Study of Chlorella sorokiniana Cultivation in an Airlift Tubular Photobioreactor Using Anaerobic Digestate Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modular Photobioreactor Design
- A pH electrode located at the downcomer tube;
- Two dissolved oxygen electrodes (Greisinger OXY 3610 MP), placed at the riser before the air supply port and close to the endpoint of the downcomer prior the horizontal unit;
- A K-type temperature sensor placed at the downcomer.
2.2. Culture Media and PBR Operation
2.3. Analytical Measurements
2.4. Estimation of Kinetic Parameters
2.5. Statistical Analysis
3. Results and Discussion
3.1. Properties of Medium Substrate
3.2. Batch Kinetic Studies of C. sorokiniana
3.3. C. sorokiniana Kinetics under Continuous Operation of the Air-Lift Photobioreactor
3.4. Troubleshooting of the Airlift Photobioreactor Operation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Term | Meaning |
AAS | Atomic absorption spectroscopy |
ADE | Anaerobic digestion effluent |
AP | Average productivity |
ATPBR | Airlift tubular photobioreactor |
CC | the concentration of the corresponding component added to the culture at a certain time |
CF | the nutrient concentration in the culture medium at the end of a specific period (or the day that the measured concentration is zeroed) |
CI | the nutrient concentration in the culture medium at the beginning of a specific period |
CΕ | the change in the concentration of the corresponding component due to condensation |
COD | Chemical oxygen demand |
DCW | Dry cell weight |
DCWC | dry cell mass withdrawn from the bioreactor by overflow |
DCWF | the final biomass concentration at the corresponding time |
DCWI | the initial biomass concentration at the corresponding time |
DCWp | Produced microalgae biomass/dry cell weight |
DCWΕ | the change in the biomass concentration due to condensation |
DO | Dissolved oxygen |
ID | Intermal diameter |
IRADE | the input rate of the ADE into the reactor |
IRi | Nutrient input rate |
N/P | Nitrogen/phosphorus |
PLC | Programmable logic controller |
PMMA | Polymethyl methacrylate |
PR | Biomass production rate |
REi | Nutrient recovery efficiency |
RRi | Nutrient recovery rate |
T | Temperature |
TN | Total nitrogen |
VI | the volume of the bioreactor |
Δt | the elapsed time of a specific period |
HF | the final time slots during a specific period |
HI | the initial time slots during a specific period |
Χ | the number of times that continuous operation was turned off (8 h darkness on a daily basis) |
References
- Ye, Y.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Zhang, X.; Zhang, Y.; Liang, S. Nutrient recovery from wastewater: From technology to economy. Bioresour. Technol. Rep. 2020, 11, 100425. [Google Scholar] [CrossRef]
- European Commission. Proposal for a Directive of the European Parliament and of the Council Concerning Urban Wastewater Treatment (Recast), COM (2022) 541 Final 2022/0345 (COD); European Commission: Brussels, Belgium, 2022; Available online: https://environment.ec.europa.eu/system/files/2022-10/Proposal%20for%20a%20Directive%20concerning%20urban%20wastewater%20treatment%20%28recast%29.pdf (accessed on 27 October 2022).
