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Abstract: The central part of the Zhangjiakou area is occupied by the Yanshan orogenic basin. A large
number of piedmont faults developed over time, controlling the exposure of geothermal anomalies.
The fluid chemistry characteristics and their influence on the heat generation mechanism of the
medium- and low-temperature convective geothermal field in the area are not fully understood.
In this study, the geothermal fluid was sampled and tested, and the hydrogeological background
conditions were analyzed. The results show that the sulfate in geothermal fluid originates from the
dissolution of gypsum or H2S oxidation in deep magma. The geothermal fluid in the faulted basin
flows upward after deep circulation and interacts with shallow groundwater. The main source of
geothermal fluid is atmospheric precipitation. The temperature of the hot reservoir is between 82 ◦C
and 121 ◦C, and the depth of geothermal water circulation is more than 3200 m. It can be seen that the
geothermal resources in this area are formed by the long-term contact of residual magma, geothermal
heating and mechanical heating of neotectonic movement after atmospheric precipitation recharge.

Keywords: geothermal fluid; hydrogeochemical; genesis mechanism; convection; Yanshan orogenic basin

1. Introduction

Geothermal water is the main geothermal resource used. Understanding the thermal
mechanism is the key to sustainable development and utilization of resources [1,2]. The
development and utilization of geothermal energy is of great significance to save energy
as well as for the realization of emission reduction and the structural adjustment of en-
ergy consumption [3,4]. The low–medium-temperature convective geothermal system is
widely distributed in North China. Because of their multi-staged structural evolution and
complex structural features, determining the mechanical properties of faults through field
observation is very difficult. In addition, these mechanical properties are often segmented.
Controlled by neotectonic faults, the convection movement is strong [5–7]. Therefore,
studying the formation mechanism, occurrence environment and circulation mechanism of
geothermal resources is not only a prerequisite for guiding the sustainable development
and utilization of geothermal resources, but also provides strong support for the overall
ecological environment protection [8–10].
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The research and interpretation of hydrogeochemical information such as the hydro-
chemical components and isotopic characteristics of fluids is an effective means to further
expand our knowledge [11–15]. They can reveal the hydrochemical genesis mechanism,
formation and evolution law and occurrence environment. Using the main and trace
elements, hydrogen, oxygen and gas helium isotopes of geothermal fluids (>150 ◦C), it
has been identified that the main source of the Rekeng geothermal system in the Eastern
Himalayas is crustal deformation [16], but in India, the equivalent index analysis of geother-
mal fluids (<80 ◦C) indicates that it originates from geothermal gradient heating [17]. In
the early years of this subject’s discovery, studies of hydrogen and oxygen isotopes in
geothermal fluids in Tibet helped to identify their possible flow directions and sources of
recharge [18]. Later on, the relationship between ion ratio and salinity was used to analyze
the hydrodynamic environment of geothermal fluid in the Jiaodong area and its relation-
ship with seawater recharge [19]. Studies on the distribution of environmental isotopes
and hydrochemistry, including 14C, can clarify key geothermal cycle information such as
residence time and circulation depth of conductive geothermal fluids in subsidence basins
in the Gansu region [20]. In addition, various temperature scale calculations and scaling
corrosion studies of geothermal water can evaluate the amount of geothermal resources and
their availability in the region [21,22]. These previous works provide a research basis for
exploring the geochemical origin of geothermal fluids, evaluating the quality of geothermal
and related mineral resources, the thermodynamic activities and internal rheology of the
relevant Earth’s crust.

At present, limited research has been conducted on the geothermal fields within the
Yanshan orogenic basin in Zhangjiakou, and the genesis, occurrence environment, mi-
gration law of geothermal resources and the interrelationship between various thermal
reservoirs are not fully understood [23,24]. It is difficult to scientifically and accurately
guide the development of geothermal fields. This study has positive significance for clarify-
ing the geological and geochemical characteristics of the geothermal system, systematically
evaluating the potential of geothermal resources and promoting the geothermal research in
this area.

2. Regional Overview

The tectonic unit of Huailai County, Zhangjiakou City is located in the northern
edge of North China (Figure 1). It includes three secondary tectonic units, the Inner
Mongolia axis, the Yanshan platform fold belt and the Shanxi fault-uplift. The Shangyi,
Chongli and Chicheng deep faults in the central part are separated between the Yanshan
platform fold belt and the Inner Mongolia axis. Its north and south sides have experienced
different geological development histories, showing very different geological tectonic
characteristics [5,6].
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Figure 1. Location of the study area.

