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Abstract: Studies on the stability inter-controlled factors of fine-grained sediments in debris flow
gullies play an important role in predicting the scale and danger of debris flows. However, up
to the present, few studies have been carried out on the spatial distribution pattern and causes of
stability inter-controlled factors of fine-grained sediments in debris flow gullies, leading to difficulty
in finding the dangerous section of debris flow gullies to be monitored and controlled to reduce
disaster losses. Therefore, the objective of this paper is to analyze the spatial distribution pattern
and causes of stability inter-controlled factors (grain size, permeability coefficient, shear strength,
and porosity), taking the Beichuan Debris Flow Gully, China, as a case. After collecting soil samples
in the field, we carried out experiments to measure the stability inter-controlled factors and, from
these, the results show that (1) fine-grained sediments in this case are mainly silty loams, which are
stable under non-heavy rains; (2) the grain size of silty loams is mainly concentrated between 10
and 20 µm, with a spatial distribution pattern of fine in the middle and coarse at both ends; (3) the
permeability coefficient of silty loams is concentrated between 1.15 and 2.17 m/d, with a spatial
distribution pattern of high in the middle and low at both ends; (4) the average cohesion of silty
loams is mainly concentrated between 20 and 30 kPa, with a spatial distribution pattern of low in
the middle and high at both ends; and (5) the internal friction angle of silty loams is concentrated
between 18.98 and 21.8◦, with a spatial distribution pattern of high in the middle and low at both
ends. The main reasons for these spatial distribution patterns are analyzed from three aspects of
shear strength, water flow velocity, and terrain, which can provide a scientific basis for the prediction
of debris flow disasters in such areas.

Keywords: debris flow gully; fine-grained sediments; soil stability; inter-controlled factors; Beichuan;
particle size

1. Introduction

In recent years, due to the comprehensive impacts of tectonic activities and climate
change, the frequency and scale of debris flow disasters have increased, causing serious
impacts on people’s lives and property, and have attracted a lot of attention from countries
and scholars to carry out research.
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The effects of slope on water flow, the influence of material composition and grain
size distribution on the initiation conditions of debris flows [1–5], and the disaster mech-
anisms were studied from the aspects of material source characteristics [6–8], rainfall
conditions [9–12], terrain and geomorphic conditions [13], tectonic activities [14], etc. Based
on these, debris flow initiation models were established, such as mathematical model-
ing [15] and hydrodynamic models [16–18].

Debris-flow-influencing factors and their relationships with the outflow, disaster
chains, and principles of lateral erosion were studied, such as relationships between max-
imum runout amount and risk-assessment-influencing factors [19–22]. Based on these,
models for danger sensing and prediction for debris flows were established, such as critical
rainfall patterns [23], gully formation types [24], and hazard assessment and prevention
models [25–29].

Based on three disaster modes (channel blocked, channel undercut, and landslide
recharged), plans for disaster prevention and control were proposed, such as sediment
mitigation measures [30], and hazard source analysis and prevention were based on hazard
assessment and formation mechanism analysis [31–36].

As we know, during the initiation, transportation, and aggregation of debris flow,
fine-grained sediments (quaternary sediments with a grain size of less than 2 mm) in
debris flow gullies play a starring role, increasing the density, amplifying the danger of
debris flows, and thus increasing the difficulty of debris flow prevention and control.
Therefore, strengthening the research on stability inter-controlled factors of fine-grained
sediments in debris flow gullies plays an important role in predicting the scale and danger
of debris flows.

The stability inter-controlled factors of fine-grained sediments mainly include grain
size, permeability coefficient, shear strength, and porosity. Grain size refers to the particle
diameter of sediments; the permeability coefficient is the unit flow rate under a unit
hydraulic gradient; shear strength refers to the ultimate strength of soil to resist shear
failure, which includes cohesion and effective internal friction angle; and porosity is the
percentage of soil pores per unit volume.

There are some studies on fine-grained sediments in debris flow gullies: (1) erosion
characteristics [37], hydrodynamic conditions [38], and grain size distribution characteris-
tics of sediments were studied [39], and (2) the relationship between permeability coefficient
and its influencing factors [40], as well as that between cohesion and its influencing factors,
was analyzed [41]. Based on these, hyperspectral detection models for cohesion [42] and
permeability coefficient were also established [43], and (3) the permeability characteristics
and transport principles of channel sediments were summarized, and a start-up model for
loose sediments was established [44].

