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Abstract: Modern marine ranching construction has drawn growing attention of relevant planning
authorities and enterprises with the potential value of oceans becoming apparent. To satisfy the
demand for a successful marine ranching construction, site selection is considered as the first and
fundamental procedure. This work aims to help planning authorities find the optimal marine
ranching site by introducing a methodological evaluation framework for solving this critical problem.
Firstly, the advanced CRiteria Importance Through Inter-criteria Correlation (CRITIC) method is
extended by using a cloud model to determine the relative importance of attributes in marine
ranching site selection problems. Secondly, the Evaluation based on Distance from Average Solution
(EDAS) method is developed by integration with the cloud model to obtain the ranks of alternative
sites for marine ranching construction. The proposed cloud model-based CRITIC-EDAS method
considers the fuzziness and randomness of the linguistic terms given by experts simultaneously to
ensure the scientificity and rationality of decision making. Finally, a real-world marine ranching
site selection problem is solved by using the proposed model, where the efficiency and reliability of
the proposed model are verified according to the comparison with other traditional multi-attribute
decision-making methods.

Keywords: marine ranching site selection; cloud model; CRITIC method; EDAS method

1. Introduction

With the potential value of oceans becoming apparent, coastal countries attach great im-
portance to the conservation, protection and sustainable utilization of marine resources [1].
As an effective measure for fishery resource enhancement and ecological restoration, marine
ranching has received increasing attention all over the world [2–4]. Marine ranching has
experienced two versions: the version 1.0 was characterized by the placement of artificial
reefs and the proliferation and release of fishery resources based on farming, ranching and
engineering techniques; the version 2.0 was characterized by ecologicalization and informa-
tization with the purpose of protecting the environment and enhancing fishery resources.
Nowadays, with the development of digitalization and systematization, China pays great
effort to establish modern marine ranching, a novel pattern which can be considered as
marine ranching version 3.0. In November 2021, China officially released the first national
standard for marine ranching building, the ‘Technical Guidelines for Marine Ranching
construction’, indicating that marine ranching 3.0, a type of whole-area aquatic pasture
covering both fresh water and sea water, is coming.

On the premise of ensuring the safety of the environment and fishery resources,
modern marine ranching promotes coordinated development of marine ranching, energy
exploitation, tourism, facility-based breeding and other industries. It has been suggested to
implement a development pattern conducive to the entire industrial chain covering site
selection, layout, habitat restoration, resource conservation, safety assurance and integrated
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development, thus boosting global aquatic ecological ranching [5]. It is clear that in the
industrial chain of modern marine ranching construction, site selection is the first and
fundamental step, which is directly related to the success of the project [6]. A poorly
executed site selection for marine ranching may affect ecosystem functions and services
with negative environmental, social and economic consequences [7]. Therefore, the main
aim of this research study is to evaluate alternative sites for marine ranching and select an
optimal site by using a multi-attribute decision-making technique.

1.1. Aims of This Study

This study intends to address the modern marine ranching site selection problem
from the MADM perspective. Marine ranching 3.0 is a new fussiness pattern, which
integrates environmental protection, resource conservation and sustainable production of
fishery resources to supply high-quality protein and ensure the security of the offshore
ecosystem. Although a few research studies are devoted to the site selection problem of
artificial reefs, they are not applicable for modern marine ranching, so both a practical and
a methodological evaluation framework for solving modern marine ranching site selecting
problems is still missing. Therefore, an index system for marine ranching evaluation with
five primary indices and sixteen secondary indices has been identified, which aims to
provide a practical framework for relevant planning authorities to be used when evaluating
feasible sites for modern marine ranching. Also, this study aims to introduce an advanced
multi-attribute decision-making approach for determining the optimal marine ranching
site. The approach is based on the integration of the CRiteria Importance Through Inter-
criteria Correlation (CRITIC) method and the Evaluation based on Distance from Average
Solution (EDAS) method with linguistic information by introducing a cloud model theory.
The proposed cloud model-based CRITIC-EDAS approach can also be used to solve other
complex multi-attribute decision-making problems in reality. In addition, this research
proposes real-world guidelines for selecting the optimal site for modern marine ranching by
using a case study of the city of Yantai in China. In the real case, Yantai intends to construct
a novel marine ranching complex with the functions of marine culture, sea sightseeing,
leisure fishing, ocean science, and supplying seafood as well as sea accommodation. The
rendering for the main building of the marine ranching complex is depicted in Figure 1, the
Chinese character identification of the image is the project name. and six marine areas have
been selected as alternative sites for the marine ranching construction as shown in Figure 2.
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1.2. Motivation for Developing a Cloud Model-Based CRITIC-EDAS

Owing to the external environment’s variability and complexity and to human cog-
nition incompleteness, it is difficult for experts to quantify their cognition with a precise
number. For example, a precise number of plant plankton biomass of a marine ranching
site can only be obtained at some fixed monitoring points, and it may lose some critical
information such as the dynamics and variance of the index. Therefore, linguistic terms
have become popular tools in modeling various decision-making problems in reality, as
people tend to rely on language to express their opinion rather than exact numbers. For
example, natural language such as ‘extremely low’ or ‘too high’ can be used by decision
makers to deliver their cognition about the plant plankton biomass of marine ranching
sites with fuzziness and uncertainty. Linguistic decision-making problems can be divided
into three main types of research: linguistic computational models based on membership
functions [8,9], linguistic symbolic models based on ordinal scales [10,11] and two-tuple
linguistic models [12,13]. Another character of marine ranching site selection problems
is the randomness of data. The first linguistic model can only describe fuzziness but not
randomness, and the last two linguistic models cannot produce a clear description of
either fuzziness or randomness. Therefore, the cloud model theory is introduced to solve
linguistic MADM problems [14].

The cloud model theory, a description of the qualitative concept, is developed on
the fundamentals of the probability theory and the fuzzy set theory and manipulates the
issue that membership degrees are accurate in the fuzzy set theory through allowing a
stochastic disturbance of the membership degree encircling a determined central value [15].
More specifically, the cloud model employs a large number of discrete points to depict
the vagueness and randomness of experts’ uncertain preferences, and then uses three
quantitative numerical characteristics to describe the distribution of elements, in which the
objective and interchangeable transformation between qualitative concepts and quantitative
values becomes possible. Due to the advantage of the cloud model in reflecting fuzziness
and randomness simultaneously, it has been successfully employed to construct extended
MADM methods such as cloud AHP [16], cloud TOPSIS [17], cloud VIKOR [18] and cloud
CoCoSo [19], and applied in solving realistic practices such as sustainable supplier selection,
informatization project evaluation, online education satisfaction assessment, vulnerability
assessment for urban road network traffic systems and so on [20–23]. Some typical MADM
methods combined with the cloud model are summarized in Table 1.
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Table 1. Related studies combining the cloud model with MADM methods.

MADM Methods Evaluations Applications Reference

AHP Intervals Select a house by home buyers [16]

TOPSIS Linguistic terms Online education satisfaction
assessment [20]

VIKOR Linguistic terms Evaluate the risk of an
informatization project [18]

CoCoSo Linguistic terms Select a trusted cloud service
provider [21]

Complex network Crisp numbers Vulnerability assessment for traffic
systems [22]

TOPSIS Rough numbers Sustainable supplier selection [23]

The CRITIC method, a well-known multi-attribute decision-making technique pro-
posed by Diakoulaki, was developed to calculate the relative importance of attributes and
alternatives in decision-making processes [24]. CRITIC takes into account the standard
deviation (S.D.) and correlation coefficient (C.C.) to determine the significance and impact
of each attribute on the overall decision outcome, which considers the fluctuation of data to
synthesize the weight values of attributes, and helps to reduce the negative impact of the
extreme values of weights of individual data within the evaluation system [25]. Recently,
CRITIC has been extensively extended to interval-valued intuitionistic fuzzy [26], linguistic
Pythagorean fuzzy [23], probabilistic uncertain linguistic [27], Fermatean fuzzy [28], picture
fuzzy [29] and type-2 fuzzy [30] environments, as listed in Table 2. Hence, an extension of
the CRITIC method with the cloud model is still missing. A combination of CRITIC and
the cloud model can be valuable for researchers and practitioners as the existing CRITIC
methods are unable to handle fuzziness and randomness of realistic decision-making prob-
lems [31–33]. To fill this significant research gap, this study introduces a cloud model-based
CRITIC method to determine the importance of evaluation attributes for marine ranching
site selection [34,35].

