Water–Rock Interaction Processes in Groundwater and Flows in a Maar Lake in Central Mexico
Abstract
:1. Introduction
- (i)
- Provide a comprehensive understanding of the geochemical evolution in the groundwater feeding Lake Alchichica.
- (ii)
- Quantify the water–rock interaction processes in groundwater and the flow through this tropical maar lake.
- (iii)
- Identify the primary reactions shaping the hydrochemistry of the groundwater.
2. Study Area
3. Geology
Mineralogy
4. Methodology
4.1. Sampling, Data Analysis and Water Table
4.2. Hydrochemical Diagrams
4.3. Saturation Index
4.4. Geochemical Models
4.4.1. Section I-I′
4.4.2. Section II-II′
4.4.3. Section III-III′
5. Results
5.1. General Groundwater Context
5.2. Mass Transfer Models
6. Discussion
6.1. General Groundwater Process
6.2. Mass Transfer Model I–I′
6.3. Mass Transfer Model II–II′
6.4. Mass Transfer Model III–III′
6.5. Processes Controlling Groundwater Chemistry
- (a)
- calcite precipitation (Equation (3)) [78] is a product of the dissolution of primary silicates, as biotite, amphibole and pyroxene, from rocks in the study area, which produces Ca2+ in the solution,
- (b)
- the dolomite dissolution originated increases of Ca2+ and Mg2+ (Equation (4)) [79] and, consequently, calcite precipitation, as mentioned previously,
- (c)
- (d)
- plagioclase dissolution gives Ca2+ and Na+ to water (Equation (7)) [82],
- (e)
- (f)
- (g)
- biotite dissolution produces increases of Mg2+ and K+ (Equation (11)) [86], and
- (h)
6.6. Limitations and Further Research Opportunities
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, M.; Li, C.; Xie, L.; Huang, W.; Zheng, Q.; Tan, K.; Hong, Y. Astronomical Tide and Storm Surge Signals Observed in an Isolated Inland Maar Lake Near the Coast. J. Mar. Sci. Eng. 2021, 9, 485. [Google Scholar] [CrossRef]
- Hutchinson, G.E. A Treatise on Limnology, Vol I, Part 1—Geography and Physics of Lakes; Wiley: New York, NY, USA, 1957; ISBN 0-471-42568-0. [Google Scholar]
- Jones, I.D.; Smol, J.P. Wetzel’s Limnology. In Lakes and River Ecosystems; Academic Press: London, UK, 2024; ISBN 978-0-12-822701-5. [Google Scholar]
- Williamson, C.E.; Dodds, W.; Kratz, T.K.; Palmer, M.A. Lakes and Streams as Sentinels of Environmental Change in Terrestrial and Atmospheric Processes. Front. Ecol. Environ. 2008, 6, 247–254. [Google Scholar] [CrossRef]
- Aguilar, J.I.; Mendoza-Pascual, M.U.; Padilla, K.S.A.R.; Papa, R.D.S.; Okuda, N. Mixing Regimes in a Cluster of Seven Maar Lakes in Tropical Monsoon Asia. Inl. Waters 2023, 13, 47–61. [Google Scholar] [CrossRef]
- Guoqiang, C.; Jiaqi, L. Maar Lakes in China and Their Significance in Paleoclimatic Research. Acta Petrol. Sin. 2018, 31, 4–12. [Google Scholar]
- Jia, G.; Bai, Y.; Yang, X.; Xie, L.; Wei, G.; Ouyang, T.; Chu, G.; Liu, Z.; Peng, P. Biogeochemical Evidence of Holocene East Asian Summer and Winter Monsoon Variability from a Tropical Maar Lake in Southern China. Quat. Sci. Rev. 2015, 111, 51–61. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Liu, D.; Liu, T.; Peng, P.; Lu, H.; Gu, Z.; Chu, G.; Negendank, J.; Luo, X.; et al. The Two-Step Monsoon Changes of the Last Deglaciation Recorded in Tropical Maar Lake Huguangyan, Southern China. Chin. Sci. Bull. 2000, 45, 1529–1532. [Google Scholar] [CrossRef]
- Williamson, D.; Jelinowska, A.; Kissel, C.; Tucholka, P.; Gibert, E.; Gasse, F.; Massault, M.; Taieb, M.; Van Campo, E.; Wieckowski, K. Mineral-Magnetic Proxies of Erosion/Oxidation Cycles in Tropical Maar-Lake Sediments (Lake Tritrivakely, Madagascar): Paleoenvironmental Implications. Earth Planet. Sci. Lett. 1998, 155, 205–219. [Google Scholar] [CrossRef]
- Williamson, D.; Jackson, M.J.; Banerjee, S.K.; Marvin, J.; Merdaci, O.; Thouveny, N.; Decobert, M.; Gibert-Massault, E.; Massault, M.; Mazaudier, D.; et al. Magnetic Signatures of Hydrological Change in a Tropical Maar-Lake (Lake Massoko, Tanzania): Preliminary Results. Phys. Chem. Earth Part A Solid Earth Geod. 1999, 24, 799–803. [Google Scholar] [CrossRef]
- Garcin, Y.; Williamson, D.; Taieb, M.; Vincens, A.; Mathé, P.-E.; Majule, A. Centennial to Millennial Changes in Maar-Lake Deposition during the Last 45,000 Years in Tropical Southern Africa (Lake Masoko, Tanzania). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 239, 334–354. [Google Scholar] [CrossRef]
- Alcocer, J. (Ed.) Lago Alchichica: Una Joya de Biodiversidad; Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico State, Mexico, 2019; ISBN 978-607-30-2278-1.
