un-
derlying factors that contribute to landslide susceptibility. FL adeptly handles uncertainty
and vagueness in the data, commonly encountered in such assessments. TOPSIS, designed
for multi-criteria decision making, proves invaluable in prioritizing various attributes in
landslide susceptibility assessment. These models can seamlessly integrate remote sensing
and GIS data, yielding a holistic view of the landscape and enhancing the accuracy of
susceptibility models.
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3.4. Hybrid Model Implementation

In the realm of landslide susceptibility assessment, a highly effective hybrid strategy
involves the integration of SVM with ensemble methods, specifically DT, RF, and LR. To
validate the hybrid model, we conducted training on a meticulously curated database
comprising 14 distinct triggering factors and a repository of 512 historical landslide records.
This comprehensive database encapsulates a wealth of geological and environmental data.
To ensure the model’s robustness, the dataset was thoughtfully partitioned into training
and testing subsets, comprising 70% and 30% of the primary database, respectively. This
partitioning strategy guarantees that the model is both trained and rigorously evaluated
on diverse datasets, enhancing its reliability and predictive accuracy. In the context of the
depicted process flowchart, the subsequent steps are employed to execute hybrid machine
learning algorithms using a meticulously prepared database. These delineated stages serve
to elucidate the process of creating a prognostic model based on various predictive models.
The following breakdown provides a comprehensive overview of the implementation
methodology for predictive modeling:

Step 1 (Data Collection and Preparation): To initiate the process, compile an exten-
sive dataset that encompasses essential details related to triggering factors and historical
landslide records. These data sources are acquired through a combination of historical
records, on-site field surveys, and remote sensing observations. Next, undertake data
preprocessing procedures, which encompass tasks such as addressing missing data points,
encoding categorical variables, and standardizing the feature scales. This pivotal stage
plays a fundamental role in the data preparation process, ensuring that the dataset is
appropriately structured and ready for subsequent model training activities.

Step 2 (Dataset Splitting): Partition the meticulously preprocessed dataset into distinct
training and testing subsets. A conventional and widely adopted division practice involves
allocating 70% of the data for training purposes, while the remaining 30% is reserved for
testing. This strategic separation is integral in the machine learning process, as it enables the
model to glean insights and patterns from the training subset, subsequently evaluating its
performance on unseen and distinct data within the testing subset. This approach verifies
the model’s ability to generalize and make accurate predictions beyond the confines of the
training dataset, a critical aspect of robust model assessment.

Step 3 (Feature Selection): Determine the pertinent features or variables within the
dataset that are anticipated to exert the most substantial influence on landslide susceptibility
and the identification of suitable locations within the studied Urmia Lake drainage basin.
The process of feature selection assumes a pivotal role in enhancing model performance
and curbing computational complexity. By pinpointing and incorporating only the most
relevant features, the model becomes more effective in its predictive capabilities, while
streamlining the computational burden. This tailored selection process is integral to the
accurate assessment of landslide susceptibility and the suitability of the model in the Urmia
Lake drainage basin.

Step 4 (Model Building): Execute the hybrid machine learning models, tailoring their
implementation to meet distinct requirements set for each model. This implementation
phase leverages the carefully prepared main database, and during the training process, the
model endeavors to identify intricate connections between triggering factors and vulner-
able regions which have previously experienced landslides. This determination extends
to the mapping of susceptible areas within the studied landscape. By accommodating
unique prerequisites for each model, the hybrid approach aims to capture and model
complex relationships with precision, contributing to a more robust and accurate landslide
susceptibility assessment.

Step 5 (Hyperparameter Tuning): Conduct hyperparameter tuning to enhance the
overall performance of the predictive model. Engage in systematic experimentation with a
range of hyperparameter configurations, including parameters like the number of trees, the
tree depth, and the learning rate. These pivotal hyperparameters are precisely documented
in Table 4 and were meticulously selected for utilization in this study.
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Table 4. The hyperparameters for the comparative machine learning models (adapted from Ref. [42]).

Classifier Hyperparameters

SVM
- Kernel type (kernel)
- Regularization parameter (C)
- Kernel coefficient (gamma)

RF

- Number of trees (n_estimators)
- Maximum depth of trees (max_depth)
- Minimum samples per leaf (min_samples_leaf)
- Maximum features to consider (max_features)

DT
- Maximum depth of the tree (max_depth)
- Minimum samples per leaf (min_samples_leaf)
- Maximum features to consider (max_features)

LR

- Inverse of regularization strength (C)
- Maximum number of iterations for convergence (max_iter)
- Handling of multi-class classification (multi_class)
- Regularization parameter (L1, L2, or none)
- Weighting for handling class imbalance (class_weight)
- Tolerance for stopping criteria (tol)
- Scaling factor for the intercept term (intercept_scaling)
- Reusing previous solution as the initial guess (warm_start)

Step 6 (Model Evaluation): Assess the performance of the trained predictive models
by applying them to the testing dataset.