Table 2. Studies related to the CRITIC method.

Environments Applications Reference

Interval-valued intuitionistic fuzzy sets Transportation mode selection [16]

Linguistic Pythagorean fuzzy sets Industrial waste management
technique selection [20]

Probabilistic uncertain linguistic sets Site selection for hospital
constructions [27]

Fermatean fuzzy sets - [21]
Picture fuzzy sets Wearable health technology selection [29]
Type-2 fuzzy sets Site selection for nursing homes [30]

EDAS is one of the recently developed methods for alternative prioritization in various
complicated multi-attribute decision-making problems [36]. In traditional distance-based
methods such as TOPSIS and VIKOR, the best alternative is determined by using the
distances to positive ideal solutions (PIS) and negative ideal solutions (NIS). However, in
many realistic MADM problems, lower distance to PIS and higher distance to NIS would
not guarantee to get the optimal solution [37]. Therefore, EDAS utilizes two distance
measures named positive distance from average value and negative distance from average
value to determine the ranking order. As it provides a robust ranking of alternatives, a
simple algorithm and calculation swiftness, EDAS has turned into one of the popular and
frequently used method to efficiently tackle realistic complex decision-making problems,
and been extended by implementing different uncertainty sets, such as fuzzy sets [38],
probabilistic hesitant fuzzy sets [19], q-rung orthopair fuzzy sets [39], linguistic intuitionistic
fuzzy sets [40], picture fuzzy soft sets [24], and interval-type 2 fuzzy sets [41], as listed
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in Table 3. However, all the extended EDAS models only represent uncertainties such as
fuzziness, imprecision and vagueness, and they cannot handle decision-making problems
with fuzziness as well as randomness. To fill this important research gap, this study
introduces a cloud model-based EDAS method to rank alternatives and reveal the optimal
marine ranching site.

Table 3. Studies related to the EDAS method.

Environments Applications Reference

Fuzzy sets Supplier selection [16]

Probabilistic hesitant fuzzy sets Selection of commercial vehicles and
green suppliers [20]

Q-rung orthopair fuzzy sets Supplier selection in the defense industry [24]

Linguistic intuitionistic fuzzy sets Selection of houses and travel
destinations [21]

Picture fuzzy soft sets Robotic agrifarming [24]

Interval-type 2 fuzzy sets Route selection of petroleum
transportation [30]

1.3. Contribution of This Study

The main objective of this study is to construct a multi-attribute group decision-making
technique that can assist governments and enterprises in evaluating and selecting optimal
marine ranching sites. The main contributions of this research, which might also be viewed
as its distinctive strengths or benefits, can be depicted as follows:

• This study constructs a methodology for marine ranching site selection by considering
fuzziness and randomness simultaneously. Existing decision-making approaches for
marine ranching site selection only take into account the fuzziness of data, while the
data collected by detectors and the linguistic terms given by experts are random due
to the dynamics and volatility of sample points and human cognition. Therefore, a
cloud model is first introduced to reveal the fuzziness and randomness of data in
marine ranching site selection problems.

• A new method for determining the relative importance of attributes in marine ranching
site selection problems is proposed by integrating CRITIC and the cloud model. The
collected evaluation values are transferred from linguistic terms into corresponding
clouds, and then the CRITIC approach is extended to handle these clouds in order to
obtain the weights of attributes.

• A novel model, named cloud model-based EDAS, is developed to determine the ranks
of alternatives in marine ranching site selection problems. The proposed model obtains
the final evaluation scores of alternative sites in the form of clouds, which reserve
the fuzziness and randomness of evaluation results in order to determine the optimal
alternative for marine ranching site selection in a scientific way.

• A real-world marine ranching site selection problem in the city of Yantai is solved by
using the cloud model-based CRITIC-EDAS model. Firstly, an evaluation attribute
system for modern marine ranching site selection problems is determined from a
comprehensive perspective, and then, by transforming linguistic evaluation values
into clouds, the proposed model is utilized to obtain the optimal site for marine
ranching in Yantai city.

• A comparison of the proposed model with the existing approaches is conducted in the
same case to demonstrate its superiority and consistency.

1.4. Organization of This Study

This research is structured as follows: Section 2 presents the preliminaries. Section 3
explores a comprehensive framework of the cloud model-based CRITIC-EDAS model for
marine ranching site selection. In Section 4, a real-world case study of the city of Yantai is
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explored, with an extensive comparative analysis with other methods. Section 5 presents
the conclusions and implications.

2. Preliminaries

In this section, the definitions and some of the operations and measures of the cloud
are illustrated, and then the concept and properties of linguistic variables are outlined.

2.1. Cloud Model

The cloud model theory, derived from the probability theory and the fuzzy set theory,
is an artificial intelligence approach that can reflect the fuzziness and randomness of
concepts in human knowledge. It allows a stochastic disturbance of the membership degree
encircling a determined central value rather than a fixed number.

Definition 1 [14]. Let U be the universe of discourse and T be a qualitative concept in U. If x ∈ U
is a random instantiation of concept T, which satisfies x ∼ N

(
Ex, En′2) and En′ ∼ N

(
En, He2),

and if the certainty degree of x belonging to concept T satisfies

y = e
− (x−Ex)2

2(En′)2 (1)

then the distribution of x in the universe U is called a normal cloud (given as ‘cloud’ in the remainder of
the paper), which can be generally denoted as (Ex, En, He), and the cloud drop can be denoted as (x, y).

Figure 3 illustrates the cloud (10, 10, 1) with 600 cloud drops. It can be seen that the
thickness of the cloud is uneven, which reflects the randomness and fuzziness of the normal
cloud. The overall quantitative properties of a concept are described by the cloud using
three numerical characteristics: (1) expectation (Ex), the mathematical expectation that
the cloud drops belong to a concept in the universe; (2) entropy (En), which illustrates
the uncertainty measurements of a qualitative concept, specifically randomness and fuzzi-
ness [37]; and (3) hyper entropy (He), the degree of uncertainty of En, i.e., the second-order
entropy of the entropy. Additionally, the coverage and discrete degree of clouds have
obvious differences: the larger the entropy, the larger the distribution range; the larger the
hyper entropy, the bigger the discrete degree [38].

Water 2024, 16, x FOR PEER REVIEW 6 of 25 
 

 

explored, with an extensive comparative analysis with other methods. Section 5 presents 
the conclusions and implications. 

2. Preliminaries 
In this section, the definitions and some of the operations and measures of the cloud 

are illustrated, and then the concept and properties of linguistic variables are outlined. 

2.1. Cloud Model 
The cloud model theory, derived from the probability theory and the fuzzy set the-

ory, is an artificial intelligence approach that can reflect the fuzziness and randomness of 
concepts in human knowledge. It allows a stochastic disturbance of the membership de-
gree encircling a determined central value rather than a fixed number. 

Definition 1. [14]. Let 𝑈 be the universe of discourse and 𝑇 be a qualitative concept in 𝑈. If 𝑥 ∈

𝑈  is a random instantiation of concept 𝑇 , which satisfies 𝑥 ∼ 𝑁(𝐸𝑥,  𝐸𝑛′ଶ)  and 𝐸𝑛′ ∼

𝑁(𝐸𝑛,  𝐻𝑒ଶ), and if the certainty degree of 𝑥 belonging to concept 𝑇 satisfies 

𝑦 = 𝑒
ି

(௫ିா௫)మ

ଶ(ா′)మ  (1)

then the distribution of 𝑥 in the universe 𝑈 is called a normal cloud (given as ‘cloud’ in 
the remainder of the paper), which can be generally denoted as (𝐸𝑥,  𝐸𝑛, 𝐻𝑒), and the 
cloud drop can be denoted as (𝑥, 𝑦). 

