Multi-Index Fusion Debris Flow Early Warning Model Based on Spatial Interpolation and Support Vector Machine
Abstract
:1. Introduction
2. Study on Multi-Index Fusion Debris Flow Early Warning Model
2.1. Overview of the Study Area
2.2. Debris Flow Early Warning Model Construction
2.2.1. Data Acquisition
2.2.2. Multi-Index Rainfall Data Processing Based on Spatial Interpolation
2.2.3. Establishment of Debris Flow Early Warning Model
3. Result Analysis
3.1. Rainfall Data Spatial Interpolation Processing Effect
3.2. Debris Flow Early Warning Model Analysis of Early Warning Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, H.; Zhang, L.; He, J.; Yin, K. Reliability-based formulation of building vulnerability to debris flow impacts. Can. Geotech. J. 2022, 59, 40–54. [Google Scholar] [CrossRef]
- Kattel, P.; Khattri, K.B.; Pudasaini, S.P. A multiphase virtual mass model for debris flow. Int. J. Non-Linear Mech. 2021, 129, 103638. [Google Scholar] [CrossRef]
- Takayama, S.; Satofuka, Y.; Imaizumi, F. Effects of water infiltration into an unsaturated streambed on debris flow development. Geomorphology 2022, 409, 108269.1–108269.12. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.; Chen, X.; Lian, B.; Wang, J. Analysis of factors influencing the large wood transport and block-outburst in debris flow based on physical model experiment. Geomorphology 2022, 398, 108054. [Google Scholar] [CrossRef]
- Piciullo, L.; Tiranti, D.; Pecoraro, G.; Cepeda, J.M.; Calvello, M. Standards for the 840 performance assessment of territorial landslide early warning systems. Landslides 2018, 17, 2533–2546. [Google Scholar] [CrossRef]
- Sättele, M.; Bründl, M.; Straub, D. Reliability and effectiveness of early warning systems for natural hazards: Concept and application to debris flow warning. Reliab. Eng. Syst. Saf. 2015, 142, 192–202. [Google Scholar] [CrossRef]
- Tiranti, D.; Cremonini, R.; Marco, F.; Gaeta, A.R.; Barbero, S. The DEFENSE (debris Flows triggEred by storms—Nowcasting system): An early warning system for torrential processes by radar storm tracking using a Geographic Information System (GIS). Comput. Geosci. 2014, 70, 96–109. [Google Scholar] [CrossRef]
- Vaughn, T.; Crookston, B.M.; Pfister, M. Floating woody debris: Blocking sensitivity of labyrinth weirs in channel and reservoir applications. J. Hydraul. Eng. 2021, 147, 06021016. [Google Scholar] [CrossRef]
- Baggio, T.; Mergili, M.; D’Agostino, V. Advances in the simulation of debris flow erosion: The case study of the Rio Gere (Italy) event of the 4th August 2017. Geomorphology 2021, 381, 107664. [Google Scholar] [CrossRef]
- Bernard, M.; Gregoretti, C. The use of rain gauge measurements and radar data for the model-based prediction of runoff-generated debris-flow occurrence in early warning systems. Water Resour. Res. 2021, 57, e2020WR027893. [Google Scholar] [CrossRef]
- Palucis, M.C.; Ulizio, T.P.; Lamb, M.P. Debris flow initiation from ravel-filled channel bed failure following wildfire in a bedrock landscape with limited sediment supply. GSA Bull. 2021, 133, 2079–2096. [Google Scholar] [CrossRef]
- Tsunetaka, H.; Hotta, N.; Imaizumi, F.; Hayakawa, Y.S.; Masui, T. Variation in rainfall patterns triggering debris flow in the initiation zone of the Ichino-sawa torrent, Ohya landslide, Japan. Geomorphology 2021, 375, 107529. [Google Scholar] [CrossRef]
- Kovářík, K.; Mužík, J.; Masarovičová, S.; Bulko, R.; Gago, F. The local meshless numerical model for granular debris flow. Eng. Anal. Bound. Elem. 2021, 130, 20–28. [Google Scholar] [CrossRef]