- Li, K.; Liu, Q.; Fang, F.; Luo, R.; Lu, Q.; Zhou, W.; Huo, S.; Cheng, P.; Liu, J.; Addy, M.; et al. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresour. Technol. 2019, 291, 121934. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef]
- Osorio-Reyes, J.G.; Valenzuela-Amaro, H.M.; Pizaña-Aranda, J.J.P.; Ramírez-Gamboa, D.; Meléndez-Sánchez, E.R.; López-Arellanes, M.E.; Castañeda-Antonio, M.D.; Coronado-Apodaca, K.G.; Gomes Araújo, R.; Sosa-Hernández, J.E.; et al. Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications. Mar. Drugs 2023, 21, 93. [Google Scholar] [CrossRef] [PubMed]
- Uggetti, E.; Sialve, B.; Latrille, E.; Steyer, J.P. Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microalgae productivity. Bioresour. Technol. 2014, 152, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, J.; Herbes, C.; Nelles, M. Biogas digestate marketing: Qualitative insights into the supply side. Resour. Conserv. Recycl. 2015, 104, 152–161. [Google Scholar] [CrossRef]
- Singh, M.; Reynolds, D.L.; Das, K.C. Microalgal system for treatment of effluent from poultry litter anaerobic digestion. Bioresour. Technol. 2011, 102, 10841–10848. [Google Scholar] [CrossRef]
- Zhu, L.; Li, Z.; Hiltunen, E. Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: Effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnol. Biofuels 2018, 11, 183. [Google Scholar] [CrossRef]
- Fret, J.; Roef, L.; Diels, L.; Tavernier, S.; Vyverman, W.; Michiels, M. Combining medium recirculation with alternating the microalga production strain: A laboratory and pilot scale cultivation test. Algal Res. 2020, 46, 101763. [Google Scholar] [CrossRef]
- Marbelia, L.; Bilad, M.R.; Passaris, I.; Discart, V.; Vandamme, D.; Beuckels, A.; Muylaert, K.; Vankelecom, I.F. Membrane photobioreactors for integrated microalgae cultivation and nutrient remediation of membrane bioreactors effluent. Bioresour. Technol. 2014, 163, 228–235. [Google Scholar] [CrossRef]
- Peter, A.P.; Koyande, A.K.; Chew, K.W.; Ho, S.H.; Chen, W.H.; Chang, J.S.; Krishnamoorthy, R.; Banat, F.; Show, P.L. Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges. Renew. Sustain. Energy Rev. 2022, 154, 111852. [Google Scholar] [CrossRef]
- Psachoulia, P.; Schortsianiti, S.-N.; Lortou, U.; Gkelis, S.; Chatzidoukas, C.; Samaras, P. Assessment of Nutrients Recovery Capacity and Biomass Growth of Four Microalgae Species in Anaerobic Digestion Effluent. Water 2022, 14, 221. [Google Scholar] [CrossRef]
- Molina, E.; Fernández, J.; Acién, F.G.; Histi, Y. Tubular photobioreactor design for algal cultures. J. Biotechnol. 2001, 92, 113–131. [Google Scholar] [CrossRef] [PubMed]
- Bahadur, A.; Zubair, M.; Khan, M.B. Design, construction and evaluation of solarized airlift tubular photobioreactor. J. Phys. Conf. Ser. 2013, 439, 012036. [Google Scholar] [CrossRef]
- Choi, H.J.; Lee, S.M. Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater. Bioprocess Biosyst. Eng. 2015, 38, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J. Growth optimisation of microalga mutant at high CO2 concentration to purify undiluted anaerobic digestion effluent of swine manure. Bioresour. Technol. 2015, 177, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Franchino, M.; Comino, E.; Bona, F.; Riggio, V.A. Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere 2013, 92, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Marjakangas, J.M.; Chen, C.-Y.; Lakaniemi, A.-M.; Puhakka, J.A.; Whang, L.-M.; Chang, J.-S. Selecting an indigenous microalgal strain for lipid production in anaerobically treated piggery wastewater. Bioresour. Technol. 2015, 191, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, W.; Chen, L.; Wang, J.; Liu, T. The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour. Technol. 2013, 128, 745–750. [Google Scholar] [CrossRef]
