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Abstract: The safety monitoring information of the dam is an indicator reflecting the operational
status of the dam. It is a crucial source for analyzing and assessing the safety state of reservoir
dams, possessing strong real-time capabilities to detect anomalies in the dam at the earliest possible
time. When using neural networks for predicting and warning dam safety monitoring data, there
are issues such as redundant model parameters, difficulty in tuning, and long computation times.
This study addresses real-time dam safety warning issues by first employing the Empirical Mode
Decomposition (EMD) method to decompose the effective time-dependent factors and construct a
dam in a service state analysis model; it also establishes a multi-dimensional time series analysis
equation for dam seepage monitoring. Simultaneously, by combining the Sparrow Optimization
Algorithm to optimize the LSTM neural network computation process, it reduces the complexity of
model parameter selection. The method is compared to other approaches such as RNN, GRU, BP
neural networks, and multivariate linear regression, demonstrating high practicality. It can serve as a
valuable reference for reservoir dam state prediction and engineering operation management.

Keywords: dam safety state; Empirical Mode Decomposition; sparrow optimization algorithm; LSTM
neural network; predictive analysis

1. Introduction

The analysis of the safety state of a dam includes two main components: numerical
calculations and the analysis of monitoring data. Dam safety monitoring is crucial for
understanding the operational status and trends of the dam. It is an essential measure
to ensure the safe operation of the dam, serving as a means to verify design outcomes,
inspect construction quality, and comprehend the variations in various parameters of the
dam [1,2]. Dam safety monitoring possesses strong real-time capabilities, enabling the
prompt detection of anomalies in the dam. It facilitates the rapid assessment and monitoring
of the dam’s safety operation status, providing insights into the working conditions and
variations of hydraulic structures under adverse loads and various influencing factors [3–5].
By analyzing monitoring data, one can make correct judgments and evaluations regarding
the safety level of the engineering structure, thereby providing a basis for the safe operation
of reservoir dams [6]. It is beneficial for timely assessment and response to emergencies,
offering scientific and timely data information for on-site inspections. This approach
overcomes the uncertainty consequences that may arise from a delayed response to external
anomalies in the dam, which might occur when relying solely on manual intermittent
inspections [7,8].

Dam warnings for reservoirs primarily rely on systematic mechanisms for early warn-
ing [9]. This involves learning and summarizing the evolving patterns of measured data
through empirical data analysis [10–12]. By establishing appropriate monitoring data predic-
tion models, it is possible to simulate and predict the dam’s own behavior, providing proactive
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measures for the safe operation of the dam [13–16]. The research on monitoring models pri-
marily focuses on three main aspects: (1) mathematical relationships between dependent
and independent variables; (2) rational selection of independent variables and addressing
multicollinearity; and (3) improving model accuracy, robustness, and generalization.

Currently, monitoring data prediction methods can be broadly categorized into two
main types: statistical methods and time series methods [17–19]. Statistical methods aim
to establish functional relationships between monitoring effects (such as displacement,
seepage, uplift pressure, piezometric water level, etc.) and independent variables (such as
reservoir water level, temperature, time, etc.) [20,21]. Therefore, mathematical methods
such as multivariate linear regression, stepwise regression, principal component regression,
partial least squares regression, and others have been applied sequentially to establish dam
safety warning models. Researchers have explored various theoretical and methodological
aspects related to long-term deformation safety monitoring and warnings for high concrete
dams [22,23]. M. Tatin et al., proposed a statistical model accounting for the water tempera-
ture profile, which can describe the effects of both profiles of the water temperature and the
dam thickness on dam displacements [24]. Sevieri et al., proposed a framework for dynamic
monitoring of structural health of concrete gravity dams in a Bayesian environment by
detecting damage and reducing the uncertainty of predicting dam structural behavior, so
as to improve the reliability of the structural health monitoring system [25]. Wang et al.,
using the spatial clustering based on incremental distance, established a spatially correlated
coupled support vector machine (SVM) model to predict the displacement of dams [26]. Li
et al., proposed a separation modeling technique based on ICEEMDAN and cluster anal-
ysis by providing temperature components through theoretical inference and parameter
optimization. The proposed model has high accuracy, credibility, and interpretability [27].
Luong Ha Nguyen proposed an anomaly detection method, which is tackled by combin-
ing a Rao-Blackwellized particle filter (RBPF) with the Bayesian dynamic linear models
(BDLMs), to be capable of performing real-time analysis [28]. Shao et al., proposed an IVM
and RF algorithm based on adaptive optimization to predict the deformation of concrete
dams [29]. Lei et al., used principal component analysis (PCA) to reconstruct the features
of an equidimensional mapping, integrated the dam displacement monitoring models of
support vector regression (SVR), used MLP neural network (MLP) and Gaussian process
regression (GPR), and proposed a superposed heterogeneous integration model of static
and dynamic monitoring [30]. Su et al., using a combined support vector machine, chaos
theory, and a particle swarm optimization algorithm, proposed a method to optimize the
input and parameters of the prediction model and established a dam safety prediction
model [31]. H. H. Yavaşoğlu et al., through a detailed analysis of the deformation and
strain of the Ataturk Dam in Turkey, believe that using data from different technologies
to monitor and diagnose the dam structure is an indispensable method [32]. With the
advancement of computer technology, machine learning techniques have gradually been
applied to the analysis of dam safety monitoring data [33,34]. Intelligent monitoring models
such as random forests, neural networks, extreme learning machines, and others have
shown significant improvements in prediction accuracy compared to traditional models,
enabling more accurate predictions of dam safety states [35–38].