- Zandi, O.; Nasseri, M.; Zahraie, B. A locally weighted linear ridge regression framework for spatial interpolation of monthly precipitation over an orographically complex area. Int. J. Clim. 2023, 43, 2601–2622. [Google Scholar] [CrossRef]
- Das, S. Wahiduzzaman Identifying meaningful covariates that can improve the interpolation of monsoon rainfall in a low-lying tropical region. Int. J. Clim. 2021, 42, 1500–1515. [Google Scholar] [CrossRef]
- Saha, A.; Gupta, B.S.; Patidar, S.; Martínez-Villegas, N. Spatial distribution based on optimal interpolation techniques and assessment of contamination risk for toxic metals in the surface soil. J. South Am. Earth Sci. 2022, 115, 103763. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Xia, Z.J.; Georgakarakos, N. Machine-learning prediction for mean motion resonance behaviour—The planar case. Mon. Not. R. Astron. Soc. 2022, 511, 2218–2228. [Google Scholar] [CrossRef]
- Jiang, W.; Xie, Y.; Li, W.; Wu, J.; Long, G. Prediction of the splitting tensile strength of the bonding interface by combining the support vector machine with the particle swarm optimization algorithm. Eng. Struct. 2021, 230, 111696. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, X.; Cui, J. Segmentation of Inhomogeneous Images Using Improved Symmetric Active Contour Model. Comput. Simul. 2023, 40, 227–233. [Google Scholar]
- Guo, Z.; Tian, Y.; Feng, Y.; Zhang, H.; Liu, J.; Wang, Z. Salp swarm algorithm based on golden section and adaptive and its application in target tracking. IET Image Process. 2022, 16, 2321–2337. [Google Scholar] [CrossRef]
Month/Month | Nugget Value | Abutment Value | Range | Bullion Value/Base Value |
---|---|---|---|---|
6 | 796.36 | 198.38 | 732,871 | 4.737 |
7 | 713.63 | 345.22 | 915,887 | 2.213 |
8 | 661.25 | 193.88 | 915,887 | 3.668 |
9 | 468.94 | 95.38 | 915,887 | 4.968 |
Content | June | July | August | September | Average |
---|---|---|---|---|---|
Ordinary Kriging mean absolute error (MA) | 0.027 | 0.128 | 0.049 | 0.021 | 0.029 |
Coraging mean absolute error (MA) | 0.005 | 0.049 | 0.046 | 0.008 | 0.024 |
Ordinary Kriging root-mean-square error (RMS) | 2.876 | 2.826 | 2.872 | 2.419 | 2.416 |
Cokriging root-mean-square error (RMS) | 2.848 | 2.823 | 2.844 | 2.416 | 2.832 |
Ordinary Kriging standard root mean square error (RMSS) | 0.996 | 1.124 | 1.115 | 1.126 | 1.115 |
Cooperative Kriging standard root mean square error (RMSS) | 0.989 | 1.123 | 0.986 | 1.025 | 0.988 |
Debris Flow Trench Number | Actual Number of Debris Flows/Times | This Paper Models the Number of Early Warning Times/Times | Warning Times/Times of Unspatially Interpolated Model |
---|---|---|---|
1 | 3 | 3 | 5 |
2 | 1 | 2 | 3 |
3 | 2 | 2 | 3 |
4 | 5 | 5 | 5 |
5 | 3 | 2 | 3 |
6 | 2 | 2 | 4 |
7 | 1 | 1 | 2 |
8 | 4 | 3 | 5 |
9 | 2 | 2 | 3 |
10 | 3 | 3 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, R.; Wang, S.; Liu, J. Multi-Index Fusion Debris Flow Early Warning Model Based on Spatial Interpolation and Support Vector Machine. Water 2024, 16, 724. https://doi.org/10.3390/w16050724
Jin R, Wang S, Liu J. Multi-Index Fusion Debris Flow Early Warning Model Based on Spatial Interpolation and Support Vector Machine. Water. 2024; 16(5):724. https://doi.org/10.3390/w16050724
Chicago/Turabian StyleJin, Rui, Shaoqi Wang, and Jianfei Liu. 2024. "Multi-Index Fusion Debris Flow Early Warning Model Based on Spatial Interpolation and Support Vector Machine" Water 16, no. 5: 724. https://doi.org/10.3390/w16050724
APA StyleJin, R., Wang, S., & Liu, J. (2024). Multi-Index Fusion Debris Flow Early Warning Model Based on Spatial Interpolation and Support Vector Machine. Water, 16(5), 724. https://doi.org/10.3390/w16050724