Assessment of Future Climate Change Impacts on Groundwater Recharge Using Hydrological Modeling in the Choushui River Alluvial Fan, Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. SWAT Model Set-Up
2.2.2. MODFLOW-NWT Model Set-Up
2.3. Model Calibration and Validation Procedure
2.3.1. SWAT Calibration
2.3.2. MODFLOW Calibration
2.4. Climate Change Scenarios
3. Results and Discussion
3.1. Parameters Sensitive Analysis of SWAT
3.2. SWAT Model Transient Performance
3.3. MODFLOW Transient Model Calibration
3.4. MODFLOW Transient Model Performance
3.5. Spatial Patterns of Groundwater Recharge Simulation
3.6. Temporal Variability of Groundwater Recharge Scenarios Simulation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liesch, T.; Wunsch, A. Aquifer responses to long-term climatic periodicities. J. Hydrol. 2019, 572, 226–242. [Google Scholar] [CrossRef]
- Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Field, C.B. Understanding and responding to danger from climate change: The role of key risks in the IPCC AR5. Clim. Chang. 2016, 136, 427–444. [Google Scholar] [CrossRef]
- Awan, U.K.; Ismaeel, A. A new technique to map groundwater recharge in irrigated areas using a SWAT model under changing climate. J. Hydrol. 2014, 519, 1368–1382. [Google Scholar] [CrossRef]
- Hu, B.; Teng, Y.; Zhang, Y.; Zhu, C. Review: The projected hydrologic cycle under the scenario of 936 ppm CO2 in 2100. Hydrogeol. J. 2018, 27, 31–53. [Google Scholar] [CrossRef]
- Pulido-Velazquez, D.; Collados-Lara, A.-J.; Alcala, F.J. Assessing impacts of future potential climate change scenarios on aquifer recharge in continental Spain. J. Hydrol. 2018, 567, 803–819. [Google Scholar] [CrossRef]
- Wang, S.-J.; Lee, C.-H.; Yeh, C.-F.; Choo, Y.F.; Tseng, H.-W. Evaluation of Climate Change Impact on Groundwater Recharge in Groundwater Regions in Taiwan. Water 2021, 13, 1153. [Google Scholar] [CrossRef]
- Karki, R.; Srivastava, P.; Kalin, L. Evaluating climate change impacts in a heavily irrigated karst watershed using a coupled surface and groundwater model. J. Hydrol. Reg. Stud. 2023, 50, 101565. [Google Scholar] [CrossRef]
- Hersi, N.A.; Mulungu, D.M.; Nobert, J. Groundwater recharge estimation under changing climate and land use scenarios in a data-scarce Bahi (Manyoni) catchment in Internal Drainage Basin (IDB), Tanzania using Soil and Water Assessment Tool (SWAT). Groundw. Sustain. Dev. 2023, 22, 100957. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Postel, S.L.; Daily, G.C.; Ehrlich, P.R. Human Appropriation of Renewable Fresh Water. Science 1996, 271, 785–788. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Camporese, M.; Paniconi, C.; Putti, M.; Salandin, P. Ensemble Kalman filter data assimilation for a process-based catchment scale model of surface and subsurface flow. Water Resour. Res. 2009, 45, W10421. [Google Scholar] [CrossRef]
- Sophocleous, M. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J. 2002, 10, 348. [Google Scholar] [CrossRef]
- Winter, T.C. Groundwater Surface Water: A Single Resource; U.S. Geological Survey Circular 1139; U.S. Geological Survey: Denver, CO, USA, 1998. [Google Scholar]
- Kollet, S.J.; Maxwell, R.M. Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv. Water Resour. 2006, 29, 945–958. [Google Scholar] [CrossRef]
- Markstrom, S.L.; Niswonger, R.G.; Regan, R.S.; Prudic, D.E.; Barlow, P.M. GSFLOW—Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). US Geol. Surv. Tech. Methods 2008, 6, 240. [Google Scholar]
- Kim, N.W.; Chung, I.M.; Won, Y.S.; Arnold, J.G. Development and application of the integrated SWAT–MODFLOW model. J. Hydrol. 2008, 356, 1–16. [Google Scholar] [CrossRef]
- Therrien, R.; McLaren, R.; Sudicky, E.; Panday, S. HydroGeoSphere: A Three-Dimensional Numerical Model Describing Fully-Integrated Subsurface and Surface Flow and Solute Transport; Groundwater Simulations Group, University of Waterloo: Waterloo, ON, USA, 2010. [Google Scholar]
- Diersch, H.-J.G. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011; Available online: https://hdl.handle.net/1969.1/128050 (accessed on 10 August 2022).