The geological structure of this area is complex. The Paleozoic–Early Proterozoic
ancient crystalline basement is dominated by fold deformation. The Middle and Late
Proterozoic–Paleozoic are still dominated by inherited fold structures, followed by faults.
Since the Mesozoic, it has been dominated by fault structures. The frame in the area
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is dominated by fractures mainly composed of three deep and large fault zones, the
Kangbaoweichang fault, the Shangyi–Chongli–Chicheng fault, and the NNE-trending
Dahenan–Daituo fault. Due to the strong and multi-stage tectonic changes, fault tectonic
systems of different scales, different properties and different occurrences have been formed
within their influence range. The magmatic activity in this region exhibits a robust intensity,
forming an integral part of the magmatic activity belt within the tectonic framework of the
Daxing’anling–Taihang mountains. Its primary period of occurrence is during the Mesozoic
era, with its peak manifestation observed during the middle and late stages. The resultant
magmatic rock formations from this epoch display characteristics such as extensive scale,
widespread distribution, intricate morphologies and notable mineralization.

The temperature of exposed water in the thermal anomaly area of Houhaoyao geother-
mal field is 40–60 ◦C. The highest exposed water temperature is 89 ◦C. Hot water overflows
the bedrock along the intersection of two sets of tectonic faults N30◦W and N75◦E in gneiss
and fused tuff (J3), and exists in quaternary tertiary loose sedimentary layers. The hot
springs here are located on the north side of the Guangling–Langshan fault in the east
wing of the Qilu system [5,25]. At the intersection of the Qiutoushan–Wanjiayao fault of
the Qilu system, the Yangjiashan fault of the Neocathaysian system and the Shizhuang
fault of NW trending, fractures develop and rocks are broken. Hot water gushes out of
bedrock along the tectonic fracture zone (Figure 2). The thermal anomaly of the Xijiabao
geothermal field in Huailai is revealed by the civilians’ well and hot water wells. The water
temperature is 42.5–60 ◦C. It is located on the northwest side of the intersection of the
Guangling–Langshan Great Fault in the east wing of the Qilu system and the NNE-trending
Huangjiachong hidden fault in the Neocathaysian system (Figure 2).
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3. Data Acquisition

The sampling area is located in the Houhaoyao geothermal field, Xijiabao geothermal
field and surrounding areas in Huailai County, Zhangjiakou City. A total of 64 samples
were collected, including atmospheric precipitation, surface river water samples, reservoir
water samples and 59 wellbore water samples (Figure 2). Temperature, pH, Eh and TDSs
were monitored on site. The samples were filtered on site with a 0.22 µm filter membrane
and collected in a 250 mL high-temperature-resistant PTFE bottle. Before sampling, the
PTFE bottle was rinsed three times with the water sample to be taken. Three bottles of water
samples were collected at each sampling point: one of which was added with premium
pure HNO3 to reduce the pH to below 1 for cation analysis; one was untreated for anion
and δD, δ18O isotope analysis; and one was retained as a spare. Among them, cations
such as K+, Na+, Ca2+ and Mg2+ were detected via the ICP-OES method; anions such as
HCO3

−, Cl−, SO4
2− and F− were analyzed through ion chromatography; and the balance

error of anions and cations was controlled within 3%. Hydrogen and oxygen isotope tests
were performed using a Thermo Scientific MAT 253 gas stable isotope mass spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA), and the error of hydrogen and oxygen
isotope analysis was ±0.5‰ (Table 1)

Table 1. Main water quality index and test method of geothermal fluids.