However, up to the present, there is no research on the spatial distribution pattern
and causes of the stability inter-controlled factors of fine-grained sediments in debris flow
gullies, resulting in difficulty in locating dangerous river sections for prevention. Therefore,
the objective of this paper is to analyze the spatial distribution pattern and causes of the
stability inter-controlled factors. According to this, we can find unstable river sections for
debris flow disaster prevention.

2. Study Area

As shown in Figure 1, the study area is located in Laobeichuan County, Sichuan
Province, China, with geographic coordinates of 104◦14′–104◦33.5′ E, 31◦47.9′–31◦53.5′ N,
covering an area of 341 km2. It belongs to a subtropical humid monsoon climate zone, with
an annual average temperature of 15.6 ◦C and an annual average rainfall of 1399.1 mm.
Of this, 70% of the annual rainfall is concentrated from June to September [11,34]. The
strata of the study area mainly include the Dengying strata from the Upper Sinian, the
Qingping strata from the Lower Cambrian, the Maoxian Group from the Upper and Middle
Silurian, and the Quaternary sediments. In these, the main rock types include dark gray
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siltstone, siliceous rock, phosphorous mudstone, phosphorous limestone, phyllite, slate,
schist, limestone, sand shale, and sandy soils [13].
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The main lithology in the study area indicates that most of the metamorphic rocks,
marls, and Quaternary sediments have poor stability and could easily form debris flows.
Especially, the Wenchuan earthquake with MS8.0 magnitude on 12 May 2008 caused severe
strata fragmentation, resulting in a large number of loose sediment events like landslides,
landslips, etc. Under the triggering of heavy rainfall, multiple serious debris flow disasters
occurred on 20 August 2019, 11 July 2018, 28 July 2016, etc. They not only destroyed
farmlands, roads, and bridges but also broke power and communication facilities, causing
significant economic losses and posing a serious threat to the residential settlements [28].

3. Data and Equipment

As shown in Table 1, the Gaofen-2 (GF-2) remote sensing image covering the study
area is first acquired with the highest spatial resolution of 0.8 m. Using this, the locations of
fine-grained sediments in the debris flow gully are extracted (SP01–SP15 sampling points in
Figure 1). Then, the DEM data are acquired to analyze elevation of the study area. Finally,
after the debris flow disaster on 20 August 2019, 200 soil samples were obtained from
15 sampling points using a ring cutter between 19 and 25 March 2021 and the number of
samples at each sampling points is shown in Table 2. Each sample has a volume of 600 mL
and a weight of about 1 kg. With a diameter of 7 cm and a depth of 5.2 cm, the volume of
the ring knife is 200 mL. Using this, the sampling procedure for a soil sample is as follows:
1⃝ clean the ring knife using a soft cloth; 2⃝ put it into the sediment vertically. When it is

full of soil, pull it out and cut off the over-flowing soil with a knife. Thus, a soil sample
with a volume of 200 mL is collected; 3⃝ put the soil sample into a plastic bag and seal it
immediately. After collecting three soil samples in the same plastic bag according to the
above steps, seal the plastic bag and consider it as a sample with a volume of 600 mL and
put it into a cotton bag; 4⃝ record the sample number and its geographical location using
a global positioning system (GPS) and write the sample number on the cloth sample bag
with a marker [43].

Table 1. Data and equipment table.

Materials Equipment Manufacturer/Provider

Remote sensing images Gaofen-2 (GF-2) Land satellite remote sensing application
center, Beijing, China

Digital elevation
model (DEM)

Advanced Spaceborne Thermal
Emission and Reflection

Radiometer (ASTER)

Ministry of International Trade and
Industry, Tokyo, Japan

Soil Ring knife (200 mL) Longnian Hardware Tools Store,
Suqian, China

Particle size Mhcrotra-S3500 Microtrac MR B, Montgomeryville,
PA, USA
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Table 1. Cont.