- Hashemi, F.; Olesen, J.E.; Dalgaard, T.; Børgesen, C.D. Review of scenario analyses to reduce agricultural nitrogen and phosphorus loading to the aquatic environment. Sci. Total. Environ. 2016, 573, 608–626. [Google Scholar] [CrossRef]
- Hossard, L.; Chopin, P. Modelling agricultural changes and impacts at landscape scale: A bibliometric review. Environ. Model. Softw. 2019, 122, 104513. [Google Scholar] [CrossRef]
- Mannschatz, T.; Wolf, T.; Hülsmann, S. Nexus Tools Platform: Web-based comparison of modelling tools for analysis of water-soil-waste nexus. Environ. Model. Softw. 2016, 76, 137–153. [Google Scholar] [CrossRef]
- Wei, F.; Grubesic, T.H.; Bishop, B.W. Exploring the GIS Knowledge Domain Using CiteSpace. Prof. Geogr. 2014, 67, 374–384. [Google Scholar] [CrossRef]
- Niswonger, R.G.; Panday, S.; Ibaraki, M. MODFLOW-NWT, a Newton formulation for MODFLOW-2005. US Geol. Surv. Tech. Methods 2011, 6, 44. [Google Scholar]
- Sophocleous, M.; Koelliker, J.; Govindaraju, R.; Birdie, T.; Ramireddygari, S.; Perkins, S. Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas. J. Hydrol. 1999, 214, 179–196. [Google Scholar] [CrossRef]
- Sanz, D.; Castaño, S.; Cassiraga, E.; Sahuquillo, A.; Gómez-Alday, J.J.; Peña, S.; Calera, A. Modeling aquifer–river in-teractions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain). Hydrogeol. J. 2011, 19, 475–487. [Google Scholar] [CrossRef]
- Stefania, G.A.; Rotiroti, M.; Fumagalli, L.; Simonetto, F.; Capodaglio, P.; Zanotti, C.; Bonomi, T. Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): The effect of groundwater abstraction on surface-water resources. Hydrogeol. J. 2017, 26, 147–162. [Google Scholar] [CrossRef]
- Bailey, R.T.; Wible, T.C.; Arabi, M.; Records, R.M.; Ditty, J. Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. Hydrol. Process. 2016, 30, 4420–4433. [Google Scholar] [CrossRef]
- Liu, W.; Park, S.; Bailey, R.T.; Molina-Navarro, E.; Andersen, H.E.; Thodsen, H.; Nielsen, A.; Jeppesen, E.; Jensen, J.S.; Trolle, D. Quantifying the streamflow response to groundwater abstractions for irrigation or drinking water at catchment scale using SWAT and SWAT–MODFLOW. Environ. Sci. Eur. 2020, 32, 1–25. [Google Scholar] [CrossRef]
- Mote, P.W.; Abatzoglou, J.T.; Kunkel, K.E. Climate. In Climate Change in the Northwest; NCA Regional Input Reports; Dalton, M.M., Mote, P.W., Snover, A.K., Eds.; Island Press: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Fu, G.; Crosbie, R.S.; Barron, O.; Charles, S.P.; Dawes, W.; Shi, X.; Van Niel, T.; Li, C. Attributing variations of temporal and spatial groundwater recharge: A statistical analysis of climatic and non-climatic factors. J. Hydrol. 2018, 568, 816–834. [Google Scholar] [CrossRef]
- McKenna, O.P.; Sala, O.E. Groundwater recharge in desert playas: Current rates and future effects of climate change. Environ. Res. Lett. 2017, 13, 014025. [Google Scholar] [CrossRef]
- Maxwell, R.M.; Condon, L.E.; Kollet, S.J. A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geosci. Model Dev. 2015, 8, 923–937. [Google Scholar] [CrossRef]
- O’neill, S.; Williams, H.T.P.; Kurz, T.; Wiersma, B.; Boykoff, M. Dominant frames in legacy and social media coverage of the IPCC Fifth Assessment Report. Nat. Clim. Chang. 2015, 5, 380–385. [Google Scholar] [CrossRef]
- Parry, M.L.; Canziani, O.; Palutikof, J.; Van der Linden, P.; Hanson, C. Climate Change 2007-Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Srinivasan, V.; Lele, S. From groundwater regulation to integrated water management. Econ. Polit. Wkly. 2017, 52, 107–114. [Google Scholar]
- Tweed, S.; Leblanc, M.; Cartwright, I.; Favreau, G.; Leduc, C. Arid zone groundwater recharge and salinisation processes; an example from the Lake Eyre Basin, Australia. J. Hydrol. 2011, 408, 257–275. [Google Scholar] [CrossRef]