- Alcocer, J. (Ed.) Lake Alchichica Limnology; Springer International Publishing: Cham, Switzerland, 2022; ISBN 978-3-030-79095-0. [Google Scholar]
- Kaźmierczak, J.; Kempe, S.; Kremer, B.; López-García, P.; Moreira, D.; Tavera, R. Hydrochemistry and Microbialites of the Alkaline Crater Lake Alchichica, Mexico. Facies 2011, 57, 543–570. [Google Scholar] [CrossRef]
- Arriaga-Cabrera, L.; Aguilar-Sierra, V.; Alcocer-Durán, J.; Jiménez-Rosenberg, R.; Muñoz-López, E.; Vázquez-Domínguez, E. Regiones Hidrológicas Prioritarias: Fichas Técnicas y Mapa (Escala 1:4,000,000); Comisión Nacional Para El Conocimiento y Uso de La Biodiversidad: Mexico City, Mexico, 1998.
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; Balkema, P.A.A., Ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. User’s Guide to Phreeqc (Version 2)—A Computer Program for Speciation, Batch Reaction, One Dimensional Transport, and Inverse Geochemical Calculations. Water-Resour. Investig. Rep. 1999, 99, 312. [Google Scholar]
- Plummer, L. Geochemical Modeling of Water-Rock Interaction: Past, Present, Future. In Proceedings of the Seventh International Symposium on Water-Rock Interaction, Park City, UT, USA, 13–18 July 1992; Kharaka, Y.K., Ed.; Amsterdam, The Netherlands, 1992; pp. 23–33. Available online: https://www.academia.edu/24612511/Geochemical_modelling_of_water_rock_interaction (accessed on 23 February 2024).
- Alcocer, J.; Lewis, W.M.; Hernández, M.D.C.; Oseguera, L.A.; Pérez, V.J.J.; Prat, N. Habitat Expansion of a Tropical Chironomid by Seasonal Alternation in Use of Littoral and Profundal Zones. J. Limnol. 2022, 81, 1–10. [Google Scholar] [CrossRef]
- Escobar-Briones, E.; Alcocer, J. Caecidotea Williamsi (Crustacea: Isopoda: Asellidae), a New Species from a Saline Crater-Lake in the Eastern Mexican Plateau. Hydrobiologia 2002, 477, 93–105. [Google Scholar] [CrossRef]
- Oliva, M.G.; Lugo, A.; Alcocer, J.; Peralta, L.; Sánchez, M.R. Alcocer Phytoplankton Dynamics in a Deep, Tropical, Hyposaline Lake. Hydrobiologia 2001, 466, 299–306. [Google Scholar] [CrossRef]
- Ortega-Mayagoitia, E.; Vilaclara, G.; Alcántara-Hernández, R.J.; Macek, M. Diversity and Endemisms. In Lake Alchichica Limnology; Springer International Publishing: Cham, Switzerland, 2022; pp. 331–353. [Google Scholar]
- Hernández, M.D.C.; Alcocer, J.; Oseguera, L.A.; Escobar, E. Profundal Benthic Invertebrates in an Oligotrophic Tropical Lake: Different Strategies for Coping with Anoxia. J. Limnol. 2014, 2, 387–399. [Google Scholar] [CrossRef]
- Ardiles, V.; Alcocer, J.; Vilaclara, G.; Oseguera, L.A.; Velasco, L. Diatom Fluxes in a Tropical, Oligotrophic Lake Dominated by Large-Sized Phytoplankton. Hydrobiologia 2012, 679, 77–90. [Google Scholar] [CrossRef]
- Alcocer, J.; Escobar, E.; Lugo, A. Littoral Benthos of the Saline Crater Lakes of the Basin of Oriental, Mexico. Int. J. Salt Lake Res. 1998, 7, 87–108. [Google Scholar] [CrossRef]
- Alcocer, J.; Lugo, A.; Escobar, E.; Sànchez, M.R.; Vilaclara, G. Water Column Stratification and Its Implications in the Tropical Warm Monomictic Lake Alchichica, Puebla, Mexico. Int. Ver. Für Theor. Und Angew. Limnol. Verhandlungen 2000, 27, 3166–3169. [Google Scholar] [CrossRef]
- Alcocer, J.; Lugo, A.; Fernández, R.; Vilaclara, G.; Oliva, M.G.; Oseguera, L.A.; Silva-Aguilera, R.A.; Escolero, Ó. 20 Years of Global Change on the Limnology and Plankton of a Tropical, High-Altitude Lake. Diversity 2022, 14, 190. [Google Scholar] [CrossRef]
