Seasonal Study of the Kako River Discharge Dynamics into Harima Nada Using a Coupled Atmospheric–Marine Model
Abstract
:1. Introduction
2. Methodology
2.1. The Models
2.1.1. The Atmospheric Model
2.1.2. The Marine Model
2.2. Model Configuration
2.3. Datasets
3. Results and Discussion
3.1. Model Validation
3.1.1. Atmospheric Model Validation
3.1.2. Marine Model Validation
3.2. The Kako River Discharge Dynamics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elliff, C.I.; Kikuchi, R.K.P. The ecosystem service approach and its application as a tool for integrated coastal management. Nat. Conserv. 2015, 13, 105–111. [Google Scholar] [CrossRef]
- Horstman, E.M.; Wijnberg, K.M.; Smale, A.J.; Hulscher, S.J.M.H. On the consequences of a long-term perspective for coastal management. Ocean. Coast. Manag. 2009, 52, 593–611. [Google Scholar] [CrossRef]
- Powell, E.J.; Tyrrell, M.C.; Milliken, A.; Tirpak, J.M.; Staudinger, M.D. A review of coastal management approaches to support the integration of ecological and human community planning for climate change. J. Coast. Conserv. 2019, 23, 1–18. [Google Scholar] [CrossRef]
- Stein, B.A.; Staudt, A.; Cross, M.S.; Dubois, N.S.; Enquist, C.; Griffis, R.; Hansen, L.J.; Hellmann, J.J.; Lawler, J.J.; Nelson, E.J.; et al. Preparing for and managing change: Climate adaptation for biodiversity and ecosystems. Front. Ecol. Environ. 2013, 11, 502–510. [Google Scholar] [CrossRef]
- Barbier, E.B.; Koch, E.W.; Silliman, B.R.; Hacker, S.D.; Wolanski, E.; Primavera, J.; Granek, E.F.; Polasky, S.; Aswani, S.; Cramer, L.A.; et al. Coastal ecosystem-based management with non-linear ecological functions and values. Science 2008, 319, 321–323. [Google Scholar] [CrossRef]
- Bayraktarov, E.; Saunders, M.I.; Abdullah, S.; Mills, M.; Beher, J.; Possingham, H.P.; Mumby, P.J.; Lovelock, C.E. The cost and feasibility of marine coastal restoration. Ecol. Appl. 2016, 26, 1055–1074. [Google Scholar] [CrossRef]
- Yanagi, T. Oligotrophication in the Seto Inland Sea. In Eutrophication and Oligotrophication in Japanese Estuaries—The Present Status and Future Tasks; Springer: Berlin/Heidelberg, Germany, 2015; pp. 39–67. [Google Scholar]
- Abo, K.; Satoshi, A.; Kazuhiro, H.; Yoshiki, N.; Hayashi, H.; Murata, K.; Wanishi, A.; Ishikawa, Y.; Masui, T.; Nishikawa, S.; et al. Long-Term Variations in Water Quality and Causal Factors in the Seto Inland Sea, Japan. Bull. Coast. Oceanogr. 2018, 55, 2101–2111, (In Japanese, English abs.). [Google Scholar]
- Abo, K.; Yamamoto, T. Oligotrophication and its measures in the Seto Inland Sea, Japan. Bull. Jpn. Fish. Res. Educ. Agency 2019, 49, 21–26. [Google Scholar]
- Naito, K.; Tanabe, A.; Itakura, S.; Yamaguchi, M.; Imai, I. Evaluation of major nutrients regulating the growth of diatoms in Harima-Nada, the Seto Inland Sea, Japan. Bull. Fish. Sci. Hokkaido Univ. 2011, 61, 5–12. [Google Scholar]
- Yamamoto, T. The Seto Inland Sea—Eutrophic or oligotrophic? Mar. Pollut. Bull. 2003, 47, 37–42. [Google Scholar] [CrossRef]
- Harada, K.; Tanda, M. Influence of the Changes of the Load Inflow Total Nitrogen (TN) from Rivers of Harima Area in Hyogo Prefecture to the Dissolved Inorganic Nitrogen (DIN) in Harima-Nada; Bulletin Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries (Fisheries Section): Kobe, Japan, 2011; pp. 87–91. (In Japanese)
- Pintos Andreoli, V.; Mori, M.; Koga, Y.; Shimadera, H.; Suzuki, M.; Matsuo, T.; Kondo, A. Numerical Assessment of Total Nitrogen (Tn) Load Discharged from Rivers into Harima-Nada, the Seto Inland Sea, Using A Numerical Coupled Hydrological-Water Quality Model. IOP Conf. Ser. Earth Environ. Sci. 2021, 801, 012009. [Google Scholar] [CrossRef]