This study begins by employing the Empirical Mode Decomposition (EMD) algorithm
to extract and analyze the time-effect components in the measured data of dam safety
states. It establishes a response function for the time-effect components and constructs a
multivariate time series analysis model that considers variables such as water pressure,
temperature, rainfall, and time-effect. Recognizing the challenges of optimizing parameters
in the use of LSTM neural networks for predicting dam safety states, the study selects
iteration times, the number of nodes in two hidden layers, and the number of training
samples in the network architecture as optimization targets. It employs the Sparrow
Search Algorithm for intelligent parameter selection, aiming to enhance the intelligence
and robustness of the predictive model. In the end, the study compares the predictive
performance of the constructed EMD-SSA-LSTM dam safety state prediction model with
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GPU, RNN, BP neural networks, and the commonly used multivariate linear regression.
The goal is to validate the superiority of the proposed model in predicting the safety state
of the dam.

2. The Selection of Factors Affecting the Service State of the Dam Is Diverse
2.1. Empirical Mode Decomposition of Aging Factors

The mathematical model during operation includes various components of causal factors
(such as pressure components, temperature components, and aging components) [39,40].
Among them, the variation in the aging component is an important basis for evaluating the
normality of the response quantity, and the reasons for abnormal changes need to be identified.
Empirical Mode Decomposition (EMD) is a novel adaptive signal time-frequency processing
method proposed by N. E. Huang, especially suitable for the analysis and processing of
nonlinear and non-stationary signals [41,42].

This method creatively introduces the concept of Intrinsic Mode Functions (IMF) and
proves the theoretical decomposition of any signal into a series of intrinsic mode functions.
EMD is based on the assumption that any signal is composed of Intrinsic Mode Functions
(IMF), where the components can be linear or nonlinear; furthermore, a signal can be
composed of many components of intrinsic modes, and if the components overlap with
each other, a composite signal is formed [43].

IMF components must satisfy the following two conditions:

(1) The number of zero crossings and extrema is the same throughout the entire data set,
or the two differ by at most one.

(2) The sum of the mean of the upper and lower envelopes composed of local maxima
and local minima at any point is zero.

EMD can be used to analyze nonlinear and non-stationary signals. After the signal
undergoes a certain decomposition, a set of IMFs representing time scales is obtained.
These IMF components are all narrowband signals, making effective Hilbert Spectrum (HS)
analysis possible. Unlike Principal Component Analysis (PCA), which is based on the
statistical properties of signals, EMD is based on the local properties of signals. EMD can
separate items with the highest frequencies, and high and low empirical mode frequencies
can exist simultaneously at different times. It should also be noted that EMD decomposition
also has problems such as “end effects” and “mode mixing”, which may cause the loss of a
single feature or accumulation of errors when decomposing IMF.