Serial Number Test Index Unit Test Site Test Method (Instrument)

1 pH None Field Portable Multi-parameter Fast Water Quality Analyzer
(HANNA-HI9828, Melrose, MA, USA)

2 TDS mg/L Field Portable Multi-parameter Fast Water Quality Analyzer
3 COD mg/L Field Portable Multi-parameter Fast Water Quality Analyzer
4 Total hardness mg/L Field Portable Multi-parameter Fast Water Quality Analyzer

5 Ca2+ mg/L Indoor Inductively Coupled Plasma Emission Spectrometer
(ICP-AES, Waltham, MA, USA)

6 K+ mg/L Indoor Inductively Coupled Plasma Emission Spectrometer
7 Na+ mg/L Indoor Inductively Coupled Plasma Emission Spectrometer
8 Mg2+ mg/L Indoor Inductively Coupled Plasma Emission Spectrometer

9 SO4
2− mg/L Indoor Ion Chromatograph

(ICP-1000, Waltham, MA, USA)
10 HCO3

− mg/L Indoor Ion Chromatograph
11 Cl− mg/L Indoor Ion Chromatograph
12 NH4

+ mg/L Indoor Ion Chromatograph

13 Fe mg/L Indoor Inductively Coupled Plasma Emission Spectrometer
Method (ICP-AES, Waltham, MA, USA)

14 Mn mg/L Indoor Inductively Coupled Plasma Mass Spectrometry
(ICP-MS, Waltham, MA, USA)

15 Cu mg/L Indoor Inductively Coupled Plasma Mass Spectrometry
16 Zn mg/L Indoor Inductively Coupled Plasma Mass Spectrometry

17 NO3
− mg/L Indoor Ion Chromatograph

(ICP-1000, Waltham, MA, USA)
18 NO2

− mg/L Indoor Ion Chromatograph
19 F− mg/L Indoor Ion Chromatograph
20 Pb mg/L Indoor Inductively Coupled Plasma Mass Spectrometry
21 As mg/L Indoor Inductively Coupled Plasma Mass Spectrometry

According to previous studies, the quality assurance and quality control were con-
trolled by method blanks, field duplicate samples and standard reference materials. The
relative percent difference for chemical parameters identified in paired duplicate samples
was all <10%. Blank samples were performed throughout all the experiments. To explicitly
evaluate the analytical precision, all samples were determined in triplicate. Precision,
expressed as relative standard deviation, was better than 10%.

The accuracy of the total analysis was assured using the certified values of the standard
reference materials. ICP-1000 requires water as a substrate, and ICP-AES and ICP-MS
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require dilute nitric acid as a substrate. Therefore, ICP-AES and ICP-MS tested elements
using the standard reference materials GNM-M33198-2013 (North Weiye Measurement
Group Co. LTD., Beijing, China).and GNM-M28212-2013. (North Weiye Measurement
Group Co. LTD., Beijing, China).Elements for ICP-1000 were tested using the standard
reference material GNM-M07283-2013 (North Weiye Measurement Group Co. LTD., Beijing,
China). HCO3

− was tested using the standard reference material BWZ7242-2016 (North
Weiye Measurement Group Co. LTD., Beijing, China).

The recoveries of Ca2+, K+, Na+, Mg2+, SO4
2−, Cl−, HCO3

−, NH4
+, Fe, Mn, Cu, Zn,

NO3
−, NO2

−, F−, Pb and As were 94.34, 101.23, 97.03, 90.29, 106.06, 954.03, 108.50, 95.90,
107.36, 98.77, 105.77, 101.80, 98.80, 101.00, 100.00%, 92.10 and 103.10%, respectively.

The groundwater in the area exhibits a temperature range of 12.4–82.0 ◦C, with a
spatial distribution that demonstrates a decreasing pattern centered around the Hou-
haoyao and Xijiabao geothermal fields. To effectively differentiate the geochemical
characteristics of geothermal fluids, we categorized all samples based on their tempera-
tures: high-temperature groundwater (HTG: >45 ◦C), medium-temperature groundwater
(MTG: 25–45 ◦C) and low-temperature groundwater (LTG: <25 ◦C). This temperature
grouping is only applicable to this study.

4. Results and Discussion
4.1. Hydrogeochemical Characteristics

The Houhaoyao geothermal field, in the south–central part of Zhuolu–Huailai Ceno-
zoic fault basin, is located at the intersection of the Dahenan–Chicheng deep fault and
Yuxian–Yanqing large fault. The underground hot water of the field spills out along the
intersection of NW and NE faults through gneisses and fused tuff, and then appears in
the Cenozoic pore aquifer. The average water temperature of geothermal wells is 49.5 ◦C,
and the highest water temperature is 82 ◦C. The geothermal water is mostly SO4-Na-type
water, while the underground cold water in the same area is HCO3-Ca-type water. The
geothermal water is weakly alkaline with a pH of 8.17–8.78.