- Yoshida, M.; Nakagawa, N.; Umemoto, S. Variation of Nutrient Salt Concentration in Rivers Water Flowing into Osaka Bay and Harima-Nada; Water Environment Division, Hyogo Prefectural Institute of Environmental Sciences: Kobe, Japan, 2010; Available online: http://www.eco-hyogo.jp/files/1813/8182/2580/notes201203.pdf (accessed on 26 October 2023). (In Japanese)
- Yanagi, T.; Tanaka, T. Origins of Phosphorus and Nitrogen in the Seto Inland Sea, Japan; Reports of Research Institute for Applied Mechanics; Kyushu University: Fukuoka, Japan, 2013; Volume 144, pp. 13–18. [Google Scholar]
- Guo, X.; Hara, K.; Kaneda, A.; Takeoka, H. Simulation of Tidal Currents and Non-Linear Tidal Interactions in the Seto Inland Sea, Japan; Reports of Research Institute for Applied Mechanics; Kyushu University: Fukuoka, Japan, 2013; Volume 145, pp. 42–53. [Google Scholar] [CrossRef]
- Kobayashi, S.; Fujiwara, T. Long-term variability of shelf water intrusion and its influence on hydrographic and biogeochemical properties of the Seto Inland Sea, Japan. J. Oceanogr. 2008, 64, 595–603. [Google Scholar] [CrossRef]
- Murakami, M.; Oonishi, Y.; Kunishi, H. A Numerical Simulation of the Distribution of Water Temperature and Salinity in the Seto Inland Sea. J. Oceanogr. Soc. Jpn. 1985, 41, 213–224. [Google Scholar] [CrossRef]
- Tanaka, Y.; Mori, N.; Ninomiya, J.; Sugimatsu, K.; Yagi, H.; Yasuda, T.; Mase, H. Long and Short-Term Simulations of Seto Inland Sea by Coupled Ocean-Wave Model. J. Jpn. Soc. Civ. Eng. Ser. B2 (Coast. Eng.) 2013, 69, I_511–I_515, (In Japanese, English abs.). [Google Scholar] [CrossRef]
- Jeong, J.S.; Lee, H.S. Unstructured Grid-Based River-Coastal Ocean Circulation Modeling towards a Digital Twin of the Seto Inland Sea. Appl. Sci. 2023, 13, 8143. [Google Scholar] [CrossRef]
- Asahi, T.; Ichimi, K.; Yamaguchi, H.; Tada, K. Horizontal distribution of particulate matter and its characterization using phosphorus as an indicator in surface coastal water, Harima-Nada, the Seto Inland Sea, Japan. J. Oceanogr. 2014, 70, 277–287. [Google Scholar] [CrossRef]
- Miwa, H.; Ikeno, H. Numerical analysis of tidal current and nutrient distribution in Harimanada. Proceedings of Hydraulic Engineering. Jpn. Soc. Civ. Eng. 2008, 52, 1387–1392. [Google Scholar] [CrossRef]
- Kobayashi, S.; Nakada, S.; Futamura, A.; Nagamoto, K.; Fujiwara, T. Observation and modeling of seawater exchange in a strait-basin system in the Seto Inland Sea, Japan. J. Water Environ. Technol. 2019, 17, 141–152. [Google Scholar] [CrossRef]
- Nishikawa, T.; Hori, Y.; Nagai, S.; Miyahara, K.; Nakamura, Y.; Harada, K.; Tada, K.; Imai, I. Long time-series observations in population dynamics of the harmful diatom Eucampia zodiacus and environmental factors in Harima-Nada, eastern Seto inland Sea, Japan during 1974-2008. Plankton Benthos Res. 2011, 6, 26–34. [Google Scholar] [CrossRef]
- Nishikawa, T.; Hori, Y.; Nagai, S.; Miyahara, K.; Nakamura, Y.; Harada, K.; Tanda, M.; Manabe, T.; Tada, K. Nutrient and phytoplankton dynamics in Harima-Nada, eastern Seto Inland Sea, Japan during a 35-year period from 1973 to 2007. Estuaries Coast 2010, 33, 417–427. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Katahira, R.; Ichimi, K.; Tada, K. Optically active components and light attenuation in an offshore station of Harima Sound, eastern Seto Inland Sea, Japan. Hydrobiologia 2013, 714, 49–59. [Google Scholar] [CrossRef]
- Uchiyama, Y.; Zhang, X.; Suzue, Y.; Kosako, T.; Miyazawa, Y.; Nakayama, A. Residual effects of treated effluent diversion on a seaweed farm in a tidal strait using a multi-nested high-resolution 3-D circulation-dispersal model. Mar. Pollut. Bull. 2018, 130, 40–54. [Google Scholar] [CrossRef]