2.2. Multivariate Time Series Analysis and Modeling

The analysis of safety monitoring data for reservoir dams can be considered a form
of multivariate time series analysis. It involves not only observing individual monitoring
data such as deformation, seepage flow, and seepage pressure, but also considering me-
teorological data like temperature, rainfall, and reservoir water level at the dam site [44].
This study aims to understand the relationships and patterns among these various com-
ponents. In this article, seepage pressure in the dam is taken as an example. Seepage
pressure is mainly influenced by factors such as water level, temperature, rainfall, and
aging. Due to the inherent characteristics of the soil, the water level in pressure-measuring
holes also reflects a certain lag, and the closer the measuring hole is to the downstream,
the stronger the lag in water level changes. Therefore, the analysis employs the following
statistical model:

H = Hh + HT + HP + Hθ (1)

where H represents the fitted value of the water level in the pressure-measuring hole
associated with seepage pressure; Hh represents the water level component of the pressure-
measuring hole associated with seepage pressure; HT represents the temperature compo-
nent; HP represents the rainfall component; and Hθ represents the aging
(time-dependent) component.
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(1) The water pressure component Hh: Analysis of water level monitoring data from
various pressure-measuring pipes indicates that changes in upstream water levels have a
significant impact on the water level in the seepage pressure-measuring hole, and there is a
certain lag effect. Therefore, the average value of the water level in the early period of the
monitoring day is chosen as the water pressure component factor:

Hh =
5

∑
i=1

ai(hi − h0i), (2)

where ai represents the regression coefficient for the water level component for both
upstream and downstream (where i ranges from 1 to 5); hi represents the average water
level for the monitoring day, the day before the monitoring day, the second to third
day before, the fourth to sixth day before, and the seventh to thirteenth day before the
monitoring day (where i ranges from 1 to 5); and h0i represents the initial average water
level for each of the corresponding time periods on the monitoring day (where i ranges
from 1 to 5).

(2) The temperature component HT : Considering the irregular periodic variation of
the water level in the pressure-measuring hole with temperature, the following form of a
periodic temperature factor is selected:

HT =
2

∑
i=1

[
b1i

(
sin

2πit
365

− sin
2πit0

365

)
+ b2i

(
cos

2πit
365

− cos
2πit0

365

)]
, (3)

where t is the cumulative number of days from the monitoring day to the start of the
monitoring period; t0 is the cumulative number of days from the first measurement day
of the data sequence to the start of the monitoring period; and b1i and b2i are regression
coefficients for the temperature factor (where i ranges from 1 to 2).

(3) The rainfall component HP: Through spatiotemporal analysis, it is known that
changes in seepage pressure are related to rainfall, especially in slope dam blocks. Generally,
with an increase in rainfall, the water level in the seepage pressure-measuring hole rises.
Additionally, there is a certain lag phenomenon in the change of water level in the seepage
pressure-measuring hole concerning changes in rainfall, meaning it is related to the rainfall
in the previous period. Therefore, the expression for the rainfall component is taken as:

HP =
4

∑
i=1

ci(Pi − P0), (4)

where Pi represents the average rainfall for the monitoring day, the day before, the second
day before, the third to fourth day before, and the fifth to seventh day before the monitoring
day (where i ranges from 1 to 5); P0 represents the initial average rainfall for each of the
corresponding time periods on the monitoring day (where i ranges from 1 to 4); and ci is
an additional constant term (where i ranges from 1 to 5).

(4) The aging component Hθ : The composition of the aging component Hθ is quite
complex and is closely related to the accumulation of sediment in front of the reservoir, the
lithology around the seepage pressure-measuring hole, and the distribution and attitude of
fractures and structures. The construction of the aging component is typically modeled
using the following form:

Hθ = d1(θ − θ0) + d2(ln θ − ln θ0), (5)

where d1 and d2 are regression coefficients for the aging component; θ is calculated as the
cumulative number of days from the monitoring day to the start of the monitoring period
divided by 100; and θ0 is the cumulative number of days from the first measurement day of
the data sequence to the start of the monitoring period divided by 100.
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In summary, when constructing the aging component using the above approach,
and considering the different operational states and environments of various hydraulic
structures, it is necessary to take targeted measures for optimization. In this study, Empirical
Mode Decomposition (EMD) is employed to decompose the aging component in the
measured data. This allows for the establishment of a response function for the aging
component in the dam, replacing Equation (5) in constructing a multi-source time series
analysis model.