The Xijiabao geothermal field is located northeast of the Huailai–Zhuolu Cenozoic
fault basin, north of the intersection of the Dahenan–Chicheng fault and Yuxian–Yanqing
fault. The heat storage rocks are Archaean gneiss and Yanshanian granite, and quaternary
sand and gravel also contain hot water. The middle- and high-temperature geothermal
fluids are mainly distributed in the central and northeastern parts of China, mainly
SO4-Na-type water, with the highest water temperature of 62 ◦C. The geothermal water
less than 25 ◦C is distributed in the southern margin region, which is the result of mixing
between the upwelling of deep hot water and the cold water near the surface. Most of
the geothermal water is of HCO3

−-Na type.
The temperature range of geothermal fluids in the area is 45–82 ◦C, with an average of

54.53 ◦C, and they are mainly distributed in the center of the designated area of Houhaoyao
and Xijiabao geothermal fields. The order of cation content is Na+ > Ca2+ > K+ > Mg2+, and
the order of anionic content is SO4

2− > Cl− > HCO3
−. The main hydrochemical type is SO4-

Na. The distribution of chemical parameters of the low-temperature groundwater samples
is obviously different from that of the high-temperature groundwater samples. The spatial
distribution of the low-temperature groundwater is far away from the central delineation
range of the geothermal field, and it is dominated by HCO3–Ca·Mg, HCO3·SO4-Na water
(Figures 3 and 4).

The total dissolved solids (TDSs) of geothermal fluid is 619–932 mg/L, while the
TDSs of shallow groundwater is only 427 mg/L. The TDSs of geothermal fluid in the
northeastern and central regions are higher than those in the southern marginal regions.
The total hardness varies from 31 to 337 mg/L, and the total hardness of geothermal fluid
in the central region is lower than that in the marginal region.
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In geothermal fluids, SO4
2− and Cl− concentrations have the greatest correlation

with TDSs, and the correlation coefficients are 0.96 and 0.95, respectively. The correlation
coefficient between Na+ and K+ concentrations and TDSs is more than 0.85. This indicates
that the dissolution of albite, potash feldspar and related sulfate minerals is the main factor
leading to the excessive TDSs of geothermal fluids. The average concentration of Na+

was 127.0 mg/L, and the correlation coefficients with Cl−, SO4
2− and F− were all higher

than 0.9, while the correlation coefficients with Mg2+ concentration were negative. This
indicates that the dissolution of salt rock occurred during the migration of geothermal fluid.
The average concentration of K+ was 3.23 mg/L, which was highly correlated with SO4

2−,
HSiO3

− and F−, indicating that the dissolution of potash feldspar occurred during the
migration (Figure 5).
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The hydrochemical characteristics of shallow surface water show a similar ion content
(Figures 3–5). The content of Mg2+ ions is much higher than that of groundwater, and the
hydrochemical type is Na·Mg–Cl·HCO3·SO4. Compared with reservoir water, river water
is closer to groundwater (Figures 4 and 5), indicating that its chemical characteristics may
be affected by groundwater recharge to a certain extent.

Based on the hydrochemical analysis of the temperature-based groups, the distribution
characteristics of TDSs and various ion contents can be inferred from the deep circulation of
geothermal water in this area and the characteristics of mixing and interaction with shallow
cold water. The low-temperature groundwater samples are close to the dolomite. Combined
with the distribution characteristics of dolomite, chert band dolomite and argillaceous
dolomite in the strata of the study area, the source of the partial dolomite dissolution of
HCO3

− in shallow cold water is explained (Figure 6). High-temperature groundwater is
found near anhydrite, and the medium-temperature groundwater is affected by the mixing
of the two; additionally, its distribution is wide.