- Barron, O.; Crosbie, R.; Charles, S.; Dawes, W.; Ali, R.; Evans, W.; Cresswell, R.; Pollock, D.; Hodgson, G.; Currie, D. Climate Change Impact on Groundwater Resources in Australia Waterlines Report; National Water Commission: Canberra, Australia, 2011. [Google Scholar]
- Bellot, J.; Chirino, E. Hydrobal: An eco-hydrological modelling approach for assessing water balances in different vegetation types in semi-arid areas. Ecol. Model. 2013, 266, 30–41. [Google Scholar] [CrossRef]
- Touhami, I.; Chirino, E.; Andreu, J.; Sánchez, J.; Moutahir, H.; Bellot, J. Assessment of climate change impacts on soil water balance and aquifer recharge in a semiarid region in south east Spain. J. Hydrol. 2015, 527, 619–629. [Google Scholar] [CrossRef]
- Meixner, T.; Manning, A.H.; Stonestrom, D.A.; Allen, D.M.; Ajami, H.; Blasch, K.W.; Brookfield, A.E.; Castro, C.L.; Clark, J.F.; Gochis, D.J.; et al. Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol. 2016, 534, 124–138. [Google Scholar] [CrossRef]
- Flint, L.; Flint, A. California Basin Characterization Model: A Dataset of Historical and Future Hydrologic Response to Climate Change; US Geological Survey Data Release: Reston, VA, USA, 2014. [Google Scholar] [CrossRef]
- Bhanja, S.N.; Rodell, M.; Li, B.; Saha, D.; Mukherjee, A. Spatio-temporal variability of groundwater storage in India. J. Hydrol. 2017, 544, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Jyrkama, M.I.; Sykes, J.F. The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). J. Hydrol. 2007, 338, 237–250. [Google Scholar] [CrossRef]
- Moeck, C.; Grech-Cumbo, N.; Podgorski, J.; Bretzler, A.; Gurdak, J.J.; Berg, M.; Schirmer, M. A global-scale dataset of direct natural groundwater recharge rates: A review of variables, processes and relationships. Sci. Total. Environ. 2020, 717, 137042. [Google Scholar] [CrossRef]
- Jia, Y.-P. Hydrogeological Structure of the Southern Wing of Choushui River Alluvial Fan. In Proceedings of the Workshop on Groundwater and Hydrogeology of the Choushui River Alluvial Fan, Taipei city, Taiwan, 2 September 1996; pp. 113–125. [Google Scholar]
- Hsu, H. Investigation of Groundwater Recharge Estimation—A Case Study in Choushui River Alluvial Fan. Master’s Thesis, National Taiwan University, Taipei City, Taiwan, 2010. Available online: https://hdl.handle.net/11296/hc8xc2 (accessed on 27 January 2024).
- Ke, K.-Y. Application of an integrated surface water-groundwater model to multi-aquifers modeling in Choushui River alluvial fan, Taiwan. Hydrol. Process. 2012, 28, 1409–1421. [Google Scholar] [CrossRef]
- Ray, M.; Simpson, B. Agricultural Adaptation to Climate Change in the Sahel: Profiles of Agricultural Management Practices; Tetra Tech ARD Report; USAID: Washington, DC, USA, 2014; p. 60. [Google Scholar]
- USDA. Section 4: Hydrology. In National Engineering Handbook; USDA: Washington, DC, USA, 1972. [Google Scholar]
- Ministry of Economic Affairs. Designation Plan for Groundwater Recharge Geologically Sensitive Areas: G0001 Choushui River Alluvial Fan. 2014. Available online: https://www.gsmma.gov.tw/nss/p/H001d2 (accessed on 27 January 2024).
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Ranganathan, A. The levenberg-marquardt algorithm. Tutoral LM Algorithm 2004, 11, 101–110. [Google Scholar]
- Lin, C.-Y.; Tung, C.-P. Procedure for selecting GCM datasets for climate risk assessment. Terr. Atmos. Ocean. Sci. 2017, 28, 43–55. [Google Scholar] [CrossRef]
- Lin, X.-L.; Lin, S.-Y.; Tong, Y.-X. Statistical Downscaling Rainfall Data Production Record AR5 (4.0 Edition). Taiwan Climate Change Projection and Adaptation Knowledge Platform. 2021. Available online: https://tccip.ncdr.nat.gov.tw/upload/data_profile/20200117105955.pdf (accessed on 10 August 2022).