Hθ = f (t), (6)

Therefore, the established multi-source time series analysis model can be represented
as:

H = Hh + HT + HP + Hθ = a0 +
5
∑

i=1
ai(hi − h0i)

+
2
∑

i=1

[
b1i

(
sin 2πit

365 − sin 2πit0
365

)
+ b2i

(
cos 2πit

365 − cos 2πit0
365

)]
+

5
∑

i=1
ci(Pi − P0) + f (t)

(7)

where a0 is the constant term and the other symbols have the same meanings as the
previous equation.

3. Prediction Model Construction
3.1. Long Short-Term Memory Network

The Long Short-Term Memory (LSTM) network can effectively address the issues of
gradient explosion and vanishing that simple Recurrent Neural Networks (RNN) encounter
when dealing with long time series data. Using the LSTM neural network algorithm for
predicting monitoring data helps eliminate the problems of gradient explosion and vanish-
ing, improving the accuracy of predicting monitoring data and ensuring the reliability and
precision of the predictions [45,46]. The cyclic unit structure of the LSTM network is shown
in Figure 1.

Figure 1. Cyclic unit structure of the LSTM network.

The core of the LSTM is the memory block, which includes three gate structures and a
memory cell. Specifically, it consists of the cell state, forget gate, input gate, and output
gate [47–49]. The LSTM gating mechanism is shown in Figure 2. Due to the presence of
gate mechanisms in the LSTM network, the memory cell c can capture crucial information
at a certain moment and retain this critical information for a certain period.

The specific computation process is as follows:

(1) Initially, using the external state ht − 1 from the previous time step and the current
input xt, calculate the forget gate ft, input gate it, and output gate ot; then, compute
the candidate value at.

(2) Combine ft and it to determine whether to update the memory cell Ct.
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(3) Combine ot to output the updated internal state information from the gate mechanism
to the external state ht.

Figure 2. LSTM gating mechanisms: (a) cell state; (b) forget gate; (c) input gate; (d) output gate.

3.2. Sparrow Search Algorithm

The Sparrow Search Algorithm (SSA) is a swarm intelligence optimization algorithm
proposed by Xue et al., in 2020, inspired by the foraging and predator evasion behavior of
sparrows [50]. The SSA algorithm comprises three types of sparrows: explorers, joiners, and
scouts. Explorers have higher fitness values, allowing them to prioritize food acquisition
during the search process, guiding the overall movement of the sparrow flock. As a result,
explorers can search for food in a broader area than joiners. The update function for
explorers is as follows:

xt+1
i,j =

{
xt

i,j• exp
(

−i
α•T

)
R2 < ST

xt
i,j + Q•L R2 > ST

(8)

where, t represents the current iteration, T is the maximum number of iterations, xt
i,j is the

value of the j dimension of the ith sparrow at iteration t, α is a random number in the
range (0,1], R2(R2 ∈ [0, 1]), and ST(ST ∈ [0, 1]) represent the early warning value and safety
threshold, respectively; furthermore, Q is a random number following a normal distribution,
and L is a 1×d matrix with elements equal to 1.

When R2 < ST, indicating that no predators are detected in the environment, explorers
can search in a larger area. Conversely, if R2 ≥ ST, signaling that some sparrows in the
population have detected predators and issued an alert, all sparrows need to quickly fly to
other safe locations for foraging.

During foraging, some joiners constantly monitor the explorers. Once they perceive
that an explorer has found better food, they immediately leave their current position to
compete for the food. If they succeed, they can immediately obtain the food found by the
explorer. The update function for joiners is as follows:

xt+1
i,j =

 xt
i,j• exp

(
xt

worst−xt
i,j

t2

)
i < n

2

xt+1
P +

∣∣∣xt
i,j − xt+1

P

∣∣∣•A+•L otherwise
(9)
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where, xP is the optimal position occupied by the current explorer, xworst represents the
current globally worst position, and A is a 1× d matrix with each element randomly
assigned to 1 or −1, and A+ = AT(AAT)− 1. When i > n/2, indicating that the ith joiner
with lower fitness has not obtained food and is in a very hungry state, it needs to fly to
another place for foraging to gain more energy.