For anions with the highest content in high-temperature groundwater in this region,
there are generally three sources of SO4

2−; some may come from precipitation (atmospheric
origin), while others from the sulfate dissolution of gypsum or from the oxidation of
reduced sulfur minerals such as pyrite [26]. Thus, it may indicate the source of sulfate
gypsum dissolution (Figure 6a).
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Generally, the dissolution of gypsum will increase the content of SO4
2− and Ca2+ ions

in groundwater by Ca/SO4 to be equal to 1. However, the proportion of Ca/SO4 in the high-
temperature sample is less than 1, which is also less than that of the low-temperature and
high-temperature groundwater (Figure 6b). Combined with the significantly low content
of Mg2+ in high-temperature geothermal water, it is speculated that the reason may be the
precipitate of carbonate, dolomite and other minerals that leads to the significant decrease
in Ca ion concentration. This prediction is consistent with the carbonate precipitation
and alteration phenomenon of geothermal water in hot fields. The Eh values of high-
temperature groundwater (−8.69–243 mV) are all negative, indicating that the groundwater
is in a reducing environment, which is conducive to the transformation of SO4

2− into H2S
by sulfate-reducing bacteria [27]:

2CH2O + SO2−
4 → H2S + 2HCO−

3 (1)

The organic carbon (CH2O) contained in organic matter is oxidized by HCO3
− and

SO4
2−, and the H2S generated via reduction does not appear in large quantities in this

study area, mainly because H2S will be further oxidized and combined with the Fe in the
formation to produce iron sulfide minerals (FeS, FeS2, etc.) or other sulfide minerals, or to
organic sulfur forms that bind to organic matter [28,29].

The concentration of F− in high-temperature groundwater is high (4.59–10.4 mg/L,
with an average of 8.06 ± 0.36 mg/L), which may be related to the contact with fluorine-
containing minerals in the process of groundwater migration (Figures 5 and 6) such as
fluorapatite, fluorite, phlogopite and so on. In addition, carbonate precipitation in high-
temperature geothermal water can reduce Ca2+ concentration, increase fluorite dissolution
and produce fluorine enrichment [30]. Combined with the significantly high content of
SO4

2−, F− and H2SiO3 (average value of 67.04 ± 3.63 mg/L) in the abovementioned high-
temperature groundwater (Figures 5 and 6), previous studies believe that the emergence of
SO4

2− is formed by deep H2S dissolved water, and the emergence of F− is caused by the
influence of magma or hydrothermal fluid on hot water. Furthermore, H2SiO3 is generally
believed to be related to SiO2 during magmatic migration. All of the above indicate that
the formation of geothermal water is related to hydrothermal activity caused by deep
magmatic source.
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For the highest concentrations of Na+, the main source of Na/K-silicate minerals
(albite and potash feldspar) in high-temperature groundwater may be the dissolution of
Na/K-silicate minerals [21]:

2NaAlSi3O8 + 3H2O + 2CO2 → Al2(Si2O5)
(

OH)4 + 4SiO2 + 2Na+ + 2HCO−
3 (2)

2KAlSi3O8 + 3H2O + 2CO2 → Al2(Si2O5)
(

OH)4 + 4SiO2 + 2K+ + 2HCO−
3 (3)

The ratio of (Na+K)/HCO3 in low-temperature water ranged from 0.20 to 3.16 mmol:mmol
and fluctuated around 1 mmol:mmol, indicating that the dissolution of albite and potassium
feldspar contributed significantly to HCO3

−. The (Na + K)/HCO3 ratio (4.86–24.34 mmol:mmol)
of high-temperature groundwater well above 1 is another evidence for the recrystallization
of the carbonate mentioned above (Figure 7a). The regression analysis of Na+ and Cl− of
all groundwater samples shows that the slope of Na+/Cl− = 4.38 (Figure 7b). The results
indicate that the chloride ions contributed less to the geothermal water by locally retained
saline or magma, because it is generally believed that magma can provide a large amount of
chloride ions, and the dissolution of chlorine-containing minerals may be the main source
of Cl− [18]. In addition, the linear fitting of groundwater sample also explains the mixed
interaction between geothermal high-temperature water and shallow cold water.
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geothermal water) of geothermal fluids.

4.2. Source of Supply

The hydrogen and oxygen isotope characteristics of groundwater can be used to
judge the origin of groundwater, determine the recharge conditions of groundwater, the
relationship between atmospheric precipitation and surface water and groundwater,
and understand the circulation path of groundwater [22,31–33]. The mean δ2Hvsmow
values of low-, medium- and high-temperature groundwater in the region showed a
decreasing trend: −77.39 ± 1.05‰ > −83.06 ± 0.86‰ > −86.99 ± 0.8‰. The mean
δ18Ovsmow distribution of groundwater at low, medium and high temperature gradually
decreased: −10.31 ± 0.15‰ > −11.06 ± 0.11‰ > −11.55 ± 0.1‰.