- Lage, S.; Toffolo, A.; Gentili, F.G. Microalgal growth, nitrogen uptake and storage, and dissolved oxygen production in a polyculture based-open pond fed with municipal wastewater in northern Sweden. Chemosphere 2021, 276, 130122. [Google Scholar] [CrossRef]
- Solovchenko, A.E.; Ismagulova, T.T.; Lukyanov, A.A.; Vasilieva, S.G.; Konyukhov, I.V.; Pogosyan, S.I.; Lobakova, E.S.; Gorelova, O.A. Luxury phosphorus uptake in microalgae. J. Appl. Phycol. 2019, 31, 2755–2770. [Google Scholar] [CrossRef]
- Solovchenko, A.; Khozin-Goldberg, I.; Selyakh, I.; Semenova, L.; Ismagulova, T.; Lukyanov, A.; Mamedov, I.; Vinogradova, E.; Karpova, O.; Konyukhov, I.; et al. Phosphorus starvation and luxury uptake in green microalgae revisited. Algal Res. 2019, 43, 101651. [Google Scholar] [CrossRef]
- Su, Y. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Sci. Total Environ. 2021, 762, 144590. [Google Scholar] [CrossRef]
- Yaakob, M.A.; Mohamed, R.M.S.R.; Al-Gheethi, A.; Aswathnarayana, G.R.; Ambati, R.R. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview. Cells 2021, 10, 393. [Google Scholar] [CrossRef]
- Collos, Y.; Harrison, P.J. Acclimation and toxicity of high ammonium concentrations to unicellular algae. Mar. Pollut. Bull. 2014, 80, 8–23. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.; Wang, Z.; Zhouyang, S.; Li, H.; Xie, Y.; Wang, Y.; Zheng, Y.; Li, Q. Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry. Bioresour. Technol. 2016, 221, 385–393. [Google Scholar] [CrossRef]
- Kumar, A.; Bera, S. Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresour. Technol. Rep. 2020, 12, 100584. [Google Scholar] [CrossRef]
- Perez-Garcia, O.; Escalante, F.M.E.; de-Bashan, L.E.; Bashan, Y. Heterotrophic Cultures of Microalgae: Metabolism and Potential Products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; Liu, Y.; Hao, R.; Li, G.; Zhou, Y.; Dong, R. Biomass Production and Nutrients Removal by a New Microalgae Strain Desmodesmus sp. in Anaerobic Digestion Wastewater. Bioresour. Technol. 2014, 161, 200–207. [Google Scholar] [CrossRef]
- Zheng, H.; Wu, X.; Zou, G.; Zhou, T.; Liu, Y.; Ruan, R. Cultivation of Chlorella vulgaris in Manure-Free Piggery Wastewater with High-Strength Ammonium for Nutrients Removal and Biomass Production: Effect of Ammonium Concentration, Carbon/Nitrogen Ratio and pH. Bioresour. Technol. 2019, 273, 203–211. [Google Scholar] [CrossRef]
- Kobayashi, N.; Noel, E.A.; Barnes, A.; Watson, A.; Rosenberg, J.N.; Erickson, G.; Oyler, G.A. Characterization of Three Chlorella Sorokiniana Strains in Anaerobic Digested Effluent from Cattle Manure. Bioresour. Technol. 2013, 150, 377–386. [Google Scholar] [CrossRef]
- Min, M.; Wang, L.; Li, Y.; Mohr, M.J.; Hu, B.; Zhou, W.; Chen, P.; Ruan, R. Cultivating Chlorella sp. in a Pilot-Scale Photobioreactor Using Centrate Wastewater for Microalgae Biomass Production and Wastewater Nutrient Removal. Appl. Biochem. Biotechnol. 2011, 165, 123–137. [Google Scholar] [CrossRef]
- Ziganshina, E.E.; Bulynina, S.S.; Ziganshin, A.M. Growth characteristics of Chlorella sorokiniana in a photobioreactor during the utilization of different forms of nitrogen at various temperatures. Plants 2022, 11, 1086. [Google Scholar] [CrossRef] [PubMed]