Scouts typically constitute 10% to 20% of the sparrow flock, with random initial
positions. The update function for scouts is as follows:

xt+1
i,j =


xt

best + β.
∣∣∣xt

i,j − xt
best

∣∣∣ fi > fg

xt
P + K.

(
xt

i,j−xt
worst

( fi− fw)+ε

)
fi = fg

(10)

where, xbest is the best position in the sparrow population, β is a step-size control parameter
following a normal distribution with mean 0 and variance 1, K ∈ [−1, 1] is a random num-
ber, fi is the fitness value of the current sparrow individual, fg and fw are the current global
best and worst fitness values, ε is a constant to avoid division by zero, and K represents the
direction of sparrow movement and is also a step-size control parameter.

When fi > fg, it indicates that the sparrow is on the edge of the population and is
highly susceptible to predator attacks. When fi = fg, it means the sparrow in the middle
of the population has realized the danger and needs to move closer to other sparrows to
minimize the risk of predation.

SSA has the advantages of strong optimization ability and fast convergence. It demon-
strates certain advantages in handling nonlinear, multivariate problems and can be used
for optimizing parameters in LSTM models, thereby improving the accuracy of monitoring
data predictions. In this study, the number of iterations, the number of nodes in two hidden
layers, and the number of training samples selected in the model are chosen as optimization
objectives for the SSA.

3.3. EMD-SSA-LSTM Prediction Model Calculation Process

Based on the Long Short-Term Memory (LSTM) network and the Sparrow Search
Algorithm (SSA) intelligent optimization, a multivariate time series prediction model for
seepage flow in earth-rock dams is constructed. The calculation flow chart of the prediction
model is shown in Figure 3. The specific process is as follows:

(1) Data preprocessing: For the collected seepage flow monitoring data of the dam, the
preprocessing method in Section 2.1 is used to handle outliers without compromising
the integrity and trend of the original data.

(2) Parameter selection: Taking dam seepage pressure as an example, along with the
collected environmental factors, 15 influencing factors, including water pressure, tem-
perature, and aging, are selected for factor parameter configuration. The mathematical
model is shown in Equation (7).

(3) Data set partitioning and transformation: The preprocessed data are transformed into
supervised learning data using the series_to_supervised function to construct a 3-to-1
supervised learning data type, predicting the current day’s data using the data from
the previous three days. A total of 16 years of monitoring data from 2004 to 2020 was
collected, with the first 90% used as training data and the last 10% (approximately
2 years) used as prediction data, with normalization applied to the data using the
MinMaxScaler function.

(4) Model construction: For the prediction of dam seepage data, an LSTM neural network
is built based on Tensorflow. To improve computational efficiency, GPU support is
utilized, and a double-layer LSTM neural network is constructed.

(5) Model initialization: The iteration count, the number of nodes in two hidden layers,
and the training sample size in the LSTM neural network model are selected as
optimization objectives. The SSA algorithm is initialized with the iteration count,
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population size, producer ratio, and initial parameter threshold, followed by the
initialization calculation. See as Table 1.

(6) Fitness calculation: The validation set mean squared error is used as the fitness function
to find a set of hyperparameters that minimize the network’s error. Equations (8)–(10)
are employed to update the positions of the sparrows in SSA, obtaining new fitness
values for the sparrow population and saving the optimal individual and global optimal
positions in the population.

(7) Output optimization results: The particle values calculated by SSA optimization are
used as the iteration count, the number of nodes in two hidden layers, and the training
sample size for the LSTM neural network model.

Figure 3. Flow chart of prediction model calculation.

Table 1. SSA parameter selection.

Name of Parameter Value

Iterations 10

Sparrow population 20

Optimization dimension 4

Finder alert threshold 0.8

Finder ratio 20%

Scout ratio 20%

Data range

Iterations [10–100]
Number of nodes in the first hidden layer [1–100]

Number of nodes in the second hidden layer [1–100]
Number of samples selected for training [10–100]

(8) Calculation and comparative analysis: For the predicted data, metrics such as Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Percentage
Error (MAPE), Mean Absolute Error (MAE), and R-squared (R2) are used to evaluate
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the model accuracy. A comparative analysis is conducted with the prediction effects of
GPU, Recurrent Neural Network (RNN), Backpropagation Neural Network (BPNN),
and the commonly used multiple linear regression.