Figure 3 illustrates the cloud (10,10,1) with 600 cloud drops. It can be seen that the 
thickness of the cloud is uneven, which reflects the randomness and fuzziness of the nor-
mal cloud. The overall quantitative properties of a concept are described by the cloud 
using three numerical characteristics: (1) expectation (𝐸𝑥), the mathematical expectation 
that the cloud drops belong to a concept in the universe; (2) entropy (𝐸𝑛), which illustrates 
the uncertainty measurements of a qualitative concept, specifically randomness and fuzz-
iness [37]; and (3) hyper entropy (𝐻𝑒), the degree of uncertainty of 𝐸𝑛, i.e., the second-
order entropy of the entropy. Additionally, the coverage and discrete degree of clouds 
have obvious differences: the larger the entropy, the larger the distribution range; the 
larger the hyper entropy, the bigger the discrete degree [38]. 

 
Figure 3. A cloud (10, 10, 1) with 600 cloud drops and its numerical characters. Figure 3. A cloud (10, 10, 1) with 600 cloud drops and its numerical characters.

Definition 2 [39]. Let A(Ex1, En1, He1) and B(Ex2, En2, He2) be two arbitrary clouds in the
domain U. Some basic operations between cloud A and cloud B are defined as follows:
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(1) A + B =
(

Ex1 + Ex2,
√

En2
1 + En2

2,
√

He2
1 + He2

2

)
(2) A − B =

(
Ex1 − Ex2,

√
En2

1 + En2
2,
√

He2
1 + He2

2

)
(3) A × B =

(
Ex1Ex2,

√
(En1Ex2)

2 + (En2Ex1)
2,
√
(He1Ex2)

2 + (He2Ex1)
2
)

(4) λA =
(

λEx1,
√

λEn1,
√

λHe1

)
(5) Aλ =

(
Exλ

1 ,
√

λExλ−1
1 En1,

√
λExλ−1

1 He1

)
Especially when En = He = 0, a cloud (Ex, En, He) degenerates to a numerical

number. In other words, a numerical number a can be expressed as a cloud (a, 0, 0).
Therefore, the operations between a cloud A(Ex, En, He) and a numerical number a can be
obtained by using (a, 0, 0) according to Definition 2.

Definition 3 [40]. Assume that Ω is the set of all clouds and wi(Exi, Eni, Hei) (i = 1, 2, · · · , n) is
a subset of Ω, a mapping of CWAA: Ωn → Ω is defined as the cloud-weighted arithmetic averaging
(CWAA) operator by

CWAA(A1, A2, · · · , An) =

(
∑n

i=1 wiExi,
√

∑n
i=1 wiEni

2,
√

∑n
i=1 wi Hei

2
)

(2)

where w = (w1, w2, · · · , wn) is the associated weight vector of Ai(Exi, Eni, Hei), satisfying
wi ∈ [0, 1] and ∑n

i=1 wi = 1.

In particular if w =
(

1
n , 1

n , · · · , 1
n

)
, then the CWAA operator degenerates to the CAA

operator as

CAA(A1, A2, · · · , An) =

(
1
n∑n

i=1 Exi,
1√
n

√
∑n

i=1 Eni
2,

1√
n

√
∑n

i=1 Hei
2
)

(3)

Definition 4 [41]. Given a cloud drop (x, y), its contribution to concept T can be measured by the
score function s = xy. Regarding a cloud A(Ex, En, He) with n cloud drops (xi, yi), we denote
the expected value ŝ(A) as the overall score for cloud A to concept T as follows:

ŝ(A) =
1
n∑n

i=1 xiyi (4)

Wang et al. proposed a method based on Monte Carlo simulation by using the
forward generator of the cloud to obtain the expected value ŝ. And using Definition 4, the
comparison method between clouds can be obtained as the following: with regard to two
clouds A and B, if ŝ(A) ≥ ŝ(B), then A ≥ B.

Definition 5 [42]. Let A(Ex1, En1, He1) and B(Ex2, En2, He2) be two arbitrary clouds in the
domain U. The Hamming distance between the two clouds can be defined as follows:

DH(A, B) =
∣∣∣∣(1 − En1 + He1

Ex1

)
Ex1 −

(
1 − En2 + He2

Ex2

)
Ex2

∣∣∣∣ (5)

2.2. Linguistic Variables

The concept of linguistic variables is used to deal with the cases which are too complex
or too ill-defined to be reasonably represented by quantitative expressions [17].

Definition 6 [43]. Let L = {Li|i = −g, . . . , 0, . . . , g, g ∈ N∗} be a finite and totally ordered
discrete linguistic term set, where Li represents a possible value for a linguistic variable. Then, the
linguistic term set L has the following characteristics:

(1) The set is ordered: Li > Lj if and only if i > j;
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(2) There is the negation operator: neg(Li) = L−i.

For example, a set of seven terms L can be defined as follows:

L = {L−3 = very poor, L−2 = poor, L−1 = moderately poor, L0 = moderate,

L1 = moderately good, L2 = good, L3 = very good.}

So far, there are two perspectives to transform linguistic variables into clouds. One is
using the golden ratio to generate the values of expectation, entropy and hyper entropy [18],
the other is obtaining the characters by use of a linguistic scale function [18]. In this paper,
we improve the former one by using the linguistic term sets with symmetric subscripts.

Definition 7. [44]. Assume that the effective domain U = [Xmaxmin] and let L =
{Li|i = −g, . . . , 0, . . . , g, g ∈ N∗} be a linguistic term set. Then, the 2g + 1 basic clouds can be
generated based on the golden segmentation method as follows:

A−g
(
Ex−g, En−g, He−g

)
, A−(g−1)

(
Ex−(g−1), En−(g−1), He−(g−1)

)
, A0(Ex0, En0, He0), . . .

, Ag
(
Exg, Eng, Heg

)
,

where

Exi = X i+g
2g min

maxmin
;

En0 = 0.382(Xminmax ; Eni = En0/
(

0.618|i|
)

, i = −g, · · · , 0, · · · , g;

Hei = He0/
(

0.618|i|
)

, i = −g, · · · , 0, · · · , g.

Note that the effective domain U = [Xmaxmin] and He0 need to be designated in advance.

Example 1. Given the universe U = [10, 20] and He0 = 0.02, then a 5-label linguistic term set
L = {L−2 = poor, L−1 = moderately poor, L0 = moderate, L1 = moderately good, L2 = good}
can be transformed into five clouds as

A−2(10, 0.667, 0.052), A−1(12.5, 0.412, 0.032), A0(15, 0.255, 0.02),
A1(17.5, 0.412, 0.032) and A2(20, 0.667, 0.052).

And the depictions of the five clouds are given in Figure 4.
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3. An Innovative CRITIC-EDAS Approach Based on the Cloud Model

In this section, we focus on discussing a novel MAGDM approach for site selection for
marine ranching. Firstly, the framework of the proposed model is depicted; then, a cloud
model-based CRITIC method for weighting attributes and a cloud model-based EDAS
method for ranking alternatives are illustrated.

3.1. Framework of the Proposed Model

The proposed model in this section is divided into two phases. The first one is a cloud
model-based CRITIC method for calculating the weight of attributes for marine ranching
site selection, and the second one is a cloud model-based EDAS method for evaluating and
ranking alternative marine ranching sites. The specific procedure of the proposed model is
depicted in Figure 5.

Water 2024, 16, x FOR PEER REVIEW 9 of 25 

Figure 4. Clouds derived from a 5-label linguistic term set (where 𝑈 = [10,  20] and 𝐻𝑒 = 0.02). 

3. An Innovative CRITIC-EDAS Approach Based on the Cloud Model
In this section, we focus on discussing a novel MAGDM approach for site selection 

for marine ranching. Firstly, the framework of the proposed model is depicted; then, a 
cloud model-based CRITIC method for weighting aĴributes and a cloud model-based 
EDAS method for ranking alternatives are illustrated. 

3.1. Framework of the Proposed Model 
The proposed model in this section is divided into two phases. The first one is a cloud 

model-based CRITIC method for calculating the weight of aĴributes for marine ranching 
site selection, and the second one is a cloud model-based EDAS method for evaluating 
and ranking alternative marine ranching sites. The specific procedure of the proposed 
model is depicted in Figure 5. 