A hydrogen and oxygen isotope fitting curve of the geothermal fluid in the area shows
that δ2H = 8.20δ18O + 7.83, which is parallel to the global atmospheric precipitation line
obtained by the International Atomic Energy: δ2H = 8.17δ18O + 10.56 [34]. In addition, hy-
drogen and oxygen isotopes (δ18Ovsmow = −7.3 ‰, δ2Hvsmow = −52.9 ‰) of local meteoric
water samples fall on the groundwater fitting curve (Figure 8), indicating that local ground-
water is the main source of meteoric water [31]. The origin of atmospheric precipitation
is also verified by the gas composition contained in geothermal fluids. According to the
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preliminary investigation of geothermal resources, N2 (97–99%) is the main gas escaping
from aquifers in Houhaoyao and Xijiabao geothermal fields in Zhangjiakou, with a small
amount of O2 (1–3%), indicating the close relationship between geothermal fluids and
atmospheric precipitation.
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The variation of δ2Hvsmow in groundwater mainly depends on recharge temperature
and elevation, except for a few cases affected by the mixing mechanism. The variation of
δ18Ovsmow value is due to the isotope exchange between water and rocks (such as oxygen-
bearing rocks, limestones and silicates) during the process of water–rock interaction [8,35].
The samples of high-temperature groundwater and low-temperature groundwater fell in
the same straight line, and did not show the phenomenon of “oxygen drift”, indicating
that the proportion of groundwater that had strong water–rock interaction with oxygen-
bearing surrounding rock and was laterally fed from a long distance through underground
runoff was very low [36] (Figure 8). The phenomenon of “oxygen drift” is common in
the hot water of high-temperature geothermal fields, which may also indicate that the
heat storage temperature is not high, isotope exchange in water and rock is limited, or the
surrounding rock itself is not high in 18O content [27]. The δ2Hvsmow and δ18Ovsmow of
low-temperature groundwater are relatively more enriched than those of high-temperature
groundwater samples, which indicates that the hot water is not derived from the meteoric
precipitation similar to the shallow cold water, but from the meteoric precipitation with a
higher elevation.

The higher the elevation, the lower the temperature and the smaller the δ2Hvsmow
and δ18Ovsmow [32]. The medium-temperature groundwater sample is in the mid-
dle of the linear fitting curve due to the mixing between high-temperature and low-
temperature groundwater (Figure 8). In addition, the reservoir samples in surface
water (δ2Hvsmow = −37.57 ± 0.35 ‰, δ18Ovsmow = −3.33 ± 0.09 ‰) show that the sta-
ble isotopes of hydrogen and oxygen are affected by evaporation. Fluvial samples
(δ2Hvsmow = −57.2 ‰, δ18Ovsmow = −7.1 ‰) were distributed between precipitation
and groundwater, but deviated from the right of the fitting curve, suggesting that the
fluvial samples were affected by both mixing and evaporation with groundwater.

The 87Sr/86Sr values of surface water and shallow groundwater in the area are higher
(>0.710), and the difference is small, indicating that the strontium isotope of surface water
is controlled by terrigenous clastic karst solution, and regional homogenization occurs
(Figure 9). 87Sr/86Sr in the geothermal fluids of Houhaoyao and Xijiabao geothermal
fields increased from north to south (<0.710), and the strontium isotope compositions of
different hot spring areas were significantly different, indicating that geothermal water
circulation paths of different geothermal systems were different from that of shallow



Water 2024, 16, 433 11 of 17

groundwater. Therefore, the difference of strontium isotope composition in hot water
reflects the difference in the mixing degree with shallow groundwater.
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4.3. Supply Elevation Estimation

As the elevation increases, the temperature decreases and water vapor condenses
continuously to produce precipitation. Isotope fractionation results in isotope dilution
during the rising process of the cloud cluster, forming an elevation effect [37]. The recharge
elevation can be inferred from the hydrogen and oxygen isotopes of groundwater:

H =
δG − δP

k
+ h (4)

where δG: δ18O in samples; δP: δ18O in meteoric precipitation, δ18Ovsmow = −7.3 ‰; k:
elevation gradient of δ18O in precipitation, −2.076‰/100 m; h: sampling point elevation (m).