4. Study Area Introduction

The selected research object is the Siminghu Reservoir in Yuyao City, Zhejiang Province.
Siminghu Reservoir is a large-scale reservoir primarily used for irrigation, with integrated
functions such as flood control, water supply, and aquaculture. The total storage capacity
is 1.2272 billion m3. Construction of the project began in 1958, and the dam was sealed
in July 1959. Risk reinforcement was carried out from 2002 to 2004. The reservoir is
designed to withstand floods with a return period of 100 years, and the verification is
conducted for floods with a return period of 10,000 years. The normal water level of the
reservoir is 16.28 m (elevation 85, the same below), corresponding to a storage capacity of
0.7946 billion m3. The dead water level is 6.78 m, and the flood limit water level is 15.28 m.
The design flood level is 17.88 m, corresponding to a storage capacity of 0.9774 billion m3.
The verified flood level is 19.85 m, corresponding to a storage capacity of 1.2272 billion m3.
The Siminghu Reservoir’s reservoir hub project consists of a river-blocking dam, flood
discharge gate, self-destroying spillway, water conveyance tunnel, discharge and supply
water tunnel, and a power station.

The river-blocking dam is an earth-rock dam with a maximum height of 16.85 m. It
is reinforced with a combination of clay slanting walls and composite geomembranes for
seepage prevention. The dam crest elevation is 21.13 m, with a length of 600 m and a width
of 5.5 m. There is a wave-prevention wall with a height of 1.2 m. The upstream slope ratio
is 1:3.7, protected by concrete prefabricated block revetment, while the downstream slope
ratios are 1:2.2 and 1:2.5 from top to bottom, protected by granite cobblestone revetment.

For the monitoring points of seepage pressure in the Siminghu Reservoir dam, points
were selected based on the overall integrity of monitoring instrument performance, the
accuracy of instruments meeting specification requirements, and the physical significance,
continuity, and consistency of monitoring data. The arrangement of seepage monitoring
instruments is shown in Figure 4. The selected monitoring points are listed in Table 2.

Figure 4. 0 + 105.00 m section seepage monitoring instrument layout.

Table 2. Seepage pressure monitoring point selection table of the Siminghu reservoir dam.

Hole Number Dam Axis Distance (m) Station Number

Under the geomembrane −18.50 SW3-1
U-3 +33.00 JC4-2
U-4 +100.00 JC1-2, SC2-6
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5. Results and Discussion
5.1. EMD-SSA-LSTM Prediction Model Calculation Process

For the four monitoring points in Table 2, the seepage pressure monitoring data from
1 January 2006 to 31 December 2020 was selected as the analysis period for predicting the
safety status of the dam. The data from 31 December 2018 to 31 December 2020 was chosen
as the prediction period. From the time series monitoring data, a slight time-dependent
trend is still evident. To enhance the reliability of the results in the prediction analysis of the
dam’s safety status, Empirical Mode Decomposition (EMD) was employed to separate the
time-dependent components from the seepage pressure monitoring data of the earth-rock
dam. The results of separating the trend components for each monitoring point are shown
in the following Figure 5.

Figure 5. Measured data and aging component: (a) Monitoring point SC2-6; (b) Monitoring point
JC4-2; (c) Monitoring point SW3-1; (d) Monitoring point JC1-2.

5.2. Parameter Optimization of Multivariate Time Prediction Model

The adjustment of hyperparameters in a neural network includes parameters related
to network design and those related to the training process. Network design related param-
eters encompass the number of layers, the types of layers, their sequence, the configuration
of neurons in the hidden layers, the choice of loss function, optimizer selection, and regular-
ization parameters. On the other hand, training process related parameters involve network
weights, initialization schemes, learning rate, the number of epochs, and the batch size.



Water 2024, 16, 395 11 of 18

For a neural network model, parameter tuning is necessary when the Loss curve fits
perfectly, underfits, or overfits, aiming to achieve optimal predictive performance. The
results of neural network training are shown in Figure 6.