- Chen, S.-K.; Jang, C.-S.; Peng, Y.-H. Developing a probability-based model of aquifer vulnerability in an agricultural region. J. Hydrol. 2013, 486, 494–504. [Google Scholar] [CrossRef]
Parameters | Description | Initial Range | Calibrated Values | |
---|---|---|---|---|
Sub-Basin: 6, 15 (Upstream) | Sub-Basin: 16, 18, 35, 36 (Downstream) | |||
CN2.mgt | Initial SCS runoff curve number for moisture condition II | −0.3 to 0.3 | −0.279 | 0.137 |
Alpha_BF.gw | Baseflow alpha factor for shallow aquifer (days) | 0–1 | 0.453 | 0.6953 |
ESCO.bsn | Soil evaporation compensation factor | 0–1 | 0.466 | 0.931 |
EPCO.bsn | Plant uptake compensation factor | 0.01–1 | 0.163 | 0.254 |
SOL_AWC.sol | ) | −0.8 to 0.8 | −0.674 | 0.786 |
SOL_BD.sol | Moist bulk density (gcm−3) | −0.2 to 0.2 | −0.067 | −0.025 |
GW_DELAY.gw | Groundwater delay (days) | 0–200 | 116.12 | 121.23 |
SURLAG.bsn | Surface runoff lag coefficient (days) | 1–10 | 1.747 | 6.379 |
GW_REVAP.gw | Groundwater “revap” coefficient | 0.02–0.1 | 0.092 | 0.0313 |
No | Parameters | Local Sensitivity t-Stat | Global Sensitivity t-Stat | ||
---|---|---|---|---|---|
t-Stat | p-Value | t-Stat | p-Value | ||
1 | r_CN2.mgt | −8.4630 | 0.0000 | −4.1010 | 0.0010 |
2 | v_Alpha_BF.gw | 4.8934 | 0.0017 | −0.0560 | 0.4782 |
3 | v_ESCO.bsn | 2.9230 | 0.0084 | 0.9840 | 0.1754 |
4 | v_EPCO.bsn | 3.1308 | 0.0060 | 1.1080 | 0.1482 |
5 | r_SOL_AWC.sol | 4.6790 | 0.0213 | 14.7550 | 0.0000 |
6 | r_SOL_BD.sol | −1.8920 | 0.0455 | −33.6700 | 0.0000 |
7 | v_GW_DELAY.gw | 9.9718 | 0.0000 | −1.6530 | 0.0663 |
8 | v_SURLAG.bsn | −1.8720 | 0.0469 | 0.4660 | 0.3261 |
9 | v__GW_REVAP.gw | 2.3410 | 0.0219 | 0.0640 | 0.4751 |
Outlets | Pearson Correlation Coefficient | RMSE (m) | R2 | Pbias (%) | NSE |
---|---|---|---|---|---|
Tzu-Chiang | 0.979 (0.971) | 2.742 (1.194) | 0.959 (0.943) | −0.003 (−0.131) | 0.942 (0.866) |
Chi-Chou | 0.959 (0.930) | 0.020 (0.114) | 0.920 (0.865) | −0.001 (0.010) | 0.920 (0.846) |
Tun-Kun | 0.865 (0.857) | 0.354 (0.056) | 0.749 (0.734) | 0.289 (−0.029) | 0.549 (0.469) |
Pei-Kang (2) | 0.865 (0.857) | 0.354 (0.605) | 0.749 (0.679) | 0.289 (0.181) | 0.549 (0.548) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngo, T.-M.-L.; Wang, S.-J.; Chen, P.-Y. Assessment of Future Climate Change Impacts on Groundwater Recharge Using Hydrological Modeling in the Choushui River Alluvial Fan, Taiwan. Water 2024, 16, 419. https://doi.org/10.3390/w16030419
Ngo T-M-L, Wang S-J, Chen P-Y. Assessment of Future Climate Change Impacts on Groundwater Recharge Using Hydrological Modeling in the Choushui River Alluvial Fan, Taiwan. Water. 2024; 16(3):419. https://doi.org/10.3390/w16030419
Chicago/Turabian StyleNgo, Thi-My-Linh, Shih-Jung Wang, and Pei-Yuan Chen. 2024. "Assessment of Future Climate Change Impacts on Groundwater Recharge Using Hydrological Modeling in the Choushui River Alluvial Fan, Taiwan" Water 16, no. 3: 419. https://doi.org/10.3390/w16030419
APA StyleNgo, T. -M. -L., Wang, S. -J., & Chen, P. -Y. (2024). Assessment of Future Climate Change Impacts on Groundwater Recharge Using Hydrological Modeling in the Choushui River Alluvial Fan, Taiwan. Water, 16(3), 419. https://doi.org/10.3390/w16030419