The recharge elevation range of the high-temperature groundwater is 1580–2305 m,
which is basically consistent with the heights of the mountainous areas in the northwest
and southeast of the geothermal field. It is speculated that the geothermal water recharge
originates from the mountainous areas in the northwest and southeast of the study area, and
circulates to the crust along the deep faults, forming shallow geothermal anomalies in the
hot field. The recharge elevation of high-temperature groundwater is slightly larger than
the corresponding range of low-temperature groundwater recharge elevation (1545–2197 m,
1291–2160 m). However, it is worth noting that in the analysis of geothermal water recharge
area, the age of local geothermal water needs to be further analyzed [27].

The correction coefficients were calculated by comparing Pearson isotope mixing
model with the matrix exchange model (Fontes–Garnier model) [38]:

q =
δ13CDIC − δ13Ccarb

δ13Csoil − ε13CDIC−CO2 − δ13Ccarb
(5)

q =
mDICmeas − mDICcard + mDICCO2−exch

mDICmeas
(6)

where δ13CDIC: 13C in groundwater; δ13Csoil: 13C of CO2 in soil, −23‰; δ13Ccarb: 13C in
calcite, 0‰; ε13CDIC−CO2: enrichment coefficient between inorganic carbon and soil CO2.
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The shallow groundwater (cold water) is generally younger than 1000 a B.P. The
geothermal water with higher temperature is generally older than 8354 A B.P (Figure 10).
The groundwater in geothermal wells in the northwest is obviously older than that in the
southeast. The results indicate that the deep underground hot water migrated from north-
west to southeast after upwelling near the surface and mixed with shallow groundwater
during the migration process.
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4.4. Thermal Reservoir Equilibrium State and Thermal Reservoir Temperature Estimation

Cationic temperature scale and SiO2 temperature scale are commonly used to estimate
the heat storage temperature [31]. The Na-K-Mg ternary diagram can provide the correla-
tion between the Na-K temperature scale and K-Mg temperature scale of geothermal water.
The information about the equilibrium state between geothermal water and mineral sets
including albitite, potash feldspar, muscovite and plagioclase is integrated [39]. Therefore,
this study uses Na-K-Mg ternary diagram to judge the water–rock equilibrium state of the
water sample. If the water sample is in the immature region, it is not suitable to estimate
the heat storage temperature via a cationic temperature scale. Based on the physical and
chemical characteristics of water samples in a complete equilibrium region and partial
equilibrium region, the cationic temperature scale is a reasonable choice.

All the low-temperature groundwater and most of the medium-temperature ground-
water are in the immature zone, only the high-temperature groundwater with temperatures
greater than 45 ◦C and some medium-temperature groundwater samples are in the partial
mature zone (Figure 11), so the cationic temperature scale can be used. In this study, a
K-Mg geothermal temperature scale is used, because it has a high estimation effect on heat
storage temperature >150 ◦C [40]:

tK−Mg(°C) =
4410

14 − lg
(

K2/Mg
) − 273.15 (7)

where t: temperature; K, Mg: ion mass concentration, mg/L.
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The heat storage temperature of the high-temperature geothermal fluid in the mature
water area is about 65.30–104.96 ◦C, with an average of 78.83 ◦C. The immature water
may be disturbed by the interaction of cold water mixing during the rising process, which
destroys the original mineral equilibrium state.

Quartz sandstone, feldspar quartz sandstone and shale are distributed in the area,
and chalcedonization occurs under the action of hydrothermal alteration. Therefore, the
thermal storage temperature of geothermal water is estimated by using a SiO2 geothermal
temperature scale [41]:

tSiO2(°C) =
1309

[5.19 − lg(SiO2)]
− 273.15 (8)

where t: thermal storage temperature; SiO2: mass concentration of dissolved SiO2, mg/L.
The heat storage temperature estimated using the SiO2 temperature scale is

82.19–121.30 ◦C, with an average value of 102.22 ◦C, and is slightly higher than the
estimated value of the K-Mg geothermal temperature scale.