- Filonov, A.; Tereshchenko, I.; Alcocer, J.; Monzón, C. Dynamics of Internal Waves Generated by Mountain Breeze in Alchichica Crater Lake, Mexico. Geofísica Int. 2015, 54, 21–30. [Google Scholar] [CrossRef]
- Oseguera, L.A.; Alcocer, J.; Escobar, E. Seston Flux in a Tropical Saline Lake. Int. Ver. Für Theor. Und Angew. Limnol. Verhandlungen 2010, 30, 1477–1481. [Google Scholar] [CrossRef]
- Salas de León, D.A.; Alcocer, J.; Ardiles Gloria, V.; Quiroz-Martínez, B. Estimation of the Eddy Diffusivity Coefficient in a Warm Monomictic Tropical Lake. J. Limnol. 2016, 75, 161–168. [Google Scholar] [CrossRef]
- Silva-Aguilera, R.A.; Vilaclara, G.; Armienta, M.A.; Escolero, Ó. Hydrogeology and Hydrochemistry of the Serdán-Oriental Basin and the Lake Alchichica. In Lake Alchichica Limnology; Springer International Publishing: Cham, Switzerland, 2022; pp. 63–74. [Google Scholar]
- Vilaclara, G.; Chávez, M.; Lugo, A.; González, H.; Gaytán, M. Comparative Description of Crater-Lakes Basic Chemistry in Puebla State, Mexico. Int. Ver. Für Theor. Und Angew. Limnol. Verhandlungen 1993, 25, 435–440. [Google Scholar] [CrossRef]
- Armienta, M.A.; Vilaclara, G.; De la Cruz-Reyna, S.; Ramos, S.; Ceniceros, N.; Cruz, O.; Aguayo, A.; Arcega-Cabrera, F. Water Chemistry of Lakes Related to Active and Inactive Mexican Volcanoes. J. Volcanol. Geotherm. Res. 2008, 178, 249–258. [Google Scholar] [CrossRef]
- Sigala, I.; Caballero, M.; Correa-Metrio, A.; Lozano-García, S.; Vázquez, G.; Pérez, L.; Zawisza, E. Basic Limnology of 30 Continental Waterbodies of the Transmexican Volcanic Belt across Climatic and Environmental Gradients. Boletín la Soc. Geológica Mex. 2017, 69, 313–370. [Google Scholar] [CrossRef]
- Mancilla Villa, O.R.; Bautista Olivas, A.L.; Ortega Escobar, H.M.; Sánchez Bernal, E.I.; Can Chulim, Á.; Guevara Gutiérrez, R.D.; Ortega Mikolaev, Y.M. Hidrogeoquímica de Salinas Zapotitlán y Los Lagos-Cráter Alchichica y Atexcac, Puebla. Idesia (Arica) 2014, 32, 55–69. [Google Scholar] [CrossRef]
- Kouassi, A.M.; Ahoussi, K.E.; Kouakou, K.E.; Mamadou, A.; Biemi, J. Analyse Comparative Entre La Distribution Des Fréquences de Conductivité Électrique et Les Faciès Géochimiques Des Eaux Des Aquifères de Socle (Côte d’Ivoire). Int. J. Biol. Chem. Sci. 2016, 10, 435. [Google Scholar] [CrossRef]
- Thomas, J.M.; Welch, A.H.; Preissler, A.M. Geochemical Evolution of Ground Water in Smith Creek Valley—A Hydrologically Closed Basin in Central Nevada, U.S.A. Appl. Geochem. 1989, 4, 493–510. [Google Scholar] [CrossRef]
- Güler, C.; Thyne, G.D. Hydrologic and Geologic Factors Controlling Surface and Groundwater Chemistry in Indian Wells-Owens Valley Area, Southeastern California, USA. J. Hydrol. 2004, 285, 177–198. [Google Scholar] [CrossRef]
- Demirel, Z.; Güler, C. Hydrogeochemical Evolution of Groundwater in a Mediterranean Coastal Aquifer, Mersin-Erdemli Basin (Turkey). Environ. Geol. 2006, 49, 477–487. [Google Scholar] [CrossRef]
- Gastmans, D.; Hutcheon, I.; Menegário, A.A.; Chang, H.K. Geochemical Evolution of Groundwater in a Basaltic Aquifer Based on Chemical and Stable Isotopic Data: Case Study from the Northeastern Portion of Serra Geral Aquifer, São Paulo State (Brazil). J. Hydrol. 2016, 535, 598–611. [Google Scholar] [CrossRef]