Phase Ⅰ
Weight calculation of attributes by cloud model-based CRITIC

Step 1: Obtain linguistic evaluation matrices of 
experts

Step 2: Transform into cloud evaluation matrices

Step 3: Construct group cloud decision matrix

Step 4: Construct normalized cloud decision matrix

Step 5: Identify correlation coefficient matrix

Step 6: Calculate the indexes of attributes

Step 7: Determine the weights of attributes

Phase Ⅱ
Ranking of alternatives by cloud model-based EDAS

Step 1: Construct normalized cloud decision matrix

Step 2: Determine cloud average solution vector

Step 3: Construct CPDA matrix and CNDA matrix

Step 4: Calculate weighted arithmetic average of 
CPDA & CNDA matrices

Step 5: Normalize weighted arithmetic average of 
CPDA & CNDA matrices

Step 6: Determine the cloud appraisal scores

Step 7: Identify the final ranking of alternatives

Figure 5. The framework of cloud model-based CRITIC-EDAS approach. 

3.2. Cloud Model-Based CRITIC Methodology 
The CRITIC method, an objective weighting method, was first proposed by Dia-

koulak in 1995 [45]. In this section, an extension to the classical CRITIC method is pre-
sented by using the cloud model. The procedure of the cloud CRITIC is illustrated as fol-
lows. 
Step 1. Obtain the linguistic evaluation matrix of expert 𝑒. 

Gather the information from experts in the form of linguistic variables and form de-
cision matrices for each expert. For the kth decision maker 𝑒 (𝑘 = 1,2, ⋯ , 𝑠) we have the 
linguistic evaluation matrix as 

Figure 5. The framework of cloud model-based CRITIC-EDAS approach.

3.2. Cloud Model-Based CRITIC Methodology

The CRITIC method, an objective weighting method, was first proposed by Diakoulak
in 1995 [45]. In this section, an extension to the classical CRITIC method is presented by
using the cloud model. The procedure of the cloud CRITIC is illustrated as follows.

Step 1. Obtain the linguistic evaluation matrix of expert ek.

Gather the information from experts in the form of linguistic variables and form
decision matrices for each expert. For the kth decision maker ek (k = 1, 2, · · · , s) we have
the linguistic evaluation matrix as

Dk =


Lk

11 Lk
12 · · · Lk

1n
Lk

21 Lk
22 · · · Lk

2n
...

...
...

...
Lk

m1 Lk
m2 · · · Lk

mn

 (6)

where Lk
ij is an assessment value for the ith alternative with respect to the jth attribute, a

linguistic variable assigned by the kth expert.
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Step 2. Transform to cloud evaluation matrices.

Determine the label of a linguistic term set and transform linguistic variables into
clouds by using Definition 7. Then, the linguistic evaluation matrix Dk of expert ek can be
transformed into a cloud evaluation matrix as

D′
k =



(
Exk

11, Enk
11, Hek

11

) (
Exk

12, Enk
12, Hek

12

)
· · ·

(
Exk

1n, Enk
1n, Hek

1n

)(
Exk

21, Enk
21, Hek

21

) (
Exk

22, Enk
22, Hek

22

)
· · ·

(
Exk

2n, Enk
2n, Hek

2n

)
...

...
...

...(
Exk

m1, Enk
m1, Hek

m1

) (
Exk

m2, Enk
m2, Hek

m2

)
· · ·

(
Exk

mn, Enk
mn, Hek

mn

)

 (7)

where
(

Exk
ij, Enk

ij, Hek
ij

)
is the transformed cloud used to assess the ith alternative with

respect to the jth attribute by the kth expert.

Step 3. Construct a group cloud decision matrix.

Denote the weights of experts as ω = (ω1, ω2, · · · , ωs). By using the cloud-weighted
arithmetic averaging (CWAA) operator as Equation (2), we can aggregate s cloud evaluation
matrices D′

k (k = 1, 2, · · · , s) and generate an integrated group cloud decision matrix as

A =
[

Aij

(
Exij, Enij, Heij

)]
m×n

=


A11(Ex11, En11, He11) A12(Ex12, En12, He12) · · · A1n(Ex1n, En1n, He1n)
A21(Ex21, En21, He21) A22(Ex21, En21, He21) · · · A2n(Ex21, En21, He21)

...
...

...
...

Am1(Exm1, Enm1, Hem1) Am2(Exm2, Enm2, Hem2) · · · Amn(Exmn, Enmn, Hemn)

 (8)

where

Aij(Exij, Enij, Heij) = CWAA(A1
ij, A2

ij, · · · , As
ij) =

(
∑s

k=1 ωkExk
ij,

√
∑n

i=1

(
ωkEnk

ij

)2
,

√
∑n

i=1

(
ωk Hek

ij

)2
)

(9)

Step 4. Construct a normalized cloud decision matrix.

The group cloud decision matrix given in Equation (8) is normalized, both for benefit
type attributes and cost type attributes, by using Equation (10):

Bij =



Aij − min
i
(Exij)

max
i

(Exij)− min
i
(Exij)

, for beneficial attributes

max
i

(Exij)− Aij

max
i

(Exij)− min
i
(Exij)

, for cost attributes

(10)

where Bij denotes the normalized cloud for the ith alternative with respect to the jth
attribute. max

i
(Exij) and min

i
(Exij) represent, respectively, the maximal expectation and

the minimal expectation among the clouds under the jth attribute.
Then, we can obtain the normalized cloud decision matrix as

B =
[
Bij
(
Exij, Enij, Heij

)]
m×n

=


B11(Ex11, En11, He11) B12(Ex12, En12, He12) · · · B1n(Ex1n, En1n, He1n)
B21(Ex21, En21, He21) B22(Ex21, En21, He21) · · · B2n(Ex21, En21, He21)
...

...
...

...
Bm1(Exm1, Enm1, Hem1) Bm2(Exm2, Enm2, Hem2) · · · Bmn(Exmn, Enmn, Hemn)

 (11)

Step 5. Identify the correlation coefficient.

In traditional CRITIC, the conflicting relationships between attributes are captured
with the help of the Pearson correlation. Székely et al. introduced a distance-based
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correlation measure [46], and then many research studies developed a D-CRITIC method
from the perspective of distance correlation [47]. Therefore, by using Hamming distance
measures between clouds in Definition 5, a distance-based correlation coefficient, ρjk,
among all attributes is introduced as follows

ρjk =
∑m

i=1 DH(Bij, Bj
)

DH(Bik, Bk
)√

∑m
i=1 DH

(
Bij, Bj

)2
∑m

i=1 DH
(

Bik, Bk
)2

(12)

where Bj and Bk denote the mean values of the jth and kth attributes by using the CAA
operator in Equation (3) as Bj = CAA

(
B1j, B2j, · · · , Bmj

)
and Bk = CAA(B1k, B2k, · · · , Bmk).

The distance-based correlation coefficient ρjk provides a numerical value that indicates
the degree of association of the jth attribute with the kth attribute. The value satisfies
ρjk ∈ [0, 1], providing a scale for measuring the relationship among attributes. In this step,

the symmetrical distance-based correlation coefficient matrix is formed as
[
ρjk

]
n×n

.

Step 6. Calculate the index of each attribute.

Compute the information content represented in the index of the jth attribute as fol-
lows:

Ij = σj∑n
k=1

(
1 − ρjk

)
(13)

where σj indicates the standard deviation of the jth attribute, which is defined as

σj =

√
∑m

i=1 DH
(

Bij, Bj
)2

m − 1
(14)

Step 7. Determine the weights of attributes.

The weight of the jth attribute can be calculated as

wj =
Ij

∑n
j=1 Ij

(15)

3.3. Cloud Model-Based EDAS Methodology

Ranking alternatives and selecting the best one is another critical process in MADM
problems. In this section, an extension to the classical EDAS method is presented, where
the cloud model is incorporated. The procedure of the cloud EDAS is depicted as follows.

Step 1. Construct a normalized cloud decision matrix.

Gather the information from experts in the form of linguistic variables, and, by using
the procedure of Step 1–4 in Section 3.2, the normalized group cloud decision matrix B can
be constructed as follows:

B =
[
Bij
(
Exij, Enij, Heij

)]
m×n

=


B11(Ex11, En11, He11) B12(Ex12, En12, He12) · · · B1n(Ex1n, En1n, He1n)
B21(Ex21, En21, He21) B22(Ex21, En21, He21) · · · B2n(Ex21, En21, He21)
...

...
...

...
Bm1(Exm1, Enm1, Hem1) Bm2(Exm2, Enm2, Hem2) · · · Bmn(Exmn, Enmn, Hemn)

 (16)

Step 2. Determine the cloud average solution vector.