- Pulgarin, A.; Decker, J.; Chen, J.; Giannakis, S.; Ludwig, C.; Refardt, D.; Pick, H. Effective removal of the rotifer Brachionus calyciflorus from a Chlorella vulgaris microalgal culture by homogeneous solar photo-Fenton at neutral pH. Water Res. 2022, 226, 119301. [Google Scholar] [CrossRef] [PubMed]
- Forehead, H.I.; O’Kelly, C.J. Small doses, big troubles: Modeling growth dynamics of organisms affecting microalgal production cultures in closed photobioreactors. Bioresour. Technol. 2013, 129, 329–334. [Google Scholar] [CrossRef]
- Carney, L.T.; Lane, T.W. Parasites in algae mass culture. Front. Microbiol. 2014, 5, 278. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, L.; Liu, J.; Lin, W. Botanical pesticides as potential rotifer-control agents in microalgal mass culture. Algal Res. 2014, 4, 62–69. [Google Scholar] [CrossRef]
- Zhu, Z.; Jiang, J.; Fa, Y. Overcoming the Biological Contamination in Microalgae and Cyanobacteria Mass Cultivations for Photosynthetic Biofuel Production. Molecules 2020, 25, 5220. [Google Scholar] [CrossRef]
- Marcial, H.S.; Hagiwara, A. Effect of diazinon on life stages and resting egg hatchability of rotifer Brachionus plicatilis. Hydrobiologia 2007, 593, 219–225. [Google Scholar] [CrossRef]
- Sarma, S.S.S.; Nandini, S.; Flores, J.L.G. Effect of Methyl Parathion on the Population Growth of the Rotifer Brachionus patulus (O. F. Müller) under Different Algal Food (Chlorella vulgaris) Densities. Ecotox Environ. Safe 2001, 48, 190–195. [Google Scholar] [CrossRef]
- Van Ginkel, S.W.; Igou, T.; Hu, Z.; Narode, A.; Cheruvu, S.; Doi, S.; Johnston, R.; Snell, T.; Chen, Y. Taking advantage of rotifer sensitivity to rotenone to prevent pond crashes for algal-biofuel production. Algal Res. 2015, 10, 100–103. [Google Scholar] [CrossRef]
- Park, S.; Van Ginkel, S.W.; Pradeep, P.; Igou, T.; Yi, C.; Snell, T.; Chen, Y. The Selective Use of Hypochlorite to Prevent Pond Crashes for Algae-Biofuel Production. Water Environ. Res. 2016, 88, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, V.; Van Ginkel, S.; Park, S.; Igou, T.; Yi, C.; Fu, H.; Johnston, R.; Snell, T.; Chen, Y. Use of Copper to Selectively Inhibit Brachionus calyciflorus (Predator) Growth in Chlorella kessleri (Prey) Mass Cultures for Algae Biodiesel Production. Int. J. Mol. Sci. 2015, 16, 20674–20684. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.K.; Dunn, G.P.; Passero, M.; Feris, K.P. Free ammonia offers algal crop protection from predators in dairy wastewater and ammonium-rich media. Bioresour. Technol. 2017, 243, 724–730. [Google Scholar] [CrossRef]
- Bentley, C.D.; Carroll, P.M.; Watanabe, W.O.; Riedel, A.M. Intensive rotifer production in a pilot-scale continuous culture recirculating system using nonviable microalgae and an ammonia neutralizer. J. World Aquacult. Soc. 2008, 39, 625–635. [Google Scholar] [CrossRef]
- de Araujo, A.B.; Hagiwara, A.; Snell, T.W. Effect of unionized ammonia, viscosity and protozoan contamination on reproduction and enzyme activity of the rotifer Brachionus rotundiformis. In Rotifera IX, Proceedings of the IXth International Rotifer Symposium, Khon Kaen, Thailand, 16–23 January 2000; Springer: Amsterdam, The Netherlands, 2000; pp. 363–368. [Google Scholar]
Composition (mg/L) | ADE_1 | ADE_2 | 3% ADE_1 | 5% ADE_1 | 5% ADE_2 | 7% ADE_2 | BG-11 |
---|---|---|---|---|---|---|---|
N-NH4 | 3536 ± 36 | 2310 ± 42 | 107 ± 1.08 | 175.4 ± 1.8 | 115 ± 2.1 | 150 ± 2.94 | - |