Materials Equipment Manufacturer/Provider

Permeability coefficient TST-55 permeameter Zhejiang Dadi Instrument Co., Ltd.,
Shaoxing, Zhejiang, China

Density MDJ-300A solid densitometer Shanghai Lichen Instrument Technology
Co., Ltd., Shanghai, China

Porosity TST-55 permeameter Zhejiang Dadi Instrument Co., Ltd.,
Shaoxing, Zhejiang, China

Shear strength ZJ strain-controlled direct
shear instrument

Nanjing soil instrument factory Company
Limited (Co., Ltd.), Nanjing,

Jiangsu, China

Table 2. Number of samples at each sampling points.

Sampling Points Number Sampling Points Number

SP01 20 SP09 20
SP02 15 SP10 10
SP03 15 SP11 10
SP04 15 SP12 10
SP05 20 SP13 10
SP06 15 SP14 10
SP07 10 SP15 10
SP08 10

Total 200

Based on these steps, experiments are carried out to measure density, grain size,
permeability coefficient, and shear strength of samples.

4. Methodology

The flow chart for studying stability inter-controlled factors of fine-grained sediments
is shown in Figure 2. On the basis of obtaining remote sensing, DEM, and geological
background data of the study area, experiments are carried out to measure the stability
inter-controlled factors, such as grain size, permeability coefficient, shear strength, and
porosity. Based on these, the spatial distribution patterns of stability inter-controlled factors
of fine-grained sediments are summarized, and the risk of debris flow disasters is analyzed
to provide a scientific basis for the prevention and control of geological disasters in the
study area.

4.1. Grain Size Measurement

Grain size refers to the particle diameter, which has some impacts on the porosity and
permeability coefficient of fine-grained sediments, thereby controlling the sediment stability.
We use the Microtrac S3500 laser analyzer to measure the grain size of the sediments whose
main steps and results can be found in [43]. The results indicate that the grain size of
fine-grained sediments in the study area is mainly concentrated between 10 and 20 µm,
belonging to the silty loams [45]. The average grain size of each sampling point is shown
in Figure 3, showing a spatial distribution pattern of fine in the middle and coarse at
both ends.

4.2. Permeability Coefficient Measurement

The permeability coefficient, also known as the hydraulic conductivity coefficient,
is the unit flow rate under a unit hydraulic gradient. It mainly reflects the size, number,
and connectivity of soil pores [46], and is the main parameter controlling the stability of
fine-grained sediments. The permeability coefficient of fine-grained sediments in the study
area is measured using a TST-55 permeability meter, whose process and results are shown
in [40]. The permeability coefficients of most fine-grained sediments in the study area are
concentrated between 1.15 and 2.17 m/d, which can be classified as medium permeability
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and stable in the case of non-heavy rains. The average permeability coefficient of each
sampling point is shown in Figure 4, showing a spatial distribution pattern of high in the
middle and low at both ends.
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Figure 2. Flow chart for studying the spatial distribution pattern of stability inter-controlled factors
of fine-grained sediments in debris flow gullies.
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4.3. Shear Strength Measurement

Including cohesion and effective internal friction angle, shear strength refers to the
ultimate strength of soil to resist shear failure, which is an important parameter to measure
stability of fine-grained sediments. Cohesion is the mutual attraction between adjacent
parts within the same substance; the effective internal friction angle indicates the magnitude
of internal friction between soil particles, including the surface friction forces and the biting
forces generated by the embedding and interlocking between soil particles. To measure
the cohesion and effective internal friction angle of fine-grained sediments in the study
area, a ZJ strain-controlled direct shear instrument is used, whose steps and results are
shown in [43]. As shown in Figure 5, the average cohesion is mainly concentrated between
20 and 30 kPa with a spatial distribution pattern of low in the middle and high at both
ends. On the other hand, as shown in Figure 6, the internal friction angle is concentrated
between 18.98 and 21.8◦ with a spatial distribution pattern of high in the middle and low at
both ends.
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4.4. Porosity Measurement

Porosity is the percentage of soil pores per unit volume, which is the space for water
movement and storage, and the key factor influencing soil permeability and thus deter-
mining surface runoff rate. The steps and results of measuring porosity using a TST-55
permeameter can be found in [43]. The porosity of fine-grained sediments in the study area
is mainly concentrated between 52 and 68%, belonging to the medium to high porosity.
The average porosity of each sampling point is shown in Figure 7. The average porosity is
relatively high at SP09.
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5. Results

Based on the variation characteristics of grain size, permeability coefficient, cohesion,
and internal friction angle of fine-grained sediments along the Jianjiang River (Figures 3–7),
the sampling points are divided into three sections: upstream (SP01–SP05), midstream
(SP06–SP12), and downstream (SP13–SP15). Their characteristics are summarized as follows.