- Mahlknecht, J.; Steinich, B.; Navarro De León, I. Groundwater Chemistry and Mass Transfers in the Independence Aquifer, Central Mexico, by Using Multivariate Statistics and Mass-Balance Models. Environ. Geol. 2004, 45, 781–795. [Google Scholar] [CrossRef]
- Mahlknecht, J.; Gárfias-Solis, J.; Aravena, R.; Tesch, R. Geochemical and Isotopic Investigations on Groundwater Residence Time and Flow in the Independence Basin, Mexico. J. Hydrol. 2006, 324, 283–300. [Google Scholar] [CrossRef]
- Morán-Ramírez, J.; Ledesma-Ruiz, R.; Mahlknecht, J.; Ramos-Leal, J.A. Rock-Water Interactions and Pollution Processes in the Volcanic Aquifer System of Guadalajara, Mexico, Using Inverse Geochemical Modeling. Appl. Geochem. 2016, 68, 79–94. [Google Scholar] [CrossRef]
- Olea-Olea, S.; Escolero, O.; Mahlknecht, J.; Ortega, L.; Taran, Y.; Moran-Zenteno, D.J.; Zamora-Martinez, O.; Tadeo-Leon, J. Water-Rock Interaction and Mixing Processes of Complex Urban Groundwater Flow System Subject to Intensive Exploitation: The Case of Mexico City. J. S. Am. Earth Sci. 2020, 103, 102719. [Google Scholar] [CrossRef]
- Olea-Olea, S.; Escolero, O.; Mahlknecht, J.; Mona, J.; Ortega, L.; Beramendi-Orosco, L.; Zamora-Martinez, O.; Tadeo-Leon, J. Understanding the Processes in a Historically Relevant Thermal and Mineral Spring Water by Using Mixing and Inverse Geochemical Models. Environ. Geochem. Health 2022, 44, 2301–2323. [Google Scholar] [CrossRef] [PubMed]
- SMN Station-21052. Available online: https://smn.conagua.gob.mx/es/ (accessed on 19 August 2023).
- Alcocer, J.; Escolero, O.; Marín, L. Problemática Del Agua de La Cuenca Oriental, Estados de Puebla, Veracruz y Tlaxcala. In El Agua en Mexico Vista Desde la Academia; Blanca, J., Marin, L., Eds.; Academia Mexicana de Ciencias: Mexico City, México, 2004; pp. 57–77. [Google Scholar]
- Can, Á.; Ortega, H.; García, N.; Reyes, A.; González, V.; Flores, D. Origen y Calidad Del Agua Subterránea En La Cuenca Oriental de México. Terra Latinoam 2011, 29, 189–200. [Google Scholar]
- SOAPAP (Sistema Operador de los Servicios de Agua Potable y Alcantarillado de Puebla). Estudio de Las Fuentes de Abastecimiento Para El Suministro de Agua Potable Para El Programa de Desarrollo Regional Angelópolis; de C.V., S.A., Ed.; Grupo de Ingeniería En Consultorías y Obras: Puebla, Mexico, 1997.
- Alcala, A. Estudio Hidrogeológico de Alchichica, Estado de Puebla. Bachelor Thesis, Universidad Nacional Autonóma de México, México, 2004. Available online: http://132.248.9.195/ppt2004/0335824/Index.html (accessed on 10 September 2023).
- Garcia, J. Efectos Climáticos Sobre El Agua Subterránea y El Lago Alchichica Puebla, México. Master’s Thesis, Universidad Nacional Autonóma de México, México, 2010. Available online: http://132.248.9.195/ptb2010/octubre/0663329/Index.html (accessed on 16 August 2023).
- Menesses, L. Exploración Geofísica e Hidrogeológica En La Laguna de Alchichica, Cuenca de Libres-Oriental, Estado de Puebla, UNAM. Bachelor Thesis, Universidad Nacional Autonóma de México, México, 2002. Available online: http://132.248.9.195/ppt2002/0312163/Index.html (accessed on 22 September 2023).
- Silva-Aguilera, R. Análisis Del Descenso Del Nivel Del Agua En El Lago de Alchichica, Puebla. Master Thesis, Universidad Nacional Autonóma de México, México, 2019. Available online: http://132.248.9.195/ptd2019/junio/0789822/Index.html (accessed on 30 July 2023).