Figure 6. Neural network training results: (a) Exact fit; (b) Underfitting.

Adjustments can be made in several aspects, including the number of neurons in the
hidden layers, the number of epochs, the batch size, the choice of loss function, and the
selection of the optimizer. The SSA (Sparrow Search Algorithm) is employed for tuning the
number of neurons in the hidden layers, the number of epochs, and the batch size. This
section focuses on optimizing the selection of the loss function and the optimizer.

1. Optimizer

The optimizer guides the loss function to update the parameters in the correct direction
with an appropriate magnitude. The updated parameters continuously approach the global
optimum. Tuning was performed on the preprocessed JC1−2 and SC2−6 monitoring
points. Under the Mean Squared Error (MSE) loss function, various optimization functions
were compared and analyzed, and the specific results are shown in Table 3. The final
choice was the Adagrad algorithm, which demonstrated the optimal optimization effect
and results. The optimization process and results of the Adagrad optimizer are shown in
Figures 7 and 8. The formula for the Adagrad algorithm is as follows:

wt+1 = wt − a•mt/
√

Vt = wt − a•mt/

√√√√ t

∑
t=1

g2
t (11)

where, a is the learning rate and gt is the gradient of the current parameter.

Table 3. Optimization effect of different deep learning optimizers (Monitoring point JC1−2).

Optimizer Type MAPE RMSE MAE MSE R2

Adagrad 0.0087 0.0569 0.0448 0.0032 0.6380

Adadelta 0.0233 0.1405 0.1195 0.0197 −1.2067

Adam 0.0393 0.2228 0.2018 0.0496 −4.5486

Adamax 0.0100 0.0650 0.0510 0.0042 0.5270

Ftrl 0.0542 0.2935 0.2779 0.0862 −8.6334

Nadam 0.0182 0.1082 0.0936 0.0117 −0.3097

RMSprop 0.0182 0.1124 0.0938 0.0126 −0.4125

SGD 0.0094 0.0599 0.0482 0.0035 0.5976
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Figure 7. Adagrad optimizer optimization process and results (Monitoring point JC1−2):
(a) Optimization procedure; (b) Result.

Figure 8. Adagrad optimizer optimization process and results (Monitoring point SC2−6):
(a) Optimization procedure; (b) Result.

2. Loss Function

The loss function is used to evaluate the discrepancy between the model’s predicted
values f (x) and the actual values y. By minimizing the loss function, the goal is to make the
predicted values f (x) as close as possible to the actual values y. Given that the optimizer
is Adagrad, different loss functions were compared. Common choices for regression
problems include Mean Squared Error (MSE), Mean Absolute Error (MAE), Squared Hinge,
LogCosh, etc.

The Mean Absolute Error (MAE) was selected as the loss function due to its optimal
performance. MAE is insensitive to outliers and exhibits inclusivity, meaning the model’s
penalty strength and weight are the same for all data points. The MAE loss function
optimization process and results are shown in Figures 9 and 10. The optimization effects
of different loss functions are shown in Table 4. Therefore, MAE has better robustness for
volatile data. The definition expression for Mean Absolute Error (MAE) is as follows:

MAE =

n
∑

i−1
|yi − xi|

n
(12)
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Figure 9. MAE loss function optimization process and results (Monitoring point JC1−2):
(a) Optimization procedure; (b) Result.

Figure 10. MAE loss function optimization process and results (Monitoring point SC2-6):
(a) Optimization procedure; (b) Result.

Table 4. Optimization effect of different loss functions (Monitoring point JC1-2).