- Zhang, X.; Uchiyama, Y.; Nakayama, A. On relaxation of the influences of treated sewage effluent on an adjacent seaweed farm in a tidal strait. Mar. Pollut. Bull. 2019, 144, 265–274. [Google Scholar] [CrossRef]
- Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput. Geosci. 2008, 34, 1284–1306. [Google Scholar] [CrossRef]
- Warner, J.C.; Armstrong, B.; He, R.; Zambon, J.B. Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. Ocean Model. 2010, 35, 230–244. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2; NCAR Technical Notes; University Corporation for Atmospheric Research: Boulder, CO, USA, 2005. [Google Scholar] [CrossRef]
- Haidvogel, D.B.; Arango, H.; Budgell, W.P.; Cornuelle, B.D.; Curchitser, E.; Di Lorenzo, E.; Fennel, K.; Geyer, W.R.; Hermann, A.J.; Lanerolle, L.; et al. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys. 2008, 227, 3595–3624. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; Mcwilliams, J.C. Quasi-Monotone Advection Schemes Based on Explicit Locally Adaptive Dissipation. Mon. Weather Rev. 1998, 126, 1541–1580. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res. Oceans 2003, 108. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Chatani, S.; Shimadera, H.; Itahashi, S.; Yamaji, K. Comprehensive analyses of source sensitivities and apportionments of PM2.5 and ozone over Japan via multiple numerical techniques. Atmos. Chem. Phys. 2020, 20, 10311–10329. [Google Scholar] [CrossRef]
- Orlanski, I. A Simple Boundary Condition for Unbounded Hyperbolic Flows. J. Comput. Phys. 1976, 21, 251–269. [Google Scholar] [CrossRef]
- Pintos Andreoli, V.; Shimadera, H.; Koga, Y.; Mori, M.; Suzuki, M.; Matsuo, T.; Kondo, A. Inverse estimation of nonpoint source export coefficients for total nitrogen and total phosphorous in the Kako river basin. J. Hydrol. 2023, 620, 129395. [Google Scholar] [CrossRef]
- Zhang, W.G.; Wilkin, J.L.; Schofield, O.M.E. Simulation of water age and residence time in New York Bight. J. Phys. Oceanogr. 2010, 40, 965–982. [Google Scholar] [CrossRef]
- Delhez EJ, M.; Campin, J.-M.; Hirst, A.C.; Deleersnijder, E. Toward a general theory of the age in ocean modelling. Ocean Model. 1999, 1, 17–27. [Google Scholar] [CrossRef]
- Deleersnijder, E.; Campin, J.-M.; Delhez EJ, M. The concept of age in marine modelling: I. Theory and preliminary model results. J. Mar. Syst. 2001, 28, 229–267. [Google Scholar] [CrossRef]
- Delhez, E.; Deleersnijder, E.; Mouchet, A.; Beckers, J.-M. A note on the age of radioactive tracers. J. Mar. Syst. 2003, 38, 277–286. [Google Scholar] [CrossRef]
- Delhez, É.J.M.; Heemink, A.W.; Deleersnijder, É. Residence time in a semi-enclosed domain from the solution of an adjoint problem. Estuar. Coast. Shelf Sci. 2004, 61, 691–702. [Google Scholar] [CrossRef]
- Delhez, É.J.M.; Deleersnijder, É. The boundary layer of the residence time field. Ocean Dyn. 2006, 56, 139–150. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1940 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 26 October 2023).
- Metzger, E.J.; Helber, R.W.; Hogan, P.J.; Posey, P.G.; Thoppil, P.G.; Townsend, T.L.; Wallcraft, A.J.; Smedstad, O.M.; Franklin, D.S. Global Ocean Forecast System 3.1 Validation Testing. Naval Research Laboratory. 2017. Available online: https://apps.dtic.mil/sti/citations/AD1034517 (accessed on 26 October 2023).
- Naval Research Laboratory. HYCOM—Hybrid Coordinate Ocean Model. 2021. Available online: https://www.hycom.org/dataserver/gofs-3pt1/analysis (accessed on 26 October 2023).