Step 7 (Interpretation and Insights): Examine the model’s output to extract valuable
insights regarding the connections between triggering factors and their influence on land-
slide susceptibility. This analysis aims to shed light on the mapping of areas at potential
risk for landslides.

Step 8 (Model Deployment): If needed, deploy the trained models for real-time
predictions or further analysis.

These steps outline a general framework for implementing hybrid machine learning
and soft computing predictive modeling to analyze the landslide susceptibility for the
Urmia Lake drainage basin (see Figure 8). Adjustments may be necessary, based on the
specific details of the dataset and research objectives.

FL and TOPSIS models was implemented asparallel analyses with the mentioned
machine learning models to justify and extended our understanding regarding the studied
drainage basin. The ensuing steps were executed on the meticulously curated database
to generate a susceptibility map for the Urmia Lake drainage basin. The input data
and triggering factors correspond to those utilized in the previously described machine
learning models.

Step 1 (Data Collection and Preparation): Gather comprehensive data related to trig-
gering factors, historical landslide occurrences, and other relevant geospatial information
within the study area. This step is the same as the step 1 used in the other machine
learning-based models.

Step 2 (Preprocessing and Data normalization): Clean and preprocess the data, i.e.,
handle the missing values, encode the categorical variables, and normalize the features.
Also, normalize the data to bring all the attributes to a common scale. This ensures that no
single attribute dominates the analysis due to its scale.

Step 3 (Feature Selection): Identify and select the most influential features (variables)
that have a significant impact on landslide susceptibility within the region. This step is the
same as the step 3 used for the other machine learning-based models.
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Step 4 (Rules and Assignments): In this stage, for the FL model, a set of fuzzy logic
rules describing the relationships between the selected features and landslide susceptibility
is developed. In the TOPSIS model, weights are assigned to each attribute based on its
importance to landslide susceptibility. Weights and rules are typically assigned based on
expert knowledge or through statistical techniques.

Step 5 (Fuzzy Modeling for FL): Convert the crisp (numerical) data into fuzzy sets
using membership functions (known as fuzzification). Define linguistic variables and their
associated membership functions to represent data uncertainty. Build a fuzzy inference
system that combines the fuzzy rules and fuzzified input data to make decisions about
landslide susceptibility. This system should use fuzzy logic operators (e.g., AND, OR) to
perform rule inference. Transform the fuzzy output from the inference system into a crisp
value that represents the degree of landslide susceptibility for each location (known as
defuzzification).

Step 5 (Ideal and Negative-Ideal Solutions for TOPSIS): Determine the ideal solution
(representing the best conditions for landslide susceptibility) and the negative-ideal solution
(representing the worst conditions) for each attribute. These solutions are based on the
weighted and normalized data. Then, calculate the similarity of each location to both the
ideal and negative-ideal solutions using a chosen distance or similarity measure, such as
Euclidean distance. After that, compute the TOPSIS score for each location by comparing
its similarity to the ideal and negative-ideal solutions. This score quantifies the degree
of landslide susceptibility. Finally, rank the locations based on their TOPSIS scores, with
higher scores indicating higher susceptibility.

Step 6 (Mapping): Create a susceptibility map that visualizes the ranking and provides
insights into areas at greater risk for landslides. This stage was implemented for all
modeling, as well as for FL and TOPSIS.

Both fuzzy logic and TOPSIS are valuable techniques for landslide susceptibility
assessment, offering different approaches to handle uncertainty and multi-criteria deci-
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sion making. The specific implementation steps may vary, based on the dataset and the
characteristics of the study area.