The cloud average solution vector can be expressed as

CAV = [CAV1, CAV2, · · · , CAVn]1×n (17)
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where CAVj indicates the cloud average solution of the jth attribute, which is denoted as

CAVj = CAA
(

B1j, B2j, · · · , Bmj
)

(18)

Actually, CAVj is the mean value Bj in the cloud CRITIC method. In order to keep
consistent with the traditional EDAS, we still use CAVj in the proposed approach to indicate
the cloud average solution of the jth attribute.

Step 3. Construct the cloud positive distance from the average matrix and the cloud nega-
tive distance from the average matrix.

Calculate two important distance measures, the cloud positive distance from average
(CPDA) and the cloud negative distance from average (CNDA), both for benefit type
attributes and cost type attributes as follows:

CPDAij =


max

(
0,
(

Bij − CAVj
))

ExCAVj

for benefit attributes

max
(
0,
(
CAVj − Bij

))
ExCAVj

for cost attributes
(19)

CNDAij =


max

(
0,
(
CAVj − Bij

))
ExCAVj

for benefit attributes

max
(
0,
(

Bij − CAVj
))

ExCAVj

for cost attributes
(20)

where ExCAVj is the expectation of the cloud CAVj.
After obtaining the two cloud distance measures from the average of all the evaluation

information in B, the CPDA matrix and the CNDA matrix can be determined as follows:

CPDA =


CPDA11 CPDA12 · · · CPDA1n
CPDA21 CPDA22 · · · CPDA2n

...
...

...
...

CPDAm1 CPDAm2 · · · CPDAmn

 (21)

CNDA =


CNDA11 CNDA12 · · · CNDA1n
CNDA21 CNDA22 · · · CNDA2n

...
...

...
...

CNDAm1 CNDAm2 · · · CNDAmn

 (22)

Step 4. Calculate the weighted arithmetic average of CPDA and CNDA.

The weighted sums of CPDA and CNDA for each alternative can be calculated by
using the CWAA operator shown in Equation (2), respectively, as follows:

SCPi = CWAA(CPDAi1, CPDAi2, · · · , CPDAin) (23)

SCNi = CWAA(CNDAi1, CNDAi2, · · · , CNDAin) (24)

SCPi represents the weighted sum of the positive distance of the ith alternative from the
average solution, SCNi represents the weighted sum of the negative distance of the ith alternative
from the average solution. And the weights of attributes can be obtained by cloud CRITIC.

Step 5. Normalize the values of SCPi and SCNi.

The normalized weighted sum values of CPDA and CNDA can be obtained as follows:

NSCPi =
SCPi

max
i

(ExSCPi )
(25)
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NSCNi = 1 − SCNi
max

i
(ExSCNi )

(26)

where max
i

(ExSCPi ) represents the maximal expectation of the clouds among the weighted

sum of CPDA, and max
i

(ExSCNi ) represents the maximal expectation of the clouds among

the weighted sum of CNDA.

Step 6. Determine the cloud appraisal scores.

The cloud appraisal score for the ith alternative can be calculated as

CASi =
NSCPi + NSCNi

2
(27)

Step 7. Determine the final ranking of alternatives.

Generate cloud drops of CASi based on Monte Carlo simulation by using the forward
generator of the cloud, and calculate the expected score value ŝ(CASi) for the ith alternative
by using Equation (4) in Definition 4. Arrange expected score values in descending order,
and then the alternative with the highest expected score value is chosen as the best choice.

4. Case Study: Marine Ranching Site Selection in Yantai
4.1. Problem Description

In order to protect natural ecosystems and enhance fishery resources, marine ranching
has been widely promoted as a novel production pattern of marine economy. China
attaches great importance to the development of modern marine ranching from version
1.0 to version 3.0, which is a new business form, by integrating environmental protection,
resource conservation, and sustainable production of fishery resources to supply high-
quality protein and ensure the security of the offshore ecosystem. Whether marine ranching
can play a role or not is intensively related to various factors derived from the ecological
environment and the social environment. Therefore, evaluating different areas and selecting
an optimal site for establishing marine ranching are the crucial procedures.

In recent years, Shandong province has been regarded as a strategic area for high-
quality economic and social development in China. As the central city of Shandong
Peninsula approved by the State council, an important port city around the Bohai Sea, and
a national historical and cultural city, Yantai is identified as a city vigorously developing
marine economy. By December 2022, Yantai had established 46 provincial marine ranching
demonstration zones and 20 national marine ranching demonstration zones. With the
increasing demand for marine ranching 3.0, Yantai intends to construct a novel marine
ranching complex with the functions of marine culture, sea sightseeing, leisure fishing,
ocean science, and supplying seafood as well as sea accommodation. According to the
preliminary investigation, six marine areas in Yantai have been selected as alternative
sites for marine ranching construction. The rendering for the main building of the marine
ranching complex and the sea areas of six alternative sites are depicted as shown in
Figures 1 and 2, respectively.

The marine ranching site selection problem can be illustrated as the following:

(1) Six marine areas were identified beforehand as alternative sites for further evaluation,
which are denoted as S = {S1, S2, S3, S4, S5, S6}.

(2) A committee composed of five experts was formed, denoted as E = {e1, e2, e3, e4, e5}.
All the experts are professionals in marine economy, consisting of two enterprise
managers, two governmental staff members and one college professor. In order
to reserve their evaluation information impartially, we consider that each expert
plays an equally important role, so the relative importance vector of the experts is
ω = (0.2, 0.2, 0.2, 0.2, 0.2).



Water 2024, 16, 688 14 of 24

(3) The decision committee collects the data according to the evaluation index system
as shown in Figure 6. The evaluation index system contains 5 primary indices and
16 secondary indices, which can be acquired by corresponding monitors. Table 1
shows the collected data of S1 among all the secondary indices. In order to reduce
complexity and interactivity among different secondary indices, experts evaluate
each alternative from five primary indices by using linguistic terms according to the
specific data of secondary indices. And the five primary indices are denoted as five
attributes in the marine ranching site selection problem:

• Physical environment (C1);
• Chemical environment (C2);
• Biological environment (C3);
• Engineering environment (C4);
• Social environment (C5).

(4) Collect the specific data of all the alternatives on 16 secondary indices, and then
experts evaluate alternatives on 5 primary attributes by using the following 7-label
linguistic terms:

L = {L−3 = extremely poor, L−2 = very poor, L−1 = poor, L0 = medium,
L1 = good, L2 = very good, L3 = extremely good}.

Here, ‘good’ indicates that alternatives perform well in the attributes and ‘poor’
indicates that alternatives perform badly in the attributes.

Take S1 for example. The data of S1 on 16 indices are detected and collected as shown
in Table 1, and then five experts evaluate S1 from five attributes according to the specific
data independently. Then, linguistic evaluating values of five experts are listed in the last
five columns of Table 4. At last, we can obtain the group linguistic evaluation information
as depicted in Table 5.

Table 4. Attributes for marine ranching site selection.

Primary Indices Secondary Indices Data of Indices e1 e2 e3 e4 e5

S1

Physical environment

Average depth 14.8 m

G M G VG MSediment particle size 0.2 mm

Dissolved oxygen 5.45 mg/L

Chemical environment

Inorganic nitrogen 1.67 mg/L

VG EG VG VG GSulfide content 63 mg/kg

Active phosphate 0.032 mg/L

Biological environment

Plant plankton biomass 125 × 104 ind/m3

G VG M M G
Zooplankton biomass 76.3 mg/m3

Benthic biomass 89.7 g/m2

Chlorophyll A 3.78 mg/m3

Engineering
environment

Bottom load 1.2 t/m2

EP VP VP VP VPSilt thickness 0.61 m

Seabed slope 4.1 m

Social environment

Fishery resource density 48 kg/m2

M P M G PDistance to scenic spots 7.8 km

Distance to
submarine pipeline 12.1 km
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Table 5. Linguistic assessment information of marine ranching sites from five experts.