- Egbert, G.D.; Erofeeva, S.Y. Efficient Inverse Modeling of Barotropic Ocean Tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Japan Meteorological Agency (JMA). Meteorological Observatories and Automated Meteorological Data Acquisition System (AMeDAS). Available online: https://www.data.jma.go.jp/gmd/risk/obsdl/ (accessed on 26 October 2023).
- Hyogo Prefectural Technology Center for Agriculture, Forestry and Fishery. Harima Nada Observatories. Available online: https://www.hyogo-suigi.jp/gj/ (accessed on 26 October 2023).
- Crommelin, D.; Khouider, B. Stochastic and Statistical Methods in Climate, Atmosphere, and Ocean Science. In Encyclopedia of Applied and Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1376–1386. [Google Scholar] [CrossRef]
- Emery, C.; Tai, E.; Yarwood, G. Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Ozone Episodes; Environ International Company: Washington, DC, USA, 2001. Available online: https://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/mm/EnhancedMetModelingAndPerformanceEvaluation.pdf (accessed on 26 October 2023).
- Western Regional Air Partnership (WRAP) West-Wide Jump-Start Air Quality Modeling Study (WestJumpAQMS). WRAP. 2013. Environ International Company, Alpine Geophysics. Available online: https://www.wrapair2.org/pdf/WestJumpAQMS_FinRpt_Finalv2.pdf (accessed on 26 October 2023).
- Comprehensive Water Quality Survey; Ministry of the Environment: Tokyo, Japan, 2019. Available online: https://water-pub.env.go.jp/water-pub/mizu-site/mizu/kouiki/dataMap.asp (accessed on 26 October 2023).
WRF Model | |
Analysis period | March 2010–February 2011 |
Spin-up | 8 months (June 2009–February 2010) |
Horizontal grid cells (X × Y) | 120 × 120 |
Horizontal resolution | 6.0 km |
Vertical layers | 30 |
Time step | 25 s |
Boundary and initial conditions | ERA5 |
ROMS model | |
Analysis period | March 2010–February 2011 |
Spin-up | 8 months (June 2009–February 2010) |
Horizontal grid cells (X × Y) | 200 × 100 |
Horizontal resolution | 3.0 km |
Vertical layers | 32 |
Baroclinic time step | 60 s |
Boundary and initial conditions | HYCOM |
Tidal boundary conditions | TPXO9 Atlas v.5 |
Rivers in the domain | 11 (5 northern coasts, 2 center, 4 in the southern coast) |
Rivers considered for calculation | 1 (Kako River, largest freshwater contribution) |
River input algorithm | Volume vertical influx |
River and tracer experimental conditions | |
Analysis period | March 2010–February 2011 |
Spin-up | 12 months (March 2009–February 2010) |
Horizontal resolution | 1 km |
River discharge temporal resolution | 1 h |
Vertical levels of the estuary | 32 layers |
River vertical fractional distribution (Temperature, salinity, tracer) | Homogeneous |
River temperature | 15 °C, constant for the entire period |
River salinity | 0.0 PSU |
Tracer concentration |
|
Tracer discharge injection |
|
Observed Average | Simulated Average | R | pBIAS | MAE | RMSE | IA | |
---|---|---|---|---|---|---|---|
u-wind (m/s) | 0.74 | 0.92 | 0.96 | --- | 0.49 | 0.62 | 0.93 |
v-wind (m/s) | −0.26 | −0.41 | 0.72 | --- | 1.05 | 1.31 | 0.62 |
Wind speed (m/s) | 2.9 | 3.2 | 0.80 | --- | 0.53 | 0.73 | 0.83 |
Surface pressure (hPa) | 1010.3 | 1010.5 | ~1.0 | <0.1 | 0.37 | 0.50 | ~1.0 |