4.5. Estimation of Geothermal Water Circulation Depth

In the north and east of the later Haoyao and Xijiabao hot fields, there exists a huge
thickness of the upper Jurassic Zhangjiakou Formation (J3z) fused tuff, which formed on
the fold-hardened basement in the late Mesozoic era with strong faulting activity, forming
the basement of the basin, which may have a certain relationship with the formation of hot
water. Each group of fault structures is developed in this area. Some deep and large faults
cut deep into the upper mantle, extend far, and have the characteristics of multi-period
activity. They form a group of fracture zones with equal strike, which are good channels
for connecting the upper mantle and various rocks. Through the carrier of water, the
magmatic waste heat upwelled along the fracture zone and diffused along the connected
faults, forming geothermal anomaly areas in the relatively closed area.

The following equation is used to estimate the circulation depth of geothermal water [42]:

H = K × (tr − tc) + h (9)

where H is the groundwater circulation depth (m); K is the low temperature gradient, at
2.5 ◦C/100 m; tr is thermal storage temperature, whereby the mean values of the above
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two methods are selected 90.53 ◦C; tc is the perennial mean temperature in the recharge
area, at 9.6 ◦C; and h is the depth of the thermostatic zone, at 25 m.

The circulating depth of geothermal fluid in two geothermal fields can reach more than
3200 m. The depth of geothermal fluid circulation in this area can be indirectly confirmed
by the visible distance of the Guangling–Langshan fault in the south of Retian, which is
more than 1500 m [23].

4.6. Indication of Geothermal Origin

Xijiabao and Houhaoyao geothermal fields share the same geothermal geological
background: DahaiTuo complex granitic body and the surrounding secondary small rock
body were formed in the late Yanshanian magmatic activity. The compound intersection of
deep and large faults determines the distribution of geothermal fields (geothermal anomaly
areas and points). The derived sub-fault structure controls the morphological characteristics
of geothermal fields (geothermal anomaly areas and points). Magmatic activity determines
the temperature at which groundwater hot water is produced. The neotectonic movement
promoted the emergence of hot water.

Meteoric water infiltrates underground and the fault structure is the main channel
connecting the deep heat source and water source. In the deep circulation process of
geothermal fluids, the fluid receives heat conduction and accumulation from heat flow
deep underground and continuously upwells from a reduction environment to bedrock
fissure heat storage in a shallow oxidation environment, either through a thermal fracture
zone or rock mass contact zone. Gypsum dissolution or H2S oxidation from a deep magma
source results in a high content of SO4

2− in geothermal fluids. In the process of migration,
some of the thermal fluids well up and connect with the shallow aquifer, forming a recharge
to the quaternary pore aquifer, then disperse, mix and interact with the shallow cold water,
eventually leading to a temperature rise in the Cenozoic pore aquifer within a certain
range alongside the formation of shallow pore heat reservoir. The changes in temperature
gradient, ion concentration and REDOX conditions are accompanied by the dissolution
of feldspar and the precipitation of carbonate and dolomite (Figure 12). Therefore, the
fluid chemical characteristics of middle–low-temperature geothermal fields reflect the
environmental formation and development of geothermal resources to a certain extent.
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5. Conclusions

Based on the sample collection and analysis of the typical geothermal field’s thermal
fluid, regional background groundwater and surface water in the coupled basin in the
Yanshan orogenic belt, the hydrochemical characteristics and genetic mechanism of the
uplifted mountain belt’s thermal storage geothermal system are identified. The results of
the geothermal chemical temperature scale show that the storage temperature is between
82 and 121.30 ◦C, and the depth of geothermal water circulation is more than 3200 m. The
main source of geothermal fluid is atmospheric precipitation. The hydrochemical charac-
teristics of geothermal fluids indicate that, in the process of deep circulation, atmospheric
precipitation receives heat conduction and accumulation from the ground’s heat flow in
deep formation, and then flows into the bedrock fissure heat reservoir through the thermal
fracture zone or the rock mass contact zone, and finally receives conduction and convection
heat accumulation during migration. Some hot water upwelling is connected with the
shallow aquifer, mixes with cold water, and carries out heat exchange, forming a shallow-
pore-type heat storage. In the bedrock bulge area, due to the high thermal conductivity, the
heat is absorbed via the thermal refraction effect. The research results can provide basic
support and services for the exploitation and utilization of local geothermal resources.
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