C1 C2 C3 C4 C5

S1 L1, L0, L1, L2, L0 L2, L3, L2, L2, L1 L1, L2, L0, L0, L1 L−3, L−2, L−2, L−2, L−2 L0, L−1, L0, L1, L−1
S2 L1, L2, L0, L1, L1 L−1, L−2, L−2, L−2, L−1 L3, L3, L3, L2, L3 L−2, L−3, L−2, L−2, L−2 L0, L1, L1, L1, L0
S3 L−2, L−3, L−2, L−1, L−2 L1, L1, L2, L1, L1 L3, L2, L3, L3, L2 L2, L1, L2, L2, L1 L2, L1, L0, L1, L1
S4 L2, L1, L1, L2, L2 L2, L2, L3, L2, L2 L2, L1, L1, L0, L1 L1, L1, L1, L2, L1 L−1, L−2, L−2, L−2, L−1
S5 L2, L1, L2, L2, L2 L0, L1, L1, L−1, L0 L2, L1, L1, L2, L0 L−1, L0, L−1, L1, L0 L3, L2, L1, L2, L2
S6 L−1, L−2, L−1, L−1, L−1 L2, L2, L1, L3, L2 L−1, L−1, L−1, L0, L−2 L1, L2, L1, L1, L1 L1, L0, L0, L0, L1
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4.2. Assessing the Significance of Attributes Using Cloud CRITIC

Step 1. Collect the linguistic evaluation information of experts as described in Table 2.
Step 2. Transform the linguistic evaluation matrix of each expert into a cloud evaluation

matrix. Given the universe [Xmaxmin = [0, 10]], the 7-label linguistic term set can
be transformed to seven clouds by using the transformation rule in Definition 7.
Selecting He0 = 0.01, the transformed clouds are depicted in Table 6.

Table 6. Transformation from 7-label linguistic terms to clouds.

Linguistic Terms Clouds

EP (0.000, 0.771, 0.042)
VP (1.667, 0.476, 0.026)
P (3.333, 0.294, 0.016)
M (5.000, 0.182, 0.010)
G (6.667, 0.294, 0.016)

VG (8.333, 0.476, 0.026)
EG (10.000, 0.771, 0.042)

Step 3. Compile all decision matrices and create an aggregated cloud decision matrix
A =

[
Aij
(
Exij, Enij, Heij

)]
m×n. In these cases, we consider that the all the experts

possess the same significance; therefore, we use the CAA operator depicted in
Equation (3) to aggregate cloud evaluation information. The group cloud decision
matrix is shown in Table 7.
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Table 7. Aggregated cloud decision matrix.

C1 C2 C3 C4 C5

S1 (6.333, 0.305, 0.017) (8.333, 0.522, 0.028) (6.333, 0.305, 0.017) (1.334, 0.548, 0.030) (4.667, 0.255, 0.014)
S2 (6.667, 0.322, 0.018) (2.333, 0.413, 0.023) (9.667, 0.722, 0.039) (1.334, 0.548, 0.030) (6.000, 0.255, 0.014)
S3 (1.667, 0.522, 0.028) (7.000, 0.338, 0.018) (9.333, 0.669, 0.036) (7.667, 0.413, 0.023) (6.667, 0.322, 0.018)
S4 (7.667, 0.413, 0.023) (8.666, 0.548, 0.030) (6.667, 0.322, 0.018) (7.000, 0.338, 0.018) (2.333, 0.413, 0.023)
S5 (8.000, 0.446, 0.024) (5.333, 0.255, 0.014) (7.000, 0.363, 0.020) (4.667, 0.255, 0.014) (8.333, 0.522, 0.028)
S6 (3.000, 0.338, 0.018) (8.333, 0.522, 0.028) (3.333, 0.322, 0.018) (7.000, 0.338, 0.018) (6.000, 0.255, 0.014)

Step 4. Normalize the aggregated cloud assessment information by using Equation (10).
The normalized cloud decision B =

[
Bij
(
Exij, Enij, Heij

)]
m×n is conducted as

shown in Table 8.

Table 8. Normalized cloud decision matrix.

C1 C2 C3 C4 C5

S1 (0.737, 0.211, 0.007) (0.947, 0.207, 0.011) (0.474, 0.121, 0.007) (0.000, 0.218, 0.012) (0.389, 0.104, 0.006)
S2 (0.790, 0.223, 0.007) (0.000, 0.164, 0.009) (1.000, 0.287, 0.016) (0.000, 0.218, 0.012) (0.611, 0.104, 0.006)
S3 (0.000, 0.361, 0.011) (0.737, 0.134, 0.007) (0.947, 0.266, 0.014) (1.000, 0.164, 0.009) (0.722, 0.132, 0.007)
S4 (0.947, 0.285, 0.009) (1.000, 0.218, 0.012) (0.526, 0.128, 0.007) (0.895, 0.134, 0.007) (0.000, 0.169, 0.009)
S5 (1.000, 0.308, 0.010) (0.474, 0.101, 0.006) (0.579, 0.144, 0.008) (0.526, 0.101, 0.006) (1.000, 0.213, 0.012)
S6 (0.210, 0.234, 0.007) (0.947, 0.207, 0.011) (0.000, 0.128, 0.007) (0.895, 0.134, 0.007) (0.611, 0.104, 0.006)

To demonstrate the process behind the values in Table 8, we provide a calculation ex-
ample specifically for B11 in the normalized cloud decision matrix. The maximal value and
minimal value for C1 are A51(8.000, 0.446, 0.024) and A31(1.667, 0.522, 0.028), respectively,
and then we can transfer A11 to a normalized value B11 by using Equation (10) as

B11 =
(6.333, 0.305, 0.017)− (1.667, 0.522, 0.028)

8.000 − 1.667
= (0.737, 0.211, 0.007)

Step 5. Calculate the distance correlation coefficient among all attributes.

The specific procedure of calculating correlation coefficients is shown in Tables 9–11.
Firstly, by using the CAA operator shown in Equation (3) we can obtain the mean value Bj
for attribute Cj, as illustrated in Table 9. Then, the Hamming distance between each cloud
assessment and the corresponding mean value is depicted by using Equation (5), as shown
in Table 10. By using Equation (12), we can obtain the correlation coefficient matrix shown
in Table 11.

Table 9. The mean values of attributes.

B1 B2 B3 B4 B5

(0.614, 0.275, 0.009) (0.684, 0.177, 0.010) (0.588, 0.192, 0.010) (0.553, 0.167, 0.009) (0.556, 0.144, 0.008)

Table 10. Aggregation of the Hamming distance
(

Bij, Bj

)
.

C1 C2 C3 C4 C5

S1 0.1893 0.2315 0.0394 0.6057 0.1252
S2 0.2299 0.6703 0.3123 0.6057 0.0971
S3 0.7019 0.0979 0.2818 0.4508 0.1794
S4 0.3230 0.2732 0.0061 0.3769 0.5820
S5 0.3523 0.1305 0.0415 0.0433 0.3712
S6 0.3607 0.2315 0.5203 0.3769 0.0971
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Table 11. Correlation coefficient matrix.

C1 C2 C3 C4 C5

C1 1.0000 0.6160 0.7393 0.7865 0.7357
C2 0.6160 1.0000 0.6860 0.8766 0.5713
C3 0.7393 0.6860 1.0000 0.7275 0.3138
C4 0.7865 0.8766 0.7275 1.0000 0.5981
C5 0.7357 0.5713 0.3138 0.5981 1.0000

Taking the correlation coefficient ρ12 between C1 and C2 for example, we have

ρ12 =
0.1893 × 0.2315 + 0.2299 × 0.6703 + · · ·+ 0.3607 × 0.2315√

(0.18932 + 0.22992 + · · ·+ 0.36072)× (0.23152 + 0.67032 + · · ·+ 0.23152)
= 0.6160

Step 6. Calculate the index Ij by using Equation (13), which is illustrated in Table 12. To
provide a clear understanding of how to obtain the index of each attribute, we use
C1 as an example.

Table 12. The values of indices and weights of attributes.

σj Ij wj

C1 0.4336 0.4866 0.1956
C2 0.3627 0.4534 0.1823
C3 0.3003 0.4605 0.1851
C4 0.4946 0.5001 0.2010
C5 0.3296 0.5870 0.2360

Firstly, we calculate the standard deviation of C1 by using Equation (14) as

σ1 =

√
0.18932 + 0.22992 + 0.70192 + 0.32302 + 0.35232 + 0.36072

6 − 1
= 0.4336

Then, the index of attribute C1 can be determined as

I1 = 0.4336 × ((1 − 1.0000) + (1 − 0.6160) + (1 − 0.7393) + (1 − 0.7865) + (1 − 0.7357)) = 0.4866.