In the upstream (SP01–SP05), (1) the fine-grained sediments are mainly composed
of silty loams, with an average grain size of 22.94 µm, and a downward trend from
SP01 to SP05; (2) the average permeability coefficient is 1.42 m/d, belonging to medium
permeability and showing an upward trend from SP01 to SP05; (3) the average cohesion is
24.3 kPa, showing a decreasing trend from SP01 to SP05 (Figure 5), and the average internal
friction angle is 19.87◦, showing an upward trend from SP01 to SP05 (Figure 6); (4) the
cumulative distribution pattern of grain size (Figure 8) shows inflection points at 10, 20,
and 30 µm, indicating poor sorting characteristics. On-site photos (SP01–SP05, Figure 8)
also confirm the above conclusion: soils at SP01 are in a plate condensed state with the
characteristics of high cohesion and strong erosion resistance. However, the following
photos of SP02–SP05 show that the sediments are loosely accumulated, indicating low
cohesion and high permeability. Therefore, for SP01 to SP05, we draw a conclusion that the
soil’s ability to resist water flow erosion becomes strong to weak, resulting in the risk of
debris flow disasters becoming weak to strong.
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In the midstream (SP06–SP12), the fine-grained sediments are mainly composed of
silty loams. (1) The average grain size of the sediments in this section is 17.83 µm. Except for
the coarse grain size at SP11, grain sizes at other points are almost the same and distributed
horizontally (Figure 3). The cumulative distribution curve indicates the distribution of
grain size in this section concentrates between 10 and 40 µm with good sorting; (2) the
average permeability coefficient of the sediments in this section is 1.83 m/d, belonging to
medium permeability (Figure 4); (3) the average cohesion of the sediments in this section
is 21.4 kPa with an averaged internal friction angle of 20.68◦. Except for the high internal
friction angle at SP06, internal friction angles at other points are horizontally distributed
(Figure 6). On-site photos (SP06–SP12, Figure 9) also confirm the above conclusion: the silty
loams in this section are in a loose accumulation state with fine grain size, high moisture
content, good sorting, and relatively poor erosion resistance, leading to increased instability
of the sediments and the high risk of debris flow disasters.
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Figure 9. Cumulative grain size distribution curve and field photos of fine-grained sediments in
midstream river (SP06-SP12).

In the downstream (SP13–SP15), the fine-grained sediments are mainly composed of
silty loams, with an average grain size of 33.23 µm. (1) Compared to the sediments in the
upstream and midstream, their grain size is coarser and gradually increases from SP13 to
SP15 (Figure 3). The cumulative distribution curve of grain size in the downstream shows
that, except for a sharp increase at 22 µm, the grain size of the sediments is concentrated
from 10 to 52 µm, indicating the general sorting characteristics (Figure 10); (2) the average
permeability coefficient of the sediments is 1.51 m/d, belonging to medium permeability,
showing a gradually decreasing trend from SP13 to SP15 (Figure 4); (3) the average cohesion
of the sediments is 24.53 kPa, showing an upward trend from SP13 to SP15 (Figure 5), and
the average internal friction angle is 19.83◦ and, except for the high internal friction angle at
SP15, it shows a decreasing trend (Figure 6). The on-site photos (SP13–SP15, Figure 10) also
confirm the above conclusion: the silty loams in this section are in a loose accumulation
state with low water content, coarse sand particles filled with clays, average sorting, and
relatively strong erosion resistance, which increases the sediment stability and thus reduces
the risk of debris flow disasters.
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6. Discussion