3.5. Model Verification

The performance of the proposed method was assessed based on both the confusion
matrix and the receiver operating characteristic (ROC) curve [41]. A confusion matrix
serves as a fundamental tool in the realm of machine learning and statistical classification
tasks. It plays a pivotal role in evaluating the performance of the classification models. This
matrix provides a comprehensive breakdown of how well a model’s predictions align with
the actual class labels. In the context of binary classification problems, which involve two
classes, a typical confusion matrix is structured as a 2 × 2 table. Within this matrix, four
key elements take center stage: True positives (TP) represent correct positive predictions,
true negatives (TN) signify accurate negative predictions, false positives (FP) indicate
erroneous positive predictions (type I errors), and false negatives (FN) point to missed
positive instances (type II errors). This binary confusion matrix enables the quantification of
model accuracy, precision, recall, F1 score, and specificity, all of which provide vital insights
into the model’s performance [40]. Figure 9 illustrates the confusion matrix principle [41].
The utility of the confusion matrix lies in its ability to offer a comprehensive overview
of a model’s strengths and limitations, particularly regarding its capacity to accurately
classify instances from both positive and negative classes. By exploring these metrics and
the confusion matrix, practitioners can make informed assessments of a model’s predictive
power and identify areas for improvement, ultimately enhancing the model’s suitability
for classification tasks.
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The ROC curve is a graphical tool extensively employed to assess the performance
of binary classification models. This curve portrays the dynamic relationship between
the true positive rate (sensitivity, Se), which quantifies the model’s ability to correctly
identify positive instances, and the false positive rate (1-specificity, 1-Sp), which measures
the model’s tendency to mistakenly classify negative instances as positive across varying
discrimination thresholds. By systematically altering the threshold, a set of data points is
generated, forming the ROC curve. A higher curve on the ROC plot indicates a model’s
ability to make more accurate positive predictions, while limiting false alarms. The area
under the ROC curve (AUC-ROC) serves as a concise summary metric, quantifying the
model’s overall discriminatory capacity, with a perfect model achieving an AUC-ROC of
1.0 (See Figure 10). The ROC curve is a valuable tool for identifying a model’s performance
in distinguishing between positive and negative cases, particularly as the discrimination
threshold varies. It is widely employed in applications where the balance between minimiz-
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ing false positives and maximizing true positives is critical, including medical diagnoses,
credit risk assessment, and fraud detection. The AUC-ROC simplifies model comparison,
making it a versatile tool for selecting the best-performing model among alternatives,
ultimately enhancing decision making in binary classification tasks.
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4. Results

This study harnessed a diverse array of methodologies, including SVM, DL, RF,
and LR, juxtaposed against the outcomes derived by employing fuzzy logic and TOPSIS.
Following an analysis of the resultant maps, it was evident that SVM and fuzzy logic
outperformed other methods in assessing landslide susceptibility within the Urmia Lake
basin. The core objective of this research was to scrutinize landslide susceptibility and
forecast occurrences within the Urmia Lake basin, utilizing a spectrum of machine learning
and soft computing methods, as previously enumerated. These models were crafted
based on identified triggering factors and were bolstered by historical landslide data. The
preparation of maps was conducted within a GIS framework, meticulously cross-checked
by experts to ensure accuracy in the findings. Furthermore, the models underwent a
performance evaluation via the scrutiny of confusion matrices and ROC curve analysis.
Figures 11 and 12 show the susceptibility maps of the studied basin using various hybrid
predictive models. In Figure 11, the SVM, DL, RF, and LR-based maps are presented, and
in Figure 12, the fuzzy logic and TOPSIS models are illustrated. Based on these findings,
it is evident that various algorithms and techniques within machine learning and soft
computing have demonstrated competency in conducting landslide analysis, to varying
degrees. However, when comparing their performance, SVM and fuzzy logic stand out
by showcasing the highest accuracy in pinpointing vulnerable or susceptible areas prone
to landslides.
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As depicted in Figures 11 and 12, regions susceptible to landslides have been identified
in the northwestern, northern, northeastern, and some southern and southeastern areas,
emphasizing a primary focus on these zones. These identified areas (as illustrated in
Figure 1) coincide with mountainous regions and elevations, notably overlapping with the
Urmia Dokhtar mountain range in the northwest, Marmisho and Aun-ben-Ali heights in the
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north, the Sahand mountain range in the northeast, and Kurdistan heights in the south. The
vicinity surrounding Urmia Lake comprises plains and is not prone to landslide occurrences.
Hence, it can be concluded that morphological changes emerged as one of the pivotal factors
significantly contributing to these landslide occurrences. The information presented in these
maps could assist citizens, planners, and engineers in mitigating, reducing, and preventing
damages caused by existing and potential landslides. By considering factors related to
construction activities, building vulnerabilities, and other properties, a risk and hazard
analysis can be conducted. The outcomes of this research can serve as a means to explain
current landslide occurrences, make emergency decisions, and streamline efforts to prevent
and reduce landslide risks in the future, particularly in cities such as Tabriz, Maragheh,
and Urmia. These cities are located within regions prone to landslide occurrences.