Step 7. Calculate the weights of attributes by using Equation (14); the results are described
in the last column of Table 12.

For example, the weight of C1 can be calculated as

w1 =
0.4866

0.4866 + 0.4534 + 0.4605 + 0.5001 + 0.5870
= 0.1956

Therefore, we can determine the weight vector of the marine ranching site selection
problem as

W = (0.1956, 0.1823, 0.1851, 0.2010, 0.2360).

4.3. Evaluating Alternatives Using Cloud EDAS

After obtaining the weights of attributes, a cloud model-based EDAS method is
implemented to evaluate the alternative sites for marine ranching.

Step 1. Similar to the procedure depicted in the cloud CRITIC, the normalized group cloud
decision matrix can be constructed as shown in Table 8.

Step 2. Calculate the cloud average solution of each attribute, which is equivalent to the
mean value in the cloud CRITIC. Therefore, we can obtain the cloud average
solution vector as depicted in Table 13.
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Table 13. The cloud average solution vector.

CAV1 CAV2 CAV3 CAV4 CAV5

(0.614, 0.275, 0.009) (0.684, 0.177, 0.010) (0.588, 0.192, 0.010) (0.553, 0.167, 0.009) (0.556, 0.144, 0.008)

Step 3. Calculate the cloud positive distance from average (CPDA) matrix and the cloud
negative distance from average (CNDA) matrix as described in Equations (19) and (20)
by using the Hamming distance measure shown in Equation (5). The results are
depicted in Tables 14 and 15.

Table 14. The cloud positive distance from average (CPDA) matrix.

C1 C2 C3 C4 C5

S1 (0.200, 0.443, 0.014) (0.385, 0.330, 0.018) (0.000, 0.000, 0.000) (0.000, 0.000, 0.000) (0.000, 0.000, 0.000)
S2 (0.286, 0.452, 0.014) (0.000, 0.000, 0.000) (0.701, 0.450, 0.025) (0.000, 0.000, 0.000) (0.100, 0.238, 0.013)
S3 (0.000, 0.000, 0.000) (0.077, 0.269, 0.015) (0.612, 0.428, 0.023) (0.809, 0.315, 0.017) (0.300, 0.261, 0.014)
S4 (0.543, 0.506, 0.016) (0.461, 0.339, 0.019) (0.000, 0.000, 0.000) (0.619, 0.289, 0.016) (0.000, 0.000, 0.000)
S5 (0.629, 0.527, 0.017) (0.000, 0.000, 0.000) (0.000, 0.000, 0.000) (0.000, 0.000, 0.000) (0.800, 0.345, 0.019)
S6 (0.000, 0.000, 0.000) (0.385, 0.330, 0.018) (0.000, 0.000, 0.000) (0.619, 0.289, 0.016) (0.100, 0.238, 0.013)

Table 15. The cloud negative distance from average (CNDA) matrix.

C1 C2 C3 C4 C5

S1 (0.000, 0.000, 0.000) (0.000, 0.000, 0.000) (0.194, 0.296, 0.016) (1.000, 0.369, 0.020) (0.300, 0.238, 0.013)
S2 (0.000, 0.000, 0.000) (1.000, 0.292, 0.016) (0.000, 0.000, 0.000) (1.000, 0.369, 0.020) (0.000, 0.000, 0.000)
S3 (1.000, 0.579, 0.018) (0.000, 0.000, 0.000) (0.000, 0.000, 0.000) (0.000, 0.000, 0.000) (0.000, 0.000, 0.000)
S4 (0.000, 0.000, 0.000) (0.000, 0.000, 0.000) (0.104, 0.301, 0.016) (0.000, 0.000, 0.000) (1.000, 0.297, 0.016)
S5 (0.000, 0.000, 0.000) (0.308, 0.247, 0.013) (0.015, 0.313, 0.017) (0.048, 0.263, 0.014) (0.000, 0.000, 0.000)
S6 (0.657, 0.461, 0.014) (0.000, 0.000, 0.000) (1.000, 0.301, 0.016) (0.000, 0.000, 0.000) (0.000, 0.000, 0.000)

We still take CPDA11 and CNDA11 as examples to illustrate the specific calculation
procedure. As C1 is a benefit attribute, the two cloud distances can be calculated as

CPDA11 =
max(0, (0.737, 0.211, 0.007)− (0.614, 0.275, 0.009)))

0.614
=

(0.123, 0.347, 0.011)
0.614

= (0.200, 0.443, 0.014)

CNDA11 =
max(0, (0.614, 0.275, 0.009)− (0.737, 0.211, 0.007))

0.614
=

(0.000, 0.000, 0.000)
0.614

= (0.000, 0.000, 0.000)

Step 4. According to the CWAA operator shown in Equation (2) as well as the weight
vector determined by the cloud CRITIC, the weighted arithmetic averages of CPDA
and CNDA for each alternative can be calculated as shown in Table 16.

Table 16. The result of SCPi and SCNi for alternatives.

SCPi SCNi NSCPi NSCNi CASi

S1 (0.109, 0.241, 0.010) (0.308, 0.239, 0.013) (0.303, 0.402, 0.016) (0.197, 0.386, 0.021) (0.250, 0.394, 0.019)
S2 (0.209, 0.301, 0.014) (0.383, 0.207, 0.011) (0.580, 0.502, 0.023) (0.000, 0.335, 0.018) (0.290, 0.427, 0.021)
S3 (0.361, 0.288, 0.016) (0.196, 0.256, 0.008) (1.000, 0.480, 0.026) (0.490, 0.414, 0.013) (0.745, 0.448, 0.021)
S4 (0.315, 0.296, 0.013) (0.255, 0.194, 0.011) (0.872, 0.494, 0.021) (0.334, 0.313, 0.017) (0.603, 0.413, 0.019)
S5 (0.312, 0.287, 0.012) (0.068, 0.208, 0.011) (0.864, 0.478, 0.019) (0.821, 0.336, 0.018) (0.843, 0.413, 0.019)
S6 (0.218, 0.223, 0.012) (0.314, 0.242, 0.010) (0.605, 0.372, 0.020) (0.182, 0.390, 0.015) (0.393, 0.381, 0.018)

To demonstrate the process behind the values in Table 16, we calculate SCP1 and SCN1,
for example, as follows:
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SCP1 = CWAA((0.200, 0.443, 0.014), (0.385, 0.330, 0.018), · · · , (0.000, 0.000, , 0.000))
= (0.1956 × 0.200 + 0.1823 × 0.385 + 0.1851 × 0.000 + 0.2010 × 0.000 + 0.2360 × 0.000,√

0.1956 × 0.4432 + 0.1823 × 0.3302 + 0.1851 × 0.0002 + 0.2010 × 0.0002 + 0.2360 × 0.0002,√
0.1956 × 0.0142 + 0.1823 × 0.0182 + 0.1851 × 0.0002 + 0.2010 × 0.0002 + 0.2360 × 0.0002

)
= (0.109, 0.241, 0.010)

SCN1 = CWAA((0.000, 0.000, 0.000), (0.000, 0.000, 0.000), · · · , (0.300, 0.238, 0.013))
= (0.1956 × 0.000 + 0.1823 × 0.000 + 0.1851 × 0.194 + 0.2010 × 1.000 + 0.2360 × 0.300,√

0.1956 × 0.0002 + 0.1823 × 0.0002 + 0.1851 × 0.2962 + 0.2010 × 0.3692 + 0.2360 × 0.2382,√
0.1956 × 0.0002 + 0.1823 × 0.0002 + 0.1851 × 0.0162 + 0.2010 × 0.0202 + 0.2360 × 0.0132

)
= (0.308, 0.239, 0.013)

Step 5. Normalize the weighted arithmetic averages by using Equations (25) and (26); the
results are depicted in the right columns of Table 16.

For example, NSCP1 and NSCN1 can be obtained as follows:

NSCP1 =
(0.109, 0.241, 0.010)

0.361
= (0.303, 0.402, 0.016),

NSCN1 = 1 − (0.308, 0.239, 0.013)
0.383

= (0.197, 0.386, 0.021).

Step 6. The cloud appraisal scores of the marine ranching sites are depicted in the last
column of Table 16 and are obtained with the help of Equation (27) based on the
arithmetic average of SCPi and SCNi.