Temperature (°C) | --- * | --- * | 0.97 | 0.3 | 0.65 | 0.82 | 0.99 |
Specific humidity (g/kg) | --- * | --- * | 0.97 | 4.1 | 0.48 | 0.64 | 0.99 |
Temperature | ||||||||
R | pBIAS | MAE | RMSE | IA | ||||
H01 | sfc (~0.5 m) | 0.99 | 9.4 | 1.73 | 2.05 | 0.98 | ||
mid (~10.0 m) | ~1.00 | 6.1 | 1.07 | 1.48 | 0.99 | |||
bott (~20.0 m) | ~1.00 | 4.2 | 0.74 | 0.88 | ~1.00 | |||
H28 | sfc (0.5 m) | 0.99 | 8.6 | 1.02 | 1.97 | 0.98 | ||
mid (~5.0 m) | ~1.00 | 5.3 | 1.17 | 1.09 | 0.99 | |||
bott (~10.0 m) | ~1.00 | 4.3 | 0.59 | 0.86 | ~1.00 | |||
H11 | sfc (~0.5 m) | ~1.00 | 5.4 | 0.79 | 1.24 | 0.99 | ||
mid (~10.0 m) | 0.99 | 6.5 | 0.89 | 1.49 | 0.99 | |||
bott (~32.0 m) | 0.99 | 1.6 | 0.73 | 0.71 | ~1.00 | |||
H13 | sfc (0.5 m) | 0.99 | 3.5 | 1.54 | 0.97 | 0.99 | ||
mid (~10.0 m) | ~1.00 | 4.4 | 0.91 | 1.08 | 0.99 | |||
bott (~32.0 m) | 0.99 | 3.7 | 0.73 | 1.02 | 0.99 | |||
Salinity | ||||||||
Observed average (PSU) | Simulated average (PSU) | R | pBIAS | MAE | RMSE | IA | ||
H01 | sfc (~0.5 m) | 31.0 | 32.3 | 0.90 | −4.2 | 1.30 | 1.62 | 0.71 |
mid (~10.0 m) | 31.8 | 32.9 | 0.83 | −3.4 | 1.07 | 1.48 | 0.61 | |
bott (~20.0 m) | 31.9 | 33.0 | 0.78 | −3.4 | 1.07 | 1.12 | 0.56 | |
H28 | sfc (0.5 m) | 30.6 | 31.8 | 0.76 | −3.9 | 1.20 | 1.44 | 0.71 |
mid (~5.0 m) | 31.5 | 32.2 | 0.82 | −2.2 | 0.71 | 0.81 | 0.71 | |
bott (~10.0 m) | 31.6 | 32.2 | 0.81 | −2.0 | 0.63 | 0.73 | 0.72 | |
H11 | sfc (~0.5 m) | 32.0 | 33.2 | 0.84 | −3.6 | 1.16 | 1.21 | 0.54 |
mid (~10.0 m) | 32.1 | 33.3 | 0.86 | −3.9 | 1.24 | 1.27 | 0.50 | |
bott (~32.0 m) | 32.3 | 33.5 | 0.83 | −3.7 | 1.19 | 1.23 | 0.48 | |
H13 | sfc (0.5 m) | 31.9 | 33.2 | 0.91 | −4.0 | 1.27 | 1.29 | 0.47 |
mid (~10.0 m) | 31.9 | 33.4 | 0.89 | −4.5 | 1.45 | 1.48 | 0.41 | |
bott (~32.0 m) | 31.0 | 31.0 | 0.87 | −4.0 | 1.28 | 1.31 | 0.40 |
Spring | Summer | Fall | Winter | |
---|---|---|---|---|
Mean residence time (days) | 28 | 20 | 12 | 25 |
Maximum concentration (kg/m3) | 2.4 × 10−3 | 5.0 × 10−3 | 4.4 × 10−3 | 3.3 × 10−3 |
Location and days where the concentration peak is reached last | H09 9 days | H09 23 days | H30 8 days | H09 Never |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintos Andreoli, V.; Shimadera, H.; Yasuga, H.; Koga, Y.; Suzuki, M.; Kondo, A. Seasonal Study of the Kako River Discharge Dynamics into Harima Nada Using a Coupled Atmospheric–Marine Model. Water 2024, 16, 614. https://doi.org/10.3390/w16040614
Pintos Andreoli V, Shimadera H, Yasuga H, Koga Y, Suzuki M, Kondo A. Seasonal Study of the Kako River Discharge Dynamics into Harima Nada Using a Coupled Atmospheric–Marine Model. Water. 2024; 16(4):614. https://doi.org/10.3390/w16040614
Chicago/Turabian StylePintos Andreoli, Valentina, Hikari Shimadera, Hiroto Yasuga, Yutaro Koga, Motoharu Suzuki, and Akira Kondo. 2024. "Seasonal Study of the Kako River Discharge Dynamics into Harima Nada Using a Coupled Atmospheric–Marine Model" Water 16, no. 4: 614. https://doi.org/10.3390/w16040614
APA StylePintos Andreoli, V., Shimadera, H., Yasuga, H., Koga, Y., Suzuki, M., & Kondo, A. (2024). Seasonal Study of the Kako River Discharge Dynamics into Harima Nada Using a Coupled Atmospheric–Marine Model. Water, 16(4), 614. https://doi.org/10.3390/w16040614