Reasons for the results are discussed as follows.
In the upstream (SP01–SP05), compared to midstream (SP06–SP12), this section has

the characteristics of low permeability coefficient, low effective internal friction angle,
and high cohesion. Reasons for this phenomenon are mainly because it is located in the
upstream river and easily eroded due to the water flow, tributary effect, elevation difference
between this section and its surroundings, etc. The relatively fine-grained sediments are
carried to the middle and downstream of the river, thus depositing relatively coarse-grained
sediments. Clay minerals can easily fill in the large pores between coarse particles, resulting
in relatively poor sorting of the sediments in this section with low permeability coefficient,
low effective internal friction angle, and high cohesion. From these, we can see that the
risk of debris flow disasters becomes weak to strong from SP01 to SP05 and the outbreak of
debris flow is the result of the comprehensive effects of sediment seepage field and stress
field: 1⃝ the permeability coefficient is the main parameter of the sediment seepage field.
The seepage field is not only a storage environment but also a component of sediments.
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Sediments with high permeability coefficients are prone to let water infiltrate to the bottom,
increasing their own gravity and forming pore water pressure to break the sediment stability,
thereby increasing the probability of debris flow disasters. The permeability coefficient
shows an upward trend from SP01 to SP05 and the risk of debris flow disasters becomes
weak to strong from SP01 to SP05. 2⃝ Shear strength is the main parameter of sediment
stress field. When the shear stress meets the maximum shear strength of the sediments, they
collapse and then slide with the water flow, resulting in debris flow disasters. Sediments
with high shear strength have strong cohesion, high stability, and are less prone to erosion,
thus providing fewer material sources for debris flow disasters. On the contrary, sediments
with low shear strength can provide more material sources, resulting in a larger scale and
more dangerous debris flow disaster. Cohesion shows a decreasing trend from SP01 to
SP05, and the risk of debris flow disasters becomes weak to strong.

In the midstream (SP06–SP12), compared to upstream and downstream, sediments in
this section have the characteristics of high permeability coefficient, high effective internal
friction angle, and low cohesion. The main reason for this phenomenon is that the terrain of
this section is relatively low and the river channels are winding with high curvature: the low
river terrain in the high surrounding mountain terrain results in the accumulation of water
during the rainy season, leading to a large water supply and causing severe soil erosion.
Based on this, the high-density debris flow forms from west to east. At the same time, this
section is also blocked by its high curvature, especially the highest curvature from SP07 to
SP09, resulting in a severe decrease in water flow velocity, which weakens the river’s sand-
carrying capacity and makes it easily form good sorting sediments. Therefore, compared
to the sediments in the upstream and downstream, the silty loams in this section have
the characteristics of finer grain size and better sorting with high permeability coefficient,
high effective internal friction angle, and low cohesion, and thus leading to high instability
of sediments. So, the risk of debris flow disasters in this section is relatively high and
thus needs more attention to monitor and control it, especially from SP07 to SP09 with the
highest curvature.

In the downstream (SP13–SP15), compared to the sediments in the midstream, the
sediments in this section show the characteristics of coarse grain size, low permeability
coefficient, low effective internal friction angle, and high cohesion. The main reason for
this phenomenon is mainly that there is a significant elevation difference between this
section and its surroundings, resulting in high water flow speed with strong sediment-
transporting capacity. Fine-grained sediments are transported far, while the coarse-grained
sediments are left here, which are prone to adsorb clay particles, and thus resulting in low
permeability coefficient, low effective internal friction angle, and high cohesion. According
to poor conditions of low permeability coefficient and high cohesion, the risk of debris flow
disasters happening in this section is relatively low.

As to the spatial distribution pattern of the stability inter-controlled factors of fine-
grained sediments in the whole debris flow gully, we can discuss it as follows.

The average grain size of fine-grained sediments in the study area is relatively coarse
with poor sorting in the upstream and downstream river, while it is relatively fine with
good sorting in the midstream. The reason for this phenomenon is that the finer the grain
size of sediments is, the farther they can be transported. Therefore, in general, rivers always
show a characteristic of coarse to fine grain size from upstream to downstream. However,
in this study area, due to the impact of high curvature in the middle stream, the water
flow velocity slows down, which decreases the sand-carrying capacity, thus forming a
sedimentary environment to make the sediments deposit with the characteristics of fine
grain, good sorting, and high permeability coefficient.

The average permeability coefficient is relatively low in the upstream and downstream
river and high in the middle. This is mainly related to the sediment properties: the grain
size of the upstream and downstream sediments is heterogeneous and fine-grained particles
are easily adsorbed among coarse-grained ones, resulting in pore blockage and thereby
reducing their permeability coefficients. Meanwhile, the grain size of the sediments in the
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midstream river is relatively uniform, with good sorting and independent space between
particles, thus leading to relatively large porosity and good permeability coefficient.