N-NO3 | 92 ± 8.1 | 37.2 ± 3.7 | 2.77 ± 0.24 | 4.6 ± 0.41 | 1.86 ± 0.19 | 2.65 ± 0.26 | 247.84 |
TN * | 3920 ± 66 | 2839 ± 54 | 117.6 ± 1.98 | 195 ± 3.3 | 146.8 ± 2.7 | 192 ± 3.78 | 247.84 |
P | 81.4 ± 5.8 | 32.3 ± 3.7 | 2.1 ± 0.17 | 4.2 ± 0.29 | 1.81 ± 0.19 | 2.19 ± 0.26 | 5.50 |
Organic N | 292 ± 21.9 | 491.8 | 7.83 ± 0.68 | 15 ± 1.1 | 29.94 ± 5.0 | 39.35 ± 6.98 | - |
COD | 24,200 ± 153 | 14,209 ± 76 | 726 ± 4.59 | 1210 ± 7.65 | 736 ± 3.8 | 968 ± 5.32 | - |
Ca | 369 ± 3.1 | 1310 ± 4.7 | 11.07 ± 0.09 | 18.45 ± 0.16 | 65.5 ± 0.24 | 91.7 ± 0.33 | 9.81 |
Fe | 54 ± 1.4 | 142 ± 2.8 | 1.62 ± 0.04 | 2.71 ± 0.07 | 7.1 ± 0.14 | 9.94 ± 0.2 | 1.28 |
Mg | 225 ± 5.3 | 200 ± 3.6 | 6.75 ± 0.16 | 11.25 ± 0.27 | 10 ± 0.18 | 14 ± 0.25 | 6.98 |
Mn | 6.33 ± 0.35 | 17.4 ± 1.29 | 0.19 ± 0.01 | 0.32 ± 0.02 | 0.87 ± 0.06 | 1.21 ± 0.09 | 0.50 |
Na | 1884.6 ± 4.5 | 1130 ± 4.3 | 56.54 ± 0.14 | 94.23 ± 0.23 | 56.5 ± 0.22 | 79.1 ± 0.3 | 212.28 |
Cl | 1633.6 ± 5.9 | 2762 ± 3.6 | 49.01 ± 0.18 | 81.68 ± 0.3 | 138.1 ± 0.18 | 193.34 ± 0.25 | 18.02 |
Κ | 3161 ± 2.7 | 2930 ± 3.9 | 94.83 ± 0.08 | 158.05 ± 0.14 | 146.5 ± 0.2 | 205.1 ± 0.27 | 13.70 |
Cu | 2 ± 0.03 | 6.6 ± 0.01 | 0.06 ± 0.00 | 0.10 ± 0.00 | 0.33 ± 0.00 | 0.46 ± 0.00 | 0.02 |
Experiment | Cultivation Medium | ADE Concentration | Pretreatment | Ν/P |
---|---|---|---|---|
1 | BG-11 | - | - | 45 |
2 | ADE_1 | 3% | - | 41 |
3 | ADE_1 | 5% | - | 10.3 |
4 | ADE_2 | 5% | UFM | 10.5 |
5 | ADE_2 | 7% | UFM | 10.9 |
Nutrient Medium | ADE Conc. | Initial N-NH4 (mg/L) | Max DCW (g/L) | RE N-NH4 (%) | RE P-PO4 (%) | RE TN (%) | Ave. RR NH4 (mg/L/d) | AP (mg/L/d) | Ave. RR PO4 (mg/L/d) |
---|---|---|---|---|---|---|---|---|---|
ADE_1 | 3% | 95.2 ± 1.23 | 1.42 ± 0.04 | 100 ± 0.00 | 100 ± 0.00 | 86.7 ± 1.17 | 8.3 ± 0.16 | 110 ± 0.75 | 0.29 ± 0.00 |
ADE_1 | 5% | 160.5 ± 2.86 | 1.73 ± 0.02 | 94.54 ± 1.35 | 100 ± 0.00 | 73.3 ± 0.31 | 11.3 ± 0.22 | 130 ± 0.78 | 1.16 ± 0.00 |
ADE_2 | 5% | 103 ± 1.14 | 1.46 ± 0.01 | 100 ± 0.00 | 100 ± 0.00 | 87.0 ± 1.09 | 8.8 ± 0.10 | 111 ± 1.37 | 1.66 ± 0.00 |
ADE_2 | 7% | 144.8 ± 0.88 | 1.61 ± 0.02 | 100 ± 0.00 | 100 ± 0.00 | 92.8 ± 1.01 | 12.5 ± 0.08 | 120 ± 1.02 | 1.2 ± 0.00 |
Cultivation Period (Days) | Conditions Applied |
---|---|
1–11 | Batch mode/N/P adjustment |
11–13 | Continuous mode (dilution rate of 0.1 d−1) |
13–22 | Continuous mode (dilution rate of 0.05 d−1) |
22–30 | Continuous mode (dilution rate of 0.05 d−1)/recirculation |
30–36 | Batch mode |
36–41 | Batch mode/P addition |
41–52 | Continuous mode (dilution rate of 0.05 d−1)/N/P adjustment/recirculation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Psachoulia, P.; Chatzidoukas, C.; Samaras, P. Study of Chlorella sorokiniana Cultivation in an Airlift Tubular Photobioreactor Using Anaerobic Digestate Substrate. Water 2024, 16, 485. https://doi.org/10.3390/w16030485
Psachoulia P, Chatzidoukas C, Samaras P. Study of Chlorella sorokiniana Cultivation in an Airlift Tubular Photobioreactor Using Anaerobic Digestate Substrate. Water. 2024; 16(3):485. https://doi.org/10.3390/w16030485
Chicago/Turabian StylePsachoulia, Paraskevi, Christos Chatzidoukas, and Petros Samaras. 2024. "Study of Chlorella sorokiniana Cultivation in an Airlift Tubular Photobioreactor Using Anaerobic Digestate Substrate" Water 16, no. 3: 485. https://doi.org/10.3390/w16030485
APA StylePsachoulia, P., Chatzidoukas, C., & Samaras, P. (2024). Study of Chlorella sorokiniana Cultivation in an Airlift Tubular Photobioreactor Using Anaerobic Digestate Substrate. Water, 16(3), 485. https://doi.org/10.3390/w16030485