We still use CAS1 as an example:

CAS1 = (0.303,0.402,0.016)+(0.197,0.386,0.021)
2

=

(
0.303+0.197

2 ,
√

0.4022+0.3862

2 ,
√

0.0162+0.0212

2

)
= (0.250, 0.394, 0.019).

Step 7. In order to compare the cloud appraisal scores and determine the ranking of marine
ranching sites, we generate cloud drops and calculate the expected score value for
each alternative. With different numbers of cloud drops, the expected scores and
final rankings are depicted as shown in Table 17. The results in Table 17 illustrate
that, according to different numbers of cloud drops, the ranking of the alternatives
by expected scores can be determined as: S5 ≻ S3 ≻ S4 ≻ S6 ≻ S2 ≻ S1. Thus, S5
should be selected as the best site to establish marine ranching. The cloud appraisal
scores of the six alternatives are plotted as shown in Figure 7.

Table 17. The ranking with different numbers of cloud drops.

S1 S2 S3 S4 S5 S6 Ranking

n = 5000 0.181 0.204 0.529 0.425 0.599 0.278 S5 ≻ S3 ≻ S4 ≻ S6 ≻ S2 ≻ S1
n = 10,000 0.179 0.203 0.526 0.426 0.597 0.277 S5 ≻ S3 ≻ S4 ≻ S6 ≻ S2 ≻ S1
n = 50,000 0.177 0.205 0.526 0.426 0.595 0.278 S5 ≻ S3 ≻ S4 ≻ S6 ≻ S2 ≻ S1

n = 100,000 0.177 0.205 0.527 0.425 0.597 0.279 S5 ≻ S3 ≻ S4 ≻ S6 ≻ S2 ≻ S1
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4.4. Comparison and Discussion

To illustrate the effectiveness and superiority of the proposed cloud model-based
CRITIC-EDAS approach in this study, it is necessary to compare the proposed approach
with some mature methods commonly used in existing studies and some newer methods
for verification. In this paper, the same case is applied to the following multi-attribute
group decision-making methods: linguistic TOPSIS [48], fuzzy VIKOR [49], probabilistic
linguistic EDAS [44] and probabilistic linguistic MABAC [50], cloud TOPSIS [20] and
cloud VIKOR [18]. The results obtained from different methods are shown in Table 18 and
Figure 8.

Table 18. Comparison of the ranks of the alternatives according to different methods.

Alter. L-TOPSIS F-VIKOR PL-MABAC PL-EDAS C-TOPSIS C-VIKOR Proposed Method

S1 6 5 5 6 5 6 6
S2 5 6 6 4 6 4 5
S3 3 3 2 3 2 2 2
S4 2 2 3 2 3 3 3
S5 1 1 1 1 1 1 1
S6 4 4 4 5 4 5 4

From Table 18 and Figure 8 we can find an accordant result that the alternative S5 is
always chosen as the optimal alternative in the marine ranching site selection problem,
while there are some changes in the ranking of the other alternatives. According to the
ranking results in Table 18, it is clear that S3, S4 and S5 occupy the first three positions
in the rankings of all the selected methods with S5 as the optimal one, and S1, S2 and
S6 occupy the last three positions in the rankings of all the selected methods. Derived
from L-TOPSIS, F-VIKOR and PL-EDAS, S4 is superior to S3 in the rankings; while all the
cloud model-based models (C-TOPSIS, C-VIKOR and the proposed method) consider S4 as
inferior to S3 in the rankings. It illustrates that, based on most traditional MADM methods,
S4 performs a little better than S3 according to the evaluation among attributes, while by
using cloud models, the fuzziness and randomness of the evaluation information are both
considered. According to the cloud models, the evaluation information of S3 contains



Water 2024, 16, 688 21 of 24

lower fuzziness and randomness than that of S4. Therefore, from the perspective of a cloud
model, S3 is better than S4.
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In order to establish the connection between the results derived from different methods,
ref. [51] used Spearman’s correlation coefficient (SCC) as an indicator to interpret the
relationship between two different approaches. So, in this paper, the pairwise comparison
method SCC is used to obtain the statistical significance of the results of different methods
and to verify the effectiveness of the proposed method. Table 19 represents the SCCs which
show the connection between the results of the proposed method and the selected MADM
models. There is a consensus that an SCC greater than 0.8 indicates a strong relationship
between variables. The results in Table 19 depict that all of the SCCs between the proposed
method and other selected MADM models are in the range of [0.886, 1], indicating the
effectiveness and credibility of proposed method in this paper.

Table 19. SCCs of the ranks derived from different methods.

MADM
Models L-TOPSIS F-VIKOR PL-MABAC PL-EDAS C-TOPSIS C-VIKOR Proposed

Method

L-TOPSIS 1.000 0.943 0.886 0.943 0.886 0.886 0.943
F-VIKOR - 1.000 0.943 0.829 0.943 0.771 0.886

PL-MABAC - - 1.000 0.771 1.000 0.829 0.943
PL-EDAS - - - 1.000 0.771 0.943 0.886
C-TOPSIS - - - - 1.000 0.829 0.943
C-VIKOR - - - - - 1.000 0.943

Proposed method - - - - - - 1.000

5. Conclusions

The evaluation and selection of marine ranching sites has become a significant issue
with the rapid develop of marine economy and great importance of marine ecology pro-
tection. This study introduces the cloud model to extend multi-attribute decision-making
methods in order to help relevant planning authorities and enterprises determine the
optimal sites for marine ranching construction.

To handle this issue, an integrated CRITIC-EDAS method based on the cloud model
is developed. Firstly, the cloud model-based CRITIC method is formulated to determine
the objective importance of the evaluation attributes for marine ranching site selection.
Secondly, the cloud model-based EDAS is proposed to evaluate the alternatives and reveal
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the optimal marine ranching site. Thirdly, the proposed method is employed to solve a
real-world practice of marine ranching site selection in the city of Yantai and it considers the
fuzziness and randomness of data. Finally, the cloud model-based CRITIC-DEAS is com-
pared with traditional decision-making methods to demonstrate the efficiency, reliability
and superiority of the proposed model. The comparison analysis shows that the underlying
principle behind the proposed model is acceptable to the managers and decision makers,
as it is more suitable to reflect the characteristics of fuzziness and randomness of experts’
preferences in the real-world marine ranching site selection process.

There are numerous advantages of this study. First, the cloud model is introduced to
describe the fuzziness and randomness of the evaluation information in marine ranching
site selection problems, and it proposes a novel manner in dealing with real-world decision-
making problems by considering the uncertainty and probability simultaneously. Second,
a novel multi-attribute decision-making approach named cloud model-based CRITIC-
EDAS is developed, which is the first attempt to integrate CRITIC and EDAS with a cloud
model to obtain the relative importance of attributes and the rank of alternatives from the
perspective of probability. Thirdly, a real-world marine ranching site selection problem in
the city of Yantai is solved by using the proposed model, where the efficiency and reliability
are verified according to the comparison with other traditional MAMD methods.

However, there also inevitably exist some limitations of the proposed model. The
model only considers the decision-making problems with linguistic terms, and various well-
known MADM methods can also be extended with the cloud model. In future research,
the study should be extended in several directions: (1) the transformation from many
linguistic terms such as probabilistic linguistic terms, multi-granularity linguistic terms
and probabilistic uncertain linguistic terms to clouds should be explored to expand the
range of applications in real-world decision-making problems; (2) many traditional MADM
methods, such as CCSD, ITARA, TODIM and CORPAS should be extended by using the
cloud model to demonstrate the randomness of data and obtain more scientific results; (3) a
theoretical extension of the cloud model should be taken into account in future studies by
considering some classical probability and statistics theories, such as other distribution
functions and Bayesian methods [52]. Referring to the application of the proposed model,
it is potentially applicable to solve real-word multi-attribute decision-making problems
in other research areas such as evaluation of sustainable transportation, renewable energy
source selection, green supplier selection, evaluation of medical centers and so on. Another
idea is to determine the clouds by using a backward cloud generator mentioned in Ref. [15],
where the clouds can be generated directly from big data in real-world problems. For
example, after collecting a massive amount of data with fuzziness and randomness during
hydrologic monitoring, meteorological monitoring, equipment health monitoring, etc.,
clouds can be determined and processed by the proposed model to help governments or
enterprises making valuable decisions for commercial value.
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