At 22.99 kPa, the average cohesion of the whole gully has a medium to low level with
poor stability [47], which is relatively high in the upstream and downstream and low in the
midstream. Therefore, it is prone to erosion and transportation, resulting in the formation
of debris flows and thus needing to be monitored and controlled with more attention in the
midstream river.

Based on sedimentology, the main reasons for the spatial distribution of the stability
inter-controlled factors of fine-grained sediments in debris flow gullies are discussed
as follows.

The first reason is shear strength. Sediments with high shear strength have strong
cohesion, are not easily eroded, and thus have a high stability and a short transporting
distance in rivers, making them form coarse-grained sediments with poor sorting. On the
contrary, sediments with low shear strength have lower stability and longer transporting
distances in rivers, making them easily form fine-grained sediments with good sorting.

The second reason is water flow velocity. The water flow velocity determines the
erosion and transporting capacity of a river. Under the same conditions, the faster the
velocity of the water flow is, the higher the erosion ability and the stronger the carrying
capacity of the rivers. The grain size of sediments is relatively coarse, with poor sorting
and low permeability coefficient. On the contrary, the slower the water flow velocity is,
the weaker the transporting capacity of the river becomes, and the easier it is to form a
sedimentary environment. The grain size of sediments becomes finer and the permeability
coefficient becomes higher. This also explains why the sediments from SP07–SP09 show
finer grain size with higher permeability coefficient: due to the high curvature of the river
in this section, the water flow velocity slows down. Sediments transported from upstream
are prone to deposit, leading to the formation of fine-grained sediments with good sorting
and high permeability coefficient.

The third reason is terrain. As we know, terrain controls potential energy and wa-
ter flow velocity, thereby controlling the degree and scope of sediment erosion and thus
controlling the danger of debris flow disasters. Under the same rainfall, the steeper the
terrain is, the faster the water flow on the surrounding slopes becomes, thus resulting in
stronger erosion ability, which generates more sources of sediments with longer transport-
ing distances. On the contrary, the gentler the terrain is, the fewer material sources are
generated and the shorter the sediments’ transport. Therefore, terrain also controls the
spatial distribution pattern of the sediments.

7. Conclusions

In this study, the spatial distribution patterns of stability inter-controlled factors of fine-
grained sediments in debris flow gullies are first summarized. Then, a relationship between
stability inter-controlled factors of fine-grained sediments and outbreak probability of
debris flow disasters is discussed.

(1) The spatial distribution pattern of stability inter-controlled factors of fine-grained
sediments in debris flow gullies is summarized.

We have summarized the spatial distribution characteristics of stability inter-controlled
factors (grain size, permeability coefficient, and shear strength) of fine-grained sediment
in the upstream, midstream, and downstream river: 1⃝ the average grain size of fine-
grained sediments in the study area is 24.39 µm, belonging to silty loams. In space, it
is characterized by relatively coarse grain size and poor sorting in the upstream and
downstream river, and the grain size of sediments in the midstream river is relatively
fine with good sorting; 2⃝ the average permeability coefficient of silty loams in the study
area is 1.63 m/d, which can be classified as medium permeability. In space, it is relatively
low in the upstream and downstream river and relatively high in the midstream river;
3⃝ the average effective internal friction angle of silty loams in the study area is 20.24◦,

being a medium to low effective internal friction angle. In space, it is relatively low in the
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upstream and downstream river and high in the midstream river. On the other hand, the
average cohesion of silty loams in the study area is 22.99 kPa, belonging to the low cohesion
level. In space, it is relatively high in the upstream and downstream river and low in the
midstream river.

(2) A relationship between stability inter-controlled factors of fine-grained sediments and
outbreak probability of debris flow disasters has been discussed.

The outbreak of debris flow is the result of the comprehensive effects of sediment
seepage field and stress field. Sediments with high stability (low permeability coefficient
and high shear strength) are less prone to erosion, thus providing fewer material sources
and forming a less dangerous debris flow disaster. On the contrary, sediments with low
stability (high permeability coefficient and low shear strength) can provide more material
sources to form a larger-scale and more dangerous debris flow disaster.
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