Optimizer Type MAPE RMSE MAE MSE R2

MSE 0.0087 0.0569 0.0448 0.0032 0.6380

MAE 0.0083 0.0528 0.0426 0.0027 0.6884

MAPE 0.1244 0.6545 0.6360 0.4284 −46.9011

MSLE 0.0094 0.0611 0.0484 0.0037 0.5815

squared_hinge 1.0873 5.5581 5.5437 30.8931 −3452.79

categorical_hinge 0.5152 2.6577 2.6308 7.0637 −788.71

LogCosh 0.0116 0.0731 0.0597 0.4024 0.0053

3. Comparative analysis of prediction accuracy

The predictive models established using EMD-SSA-LSTM, RNN, GRU, BP neural
network, and multivariate linear regression for the prediction of seepage pressure in the
dam were compared. The constructed LSTM structure of JC2−1, for example, is shown
in Figure 11. The measured values and predicted values for the monitoring points JC1-2,
SC2-6, SW3-1, and JC4-2 under different models are shown in Figure 12. The process lines of
each model and the fitting lines exhibit similar patterns, consistent trends, and good overall
agreement. Notably, the EMD-SSA-LSTM neural network provides better fitting results,
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with a more pronounced trend. The evaluation indicators in Tables 5–8 indicate that the
EMD-SSA-LSTM neural network model outperforms other algorithms in various aspects.

According to Figure 13, the fluctuation of error values in the EMD-SSA-LSTM results
is smaller, indicating that the model achieves high predictive accuracy after training and
meets the requirements for prediction.

Figure 11. Diagram of the constructed LSTM structure (using JC2-1 as an example).

Figure 12. Comparison of results of different prediction models: (a) Monitoring point JC1-2;
(b) Monitoring point SC2-6; (c) Monitoring point SW3-1; (d) Monitoring point JC4-2.
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Figure 13. Comparison of results of different residual models: (a) Monitoring point JC1-2;
(b) Monitoring point SC2-6; (c) Monitoring point SW3-1; (d) Monitoring point JC4-2.

Table 5. Optimization effect of different loss functions (Monitoring point JC1-2).

Evaluation Index EMD-SSA-LSTM RNN GRU BP Neural Network Multiple Linear Regression

MSE 0.0026 0.0107 0.0106 0.0086 0.0038

RMSE 0.0519 0.1035 0.1030 0.1052 0.0616

MAE 0.0407 0.0884 0.0893 0.0854 0.0485

R2 0.6759 −0.2892 −0.2775 −0.0356 0.6068

Table 6. Optimization effect of different loss functions (Monitoring point SC2-6).

Evaluation Index EMD-SSA-LSTM RNN GRU BP Neural Network Multiple Linear Regression

MSE 0.0016 0.0027 0.0026 0.0066 0.0071

RMSE 0.0401 0.0516 0.0513 0.1352 0.0842

MAE 0.0314 0.0410 0.0405 0.1129 0.0711

R2 0.8674 0.7803 0.7833 0.4504 0.8067

Table 7. Optimization effect of different loss functions (Monitoring point SW3-1).

Evaluation Index EMD-SSA-LSTM RNN GRU BP Neural Network Multiple Linear Regression

MSE 0.0156 0.0070 0.0070 0.0366 0.0113

RMSE 0.0395 0.0838 0.0836 0.2584 0.1061

MAE 0.0340 0.0626 0.0629 0.2120 0.0819

R2 0.9199 0.6404 0.6417 −0.8765 0.7878
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Table 8. Optimization effect of different loss functions (Monitoring point JC4−2).

Evaluation Index EMD-SSA-LSTM RNN GRU BP Neural Network Multiple Linear Regression

MSE 0.0026 0.0085 0.0083 0.0117 0.0038

RMSE 0.0512 0.0924 0.0911 0.1267 0.0616

MAE 0.0386 0.0796 0.0776 0.1040 0.0486

R2 0.7710 0.2562 0.2768 −0.0179 0.7333

6. Conclusions

(1) Compared to traditional statistical regression models, EMD has the advantage of
convenient computation and does not require the pre-assumption of time-effect functions.

(2) A multivariate time series prediction model based on the sparrow optimization
algorithm and the long short-term memory neural network (LSTM) is established. The
influence of different neural network parameter selections on model gradient descent and
prediction results is analyzed. “Adagrad” and “MAE” are selected as the optimizer and
loss function for the prediction model, resulting in a well-fitted Loss curve.

(3) A comparative analysis is conducted on the prediction accuracy of the SSA-LSTM
model compared to BP, RNN, GRU, and other neural networks, as well as multivariate
linear regression methods. The prediction model’s parameters outperform other meth-
ods, indicating high predictive accuracy and suitability for forecasting future trends in
monitoring points.
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