- SGM Carta Geológica Guadalupe Victoria E14-B35 1998. Available online: http://Mapserver.sgm.gob.mx/Cartas_Online/geologia/1891_E14-B35_GM.pdf (accessed on 11 August 2023).
- Chako-Tchamabé, B.; Carrasco-Núñez, G.; Miggins, D.P.; Németh, K. Late Pleistocene to Holocene Activity of Alchichica Maar Volcano, Eastern Trans-Mexican Volcanic Belt. J. S. Am. Earth Sci. 2020, 97, 102404. [Google Scholar] [CrossRef]
- Carrasco-Núñez, G.; Ort, M.H.; Romero, C. Evolution and Hydrological Conditions of a Maar Volcano (Atexcac Crater, Eastern Mexico). J. Volcanol. Geotherm. Res. 2007, 159, 179–197. [Google Scholar] [CrossRef]
- Gasca, A. Algunas Notas de La Génesis de Los Lagos-Cráter de La Cuenca de Oriental. Puebla-Tlaxcala-Veracruz. Inst. Nac. Antropol. e Hist. Colección Científica Prehist. 1981, 98, 55. [Google Scholar]
- Chako-Tchamabé, B.; Carrasco-Núñez, G.; Gountié Dedzo, M.; Kshirsagar, P.; Asaah, A.N.E. Geochemical Characterization of Alchichica Maar Volcano, Serdán-Oriental Basin, Eastern Trans-Mexican Volcanic Belt: Insights on Polymagmatic Evolution at Monogenetic Volcanic Clusters. J. S. Am. Earth Sci. 2020, 104, 102889. [Google Scholar] [CrossRef]
- EPA METHOD 200.7—Determination of Elements and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emmission Spectropemtry; Agency, U.E.P., Ed.; Washington, DC, USA. 1994; Volume 600. Available online: https://www.epa.gov/sites/default/files/2015-06/documents/epa-200.7.pdf (accessed on 6 December 2023).
- EPA6010D Inductively Coupled Plasma—Optical Emission Spectrometry 2014. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/6010d.pdf (accessed on 6 December 2023).
- Freeze, R.A.; Cherry, J. Groundwater. Prentice-Hall, Ed.; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1979; ISBN 0133653129. [Google Scholar]
- Cressie, N. Statistics for Spatial Data; John Wiley & Sons: New York, NY, USA, 1993. [Google Scholar]
- Franke, R. Scattered Data Interpolation: Tests of Some Methods. Math. Comput. 1982, 38, 181. [Google Scholar] [CrossRef]
- Piper, A.M. A Graphic Procedure in the Geochemical Interpretation of Water Analyses. Trans. Am. Geophys. Union 1944, 25, 914–924. [Google Scholar]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1081–1090. [Google Scholar] [CrossRef]
- Marandi, A.; Shand, P. Groundwater Chemistry and the Gibbs Diagram. Appl. Geochem. 2018, 97, 209–212. [Google Scholar] [CrossRef]
- Garrels, R.M.; Charles, C. Solutions, Minerals, and Equilibria, 1st ed.; Jones and Bartlett: Boston, MA, USA, 1965. [Google Scholar]
- Galeczka, I.; Wolff-Boenisch, D.; Oelkers, E.H.; Gislason, S.R. An Experimental Study of Basaltic Glass–H2O–CO2 Interaction at 22 and 50 °C: Implications for Subsurface Storage of CO2. Geochim. Cosmochim. Acta 2014, 126, 123–145. [Google Scholar] [CrossRef]
- Université d’Ottawa, C. Chapter 5 Geochemical Weathering. Available online: https://mysite.science.uottawa.ca/idclark/GEO4342/2009/Weathering.pdf (accessed on 16 September 2023).
- Walraevens, K.; Bakundukize, C.; Mtoni, Y.E.; Van Camp, M. Understanding the Hydrogeochemical Evolution of Groundwater in Precambrian Basement Aquifers: A Case Study of Bugesera Region in Burundi. J. Geochemical Explor. 2018, 188, 24–42. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Plummer, L.N.; Thorstenson, D.C. BALANCE-A Computer Program for Geochemical Calculations; U. S. Geological Survey Water Resources. Inv. Rep. USA: Boston, VA, USA, 1982.
- Plummer, L.N. Geochemical Modeling: A Comparison of Forward and Inverse Methods. In Proceedings of the First Canadian/American Conference on Hydrogeology: Practical Applications of Ground Water Geochemistry, Banff, AB, Canada, 22–26 June 1984; National Water Well Association: Red Deer, AB, Canada, 1984; pp. 149–177. [Google Scholar]
- Plummer, L.N.; Parkhurst, D.L.; Thorstenson, D.C. Devel-Opment of Reaction Models for Ground-Water Systems. Geochim. Cosmochim. Acta 1983, 47, 665–686. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Thorstenson, D.C.; Plummer, L.N. PHREEQE, a Computer Program for Geochemical Calculations; U. S. Geological Survey Water Resources. Inv. Rep. USA: Boston, VA, USA, 1980.