Figure 13 presents the ROC curve outcomes, while Table 5 illustrates the values of
the confusion matrix in regards to the performance of the predictive models. Obtaining a
confusion matrix for all hybrid machine learning and soft-computing models utilized in
landslide susceptibility analysis holds pivotal significance for several reasons. Primarily, it
serves as a crucial tool for assessing the performance of these models by comparing their
predicted outcomes against actual data. This matrix provides a comprehensive breakdown
of the correct classifications of landslides and non-landslides, shedding light on areas in
which the model succeeds or fails. Matrices such as accuracy, precision, recall, specificity,
and F1-scoreoffer a nuanced evaluation, allowing us to gauge the model’s effectiveness in
identifying areas prone to landslides. Moreover, comparing these matrices among differ-
ent models aids in selecting the most suitable method based on its capacity to minimize
errors and provide accurate predictions. Notably, analyzing the confusion matrix aids
in fine-tuning the model parameters to enhance the predictive capabilities and informs
decision-making processes for stakeholders and planners. This comprehensive evaluation
supports the prioritization of areas for mitigation efforts, emergency planning, and optimal
resource allocation to minimize the adverse impact of landslides on communities and in-
frastructure. Ultimately, the confusion matrix plays a fundamental role in guiding strategic
decisions and optimizing the effectiveness of landslide risk management strategies. On
the other hand, ROC analysis for all predictive models utilized in landslide susceptibility
assessment holds significant importance, for several key reasons: the ROC curve showcases
how a model’s sensitivity and false positive rate vary across different thresholds, provid-
ing a comprehensive view of its performance at various decision points. This graphical
representation allows for direct model-to-model comparisons, aiding in visualization and
determining which model exhibits superior performance. The AUC values derived from
the ROC curve serve as a singular metric, simplifying the assessment of each model’s ability
to discern between landslide-prone and non-prone areas. A higher AUC suggests better
discriminatory power. Moreover, ROC analysis assists in selecting the optimal threshold
aligning with specific project objectives, balancing sensitivity and specificity as needed.
The insights derived from ROC analysis not only guide decisionmakers in selecting mod-
els, but also inform strategic planning, resource allocation, and risk mitigation strategies,
ensuring the effective management of landslide-prone regions. Ultimately, ROC analysis is
instrumental in comprehensively evaluating and comparing model performances, aiding
in informed decision making for landslide risk management.

Table 5 displays the performance of different machine learning models in predicting
landslide susceptibility across training and testing datasets. SVM demonstrates superior
performance in regards to accuracy, precision, recall, and F1-score for both datasets. This
consistency suggests SVM’s robustness in generalizing to new data, making it a reliable
choice for landslide prediction. The DT model reveals a slightly lower performance com-
pared to SVM, with a particularly notable decline in the metrics between the training and
testing phases. This discrepancy may indicate a potential overfitting on the training data,
resulting in decreased predictive power for the unseen datasets. Additionally, the RF model
performs reasonably well, although it exhibits a slight drop in precision and recall on
the testing data compared to the performance of SVM. LR trails behind the other models,
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displaying lower predictive capabilities for both datasets. It is important to note that the
performance metrics for the TOPSIS model are limited, with only the accuracy (binary)
available, indicating moderate performance. However, a comprehensive evaluation should
consider factors beyond these metrics, such as computational efficiency and interpretability,
to select the most suitable model for landslide susceptibility analysis. Overall, while SVM
emerges as the most consistent and robust performer, a holistic assessment of various
model aspects is essential in making a well-informed selection for practical application in
predicting landslide susceptibility.
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Table 5. The obtained performance criteria for the predictive models.