- Zhu, C.; Anderson, G. Environmental Applications of Geochemical Modeling, 1st ed.; Press, C.U., Ed.; Cambridge University Press: Cambridge, UK, 2002; ISBN 9780521809078. [Google Scholar]
- Taylor, E.H. A New Ambystomid Salamander Adapted to Brackish Water. Copeia 1943, 1943, 151. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. US Geol. Surv. Tech. Methods 2013, 6, 504. [Google Scholar]
- Xu, P.; Qian, H.; Li, S.; Li, W.; Chen, J.; Liu, Y. Geochemical Evidence of Fluoride Behavior in Loess and Its Influence on Seepage Characteristics: An Experimental Study. Sci. Total Environ. 2023, 882, 163564. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, X.; Liao, X.; Zhang, Y. Hydrogeochemical Characteristics and Conceptual Model of the Geothermal Waters in the Xianshuihe Fault Zone, Southwestern China. Int. J. Environ. Res. Public Health 2020, 17, 500. [Google Scholar] [CrossRef]
- Berkani, C.; Boulabeiz, M.; Dali, N.; Sedrati, A.; Houh, B. Hydrogeochemical modeling of groundwater of the quaternary aquifer in Mellagou valley -Bouhmama- (northeastern Algeria). Carpathian J. Earth Environ. Sci. 2023, 18, 115–126. [Google Scholar] [CrossRef]
- Escario, S.; Seigneur, N.; Collet, A.; Regnault, O.; de Boissezon, H.; Lagneau, V.; Descostes, M. A Reactive Transport Model Designed to Predict the Environmental Footprint of an ‘in-Situ Recovery’ Uranium Exploitation. J. Contam. Hydrol. 2023, 254, 104106. [Google Scholar] [CrossRef]
- Zhang, X.; Ling, S.; Wu, X.; Wang, F.; Wang, J.; Teng, Q.; Xie, J. Hydrochemistry Process and Microweathering Behaviour of Sandstone Heritages in the Nankan Grotto, China: Insights from Field Micro-Observations and Water–Rock Interaction Experiments. Bull. Eng. Geol. Environ. 2023, 82, 356. [Google Scholar] [CrossRef]
- Sajil Kumar, P.J.; Jegathambal, P.; Nair, S.; James, E.J. Temperature and PH Dependent Geochemical Modeling of Fluoride Mobilization in the Groundwater of a Crystalline Aquifer in Southern India. J. Geochem. Explor. 2015, 156, 1–9. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, Z.; Sun, Y. Mechanism of Changes in Goaf Water Hydrogeochemistry: A Case Study of the Menkeqing Coal Mine. Int. J. Environ. Res. Public Health 2022, 20, 536. [Google Scholar] [CrossRef]
- Demer, S.; Elitok, Ö.; Memiş, Ü. Origin and Geochemical Evolution of Groundwaters at the Northeastern Extend of the Active Fethiye-Burdur Fault Zone within the Ophiolitic Teke Nappes, SW Turkey. Arab. J. Geosci. 2019, 12, 783. [Google Scholar] [CrossRef]
- Lucas, Y.; Chabaux, F.; Clément, A.; Fritz, B.; Ranchoux, C.; Ackerer, J.; Pelt, E.; Schmitt, A.-D.; Stille, P. Hydrogeochemical Modeling of the Spatiotemporal Variations in 87Sr/86Sr Isotope Ratios and Sr Concentrations of Spring Waters in a Headwater Catchment (Strengbach CZO–France). Chem. Geol. 2023, 616, 121216. [Google Scholar] [CrossRef]
- Helms, T.S.; McSween, H.Y.; Labotka, T.C.; Jarosewich, E. Petrology of a Georgia Blue Ridge Amphibolite Unit with Hornblende + Gedrite + Kyanite + Staurolite. Am. Mineral. 1987, 11, 1086–1096. [Google Scholar]
- Teramoto, E.H.; Stradioto, M.R.; Chang, H.K. Geochemical Simulation to Assess the Rock–Water Interaction in Crystalline Aquifers in São Paulo State, Southeastern Brazil. Sustain. Water Resour. Manag. 2023, 9, 162. [Google Scholar] [CrossRef]
- Gómez, P.; Turrero, M.P.J. Una Revision de Los Procesos Geoquímicos de Baja Temperatura En La Interacción Agua-Roca. Estud. Geológicos 1994, 50, 345–357. [Google Scholar]
- Garrels, R.M. Genesis of Some Ground Waters from Igneous Rocks. Res. Geochem. 1967, 2, 405–420. [Google Scholar]
- Hanley, J.J.; Mungall, J.E. Chlorine Enrichment and Hydrous Alteration of the Sudbury Breccia Hosting Footwall Cu-Ni-PGE Mineralization at the Fraser Mine, Sudbury, Ontario, Canada. Can. Mineral. 2003, 41, 857–881. [Google Scholar] [CrossRef]
- Léger, A.; Rebbert, C.; Webster, J. Cl-Rich Biotite and Amphibole from Black Rock Forest, Cornwall, New York. Am. Mineral. 1996, 81, 495–504. [Google Scholar] [CrossRef]
- Volfinger, M.; Robert, J.L.; Vielzeuf, D.; Neiva, A.M.R. Structural Control of the Chlorine Content of OH-Bearing Silicates (Micas and Amphiboles). Geochim. Cosmochim. 1985, 49, 37–48. [Google Scholar] [CrossRef]
Phase | Reaction | Ref. |
---|---|---|
CO2 (g) | CO2(g) = CO2(a) | 1 |
H2O (g) | H2O(g) = H2O(a) | 1 |
Albite | NaAlSi3O8 + 8H2O = Na+ + Al(OH)4− + 3H4SiO4 | 1 |
Calcite | CaCO3 = CO32− + Ca2+ | 1 |
Dolomite | CaMg(CO3)2 = Ca2+ + Mg2+ + 2CO32− | 1 |
Gypsum | CaSO4·2H2O = Ca2+ + SO42− + 2H2O | 1 |
Halite | NaCl = Na+ + Cl− | 1 |
SiO2 (aq) | SiO2 + 2H2O = H4SiO4 | 1 |
Kaolinite | Al2Si2O5(OH)4 + 6H+ = H2O + 2H4SiO4 + 2Al3+ | 1 |
Biotite | KMg3AlSi3O10(OH)2 + 6H+ + 4H2O = K+ + 3Mg2+ + Al(OH)4− + 3H4SiO4 | 1 |
Plagioclase | Na0.62Ca0.38Al1.38Si2.62O8 + 5.52H+ + 2.48H2O = 0.62Na+ + 0.38Ca2+ + 1.38Al3+ + 2.62H4SiO4 | 1 |
Glass | Si1.0Al0.35O2(OH)1.05 + 1.05H+ + 0.95H2O = 0.35Al3+ + H4SiO4 | 2 |
Piroxene | CaFeSi2O6 + 4H+ +2H2O = Ca+2 + Fe+2 + 2H4SiO4 | 3 |
Amphibole | Ca2Mg5Si8O22(OH)2 + 14CO2 + 22H2O = 2Ca2+ + 5Mg2+ + 14HCO3− + 8H4SiO4 | 4 |
Name | Units | 30 | 44 | 67 | 70 | 71 | 72 | 73 |
---|---|---|---|---|---|---|---|---|
Depth | m | 3 | 70 | 100 | - | - | 120 | 120 |
m E | m | 667,464 | 667,843 | 663,706 | 667,801 | 664,057 | 675,331 | 674,813 |
m N | m | 2,146,637 | 2,148,401 | 2,144,092 | 2,135,736 | 2,140,589 | 2,133,441 | 2,133,403 |
pH | pH units | 7.2 | 7 | 7.5 | 8.3 | 7.1 | 8 | 7.9 |
T | °C | 18.5 | 21.6 | 20 | 19.2 | 25.1 | 15.8 | 14,6 |
EC | μS/cm | 1479 | 1950 | 1793 | 526 | 2420 | 139 | 126.7 |
TDS | ppm | 740 | 975 | 894 | 263 | 1220 | 69.2 | 63.7 |
Ca2+ | mg/L | 25.3 | 4 | 70.6 | 44.1 | 118.8 | 12.3 | 11.1 |
Mg2+ | mg/L | 70 | 278.2 | 124.3 | 25.6 | 139.3 | 5.9 | 5.6 |
Na+ | mg/L | 147.7 | 183.3 | 122.2 | 33.3 | 137.2 | 10.1 | 9.9 |
K+ | mg/L | 8.5 | 15.1 | 10.7 | 3.9 | 12.9 | 3.5 | 3.7 |
Cl− | mg/L | 104.3 | 174.1 | 210.6 | 33.6 | 311.6 | 4.1 | 3.5 |
SO42− | mg/L | 56.1 | 12 | 92.9 | 12.2 | 66.9 | 3.8 | 4.4 |