Methods Dataset
Performance Criteria

Accuracy
Precision Recall F1-Score

SVM
Train 0.89 0.85 0.85

0.89Test 0.85 0.85 0.85

DT
Train 0.75 0.75 0.72

0.72Test 0.72 0.70 0.70

RF
Train 0.83 0.80 0.83

0.83Test 0.80 0.83 0.80

LR
Train 0.69 0.67 0.67

0.67Test 0.64 0.60 0.60

TOPSIS Entire data - - - 0.64

5. Discussion

This study employed an extensive range of methodologies, including SVM, DL, RF,
and LR, in conjunction with fuzzy logic and TOPSIS, to evaluate landslide susceptibility
within the Urmia Lake basin. Analyses of the resulting maps highlighted the superior
performance of SVM and fuzzy logic in this assessment. The primary aim was to scruti-
nize landslide susceptibility and to forecast occurrences in the region, utilizing diverse
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machine learning and soft computing methods, based on identified triggering factors
and historical landslide data. The preparation of susceptibility maps was meticulous,
conducted within a GIS framework and validated by experts to ensure accuracy. These
models underwent performance evaluation via confusion matrices and ROC curve analysis.
The maps identified high susceptibility zones primarily in the northwestern, northern,
northeastern, southern, and southeastern areas, coinciding with mountainous regions
and higher elevations, indicating morphological changes as crucial factors contributing
significantly to landslide occurrences. The data presented in Figures 11 and 12 illustrate
the susceptibility maps for different models, emphasizing the efficacy of SVM and fuzzy
logic in pinpointing vulnerable areas prone to landslides. These findings can aid citizens,
planners, and engineers in mitigating damage caused by landslides. They can also be used
for risk and hazard analyses related to construction activities and building vulnerabilities,
particularly in landslide-prone cities such as Tabriz, Maragheh, and Urmia. The evaluation
involved analyzing confusion matrices for all hybrid machine learning and soft-computing
models used in landslide susceptibility analysis. This comprehensive assessment provides
insights into the models’ performance, enabling the selection of suitable models and the
fine-tuning of parameters to enhance predictive capabilities. Additionally, ROC analysis
aids in determining each model’s discriminatory power and assists in selecting optimal
thresholds aligning with specific project objectives.

Table 5 depicts the performance of different machine learning models in predicting
landslide susceptibility across training and testing datasets. SVM exhibited superior per-
formance in regards to accuracy, precision, recall, and F1-score consistently across both
datasets, suggesting its reliability in generalizing to new data. DT showed slightly lower
performance, potentially indicating overfitting on the training data. RF displayed reason-
able performance, but with a decline in some metrics for the testing data. LR demonstrated
lower predictive capabilities for both datasets. While TOPSIS showed moderate perfor-
mance in regards to accuracy (binary), a comprehensive evaluation should consider factors
beyond these metrics, including computational efficiency and interpretability, to select the
most suitable model for practical application in predicting landslide susceptibility. Thus,
while SVM emerged as the most consistent and robust performer, a holistic evaluation of
various aspects of the method is crucial for selecting an appropriate model for landslide
susceptibility analysis in practical scenarios.

6. Conclusions

This study incorporated a diverse range of methodologies, including SVM, DL, RF, and
LR, along with the utilization of fuzzy logic and TOPSIS, to assess landslide susceptibility
within the Urmia Lake basin. The comparative analysis of the resultant maps indicated
that SVM and fuzzy logic outperformed the other methods used in this assessment. Our
primary objective was to scrutinize landslide susceptibility and forecast occurrences in
the Urmia Lake basin using various machine learning and soft computing methods con-
structed based on identified triggering factors and historical landslide data. The study’s
methodology involved meticulous ground surveys, remote sensing analyses, and com-
prehensive documentation of 512 historical landslide occurrences across the Urmia Lake
drainage basin, facilitated by GPS technology. Furthermore, the investigation delved into
the complex water sources sustaining the Lake Urmia basin, which primarily relies on a
network of 13 perennial rivers, small springs, and direct precipitation. Notably, a significant
portion of this inflow is provided by the Zarrineh River and the Simineh River, as the lake
lacks a natural outlet and experiences water loss solely through evaporation. Employing a
variety of hybrid machine learning predictive models like SVM, RF, DT, LR, FL, and TOP-
SIS, the research strategically applied these models to assess landslide susceptibility. The
objective was to precisely evaluate landslide occurrences within the region, with the results
highlighting specific areas, including the northwestern, northern, northeastern, and some
southern and southeastern regions, as the main high susceptibility zones for landslides. In
analyzing the predictive performance of different algorithms, it became evident that SVM
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exhibited superior accuracy (0.89) and precision (0.89), followed by RF, with an accuracy
of 0.83 and a precision of 0.83. Notably, TOPSIS yielded the lowest accuracy among the
evaluated algorithms. These findings provide valuable insights into landslide susceptibility
in the Lake Urmia basin, aiding in the development of proactive mitigation strategies for
high-risk zones.
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LSM landslide susceptibility mapping
RS remote sensing
GIS geographic information systems
LR logistic regression
NB naïve Bayes
FL fuzzy logic
SVM support vector machines
KLR kernel logistic regression
BLR Bayesian logistic regression
RF random forest
ANFIS adaptive neuro-fuzzy inference system
DT decision tree
IMO Iran Meteorological Organization
TOPSIS technique for order of preference by similarity to ideal solution
PIS positive-ideal solution
NIS negative-ideal solution
GPS Global Positioning System
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