HCO3− | mg/L | 702.5 | 1738.0 | 811.5 | 266.9 | 1052.5 | 76.6 | 72.1 |
Al3+ | mg/L | 1.4 | 0.03 | <LOD | <LOD | <LOD | 0.02 | <LOD |
SiO2 | mg/L | 70.6 | 75 | 82.3 | 51.2 | 86 | 46.8 | 46.5 |
Fe | mg/L | 3.6 | 1.9 | 1.7 | <LOD | 3.6 | <LOD | <LOD |
Phase | Section I-I′ | Section II-II′ | Section III-III′ | Chemical Formula | ||||
---|---|---|---|---|---|---|---|---|
Samples | 72–30 | 71–30 | 30–44 | |||||
Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 1 | Model 2 | ||
CO2(g) | 9.37 × 10−3 | 7.85 × 10−3 | 1.04 × 10−2 | 5.06 × 10−3 | 2.48 × 10−2 | 3.56 × 10−2 | CO2 | |
H2O(g) | −7.93 × 101 | 5.55 × 101 | 1.59 × 101 | 1.28 × 101 | 4.36 × 101 | H2O | ||
Albite | 3.78 × 10−3 | 3.33 × 10−3 | 4.09 × 10−3 | 5.27 × 10−3 | 2.19 × 10−3 | NaAlSi3O8 | ||
Calcite | −2.67 × 10−3 | −3.08 × 10−3 | −2.38 × 10−3 | −3.39 × 10−3 | −3.28 × 10−3 | −3.99 × 10−3 | CaCO3 | |
Dolomite | 2.47 × 10−3 | 2.53 × 10−3 | 2.43 × 10−3 | −1.41 × 10−3 | −1.77 × 10−3 | CaMg(CO3)2 | ||
Gypsum | 5.45 × 10−4 | 4.89 × 10−4 | 5.85 × 10−4 | −4.48 × 10−4 | CaSO4:2H2O | |||
Halite | 2.68 × 10−3 | 2.52 × 10−3 | 2.80 × 10−3 | −2.84 × 10−3 | −3.30 × 10−3 | 1.67 × 10−3 | 4.32 × 10−3 | NaCl |
SiO2(a) | −7.46 × 10−3 | −7.43 × 10−3 | −7.48 × 10−3 | −1.03 × 10−2 | −1.05 × 10−2 | −1.28 × 10−2 | −1.99 × 10−2 | SiO2 |
Kaolinite | −1.93 × 10−3 | −1.64 × 10−3 | −2.13 × 10−3 | −5.73 × 10−3 | −2.61 × 10−3 | −1.11 × 10−4 | −1.27 × 10−3 | Al2Si2O5(OH)4 |
Biotite | 1.28 × 10−4 | 2.17 × 10−4 | 1.69 × 10−4 | 3.40 × 10−4 | KMg3AlSi3O10(OH)2 | |||
Glass | Si1.0Al0.35O2(OH)1.05 | |||||||
Plagioclase | 8.35 × 10−3 | Na0.62Ca0.38Al1.38Si2.62O | ||||||
Amphibole | 1.58 × 10−3 | 1.98 × 10−3 | Ca2Mg5Si8O22(OH)2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olea-Olea, S.; Silva-Aguilera, R.A.; Alcocer, J.; Escolero, O.; Morales-Casique, E.; Florez-Peñaloza, J.R.; Almora-Fonseca, K.A.; Oseguera, L.A. Water–Rock Interaction Processes in Groundwater and Flows in a Maar Lake in Central Mexico. Water 2024, 16, 715. https://doi.org/10.3390/w16050715
Olea-Olea S, Silva-Aguilera RA, Alcocer J, Escolero O, Morales-Casique E, Florez-Peñaloza JR, Almora-Fonseca KA, Oseguera LA. Water–Rock Interaction Processes in Groundwater and Flows in a Maar Lake in Central Mexico. Water. 2024; 16(5):715. https://doi.org/10.3390/w16050715
Chicago/Turabian StyleOlea-Olea, Selene, Raúl A. Silva-Aguilera, Javier Alcocer, Oscar Escolero, Eric Morales-Casique, Jose Roberto Florez-Peñaloza, Kevin Alexis Almora-Fonseca, and Luis A. Oseguera. 2024. "Water–Rock Interaction Processes in Groundwater and Flows in a Maar Lake in Central Mexico" Water 16, no. 5: 715. https://doi.org/10.3390/w16050715
APA StyleOlea-Olea, S., Silva-Aguilera, R. A., Alcocer, J., Escolero, O., Morales-Casique, E., Florez-Peñaloza, J. R., Almora-Fonseca, K. A., & Oseguera, L. A. (2024). Water–Rock Interaction Processes in Groundwater and Flows in a Maar Lake in Central Mexico. Water, 16(5), 715. https://doi.org/10.3390/w16050715