Linkage between Granite Weathering and Gully Erosion in Subtropical Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sample Collection
2.2. Determination of Geochemical Elements
2.3. Element Migration Rate
2.4. Evaluation of Weathering Degree
2.5. Statistical Analysis
3. Results
3.1. Spatial Variation of Granitic Soil Properties
3.2. Major Earth Element Migration
3.3. Rare Earth Element Migration
3.4. Assessment of Granite Weathering Degree
4. Discussion
4.1. Evolution of Geochemical Elements during Granite Weathering
4.2. Linkage between Granite Weathering and Gully Erosion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, W.; Li, X.; Feng, Y.; Feng, M.; Peng, Z.; Yu, H.; Lin, H. Chemical weathering of S-type granite and formation of Rare Earth Element (REE)-rich regolith in South China: Critical control of lithology. Chem. Geol. 2019, 520, 33–51. [Google Scholar] [CrossRef]
- Ichimura, K.; Sanematsu, K.; Kon, Y.; Takagi, T.; Murakami, T. REE redistributions during granite weathering: Implications for Ce anomaly as a proxy for paleoredox states. Am. Mineral. 2020, 105, 848–859. [Google Scholar] [CrossRef]
- Baldermann, A.; Dietzel, M.; Reinprecht, V. Chemical weathering and progressing alteration as possible controlling factors for creeping landslides. Sci. Total Environ. 2021, 778, 146300. [Google Scholar] [CrossRef]
- Hong, D.; Wang, T.; Tong, Y. An outline about granitoids in China. Geol. Rev. 2007, 53, 9–16. [Google Scholar]
- Niu, D. Research on the Environmental Factors and Erosive Mechanism of Collapsing Hill in South China. Ph.D. Thesis, Nanjing Forestry University, Nanjing, China, 2009. [Google Scholar]
- Bourke, M.C.; Viles, H.A. A Photographic Atlas of Rock Breakdown Features in Geomorphic Environments, 1st ed.; Planetary Science Institute: Tucson, AZ, USA, 2007; p. 79. [Google Scholar]
- Oliva, P.; Viers, J.; Dupré, B. Chemical weathering in granitic environments. Chem. Geol. 2003, 202, 225–256. [Google Scholar] [CrossRef]
- Dixon, J.; Thorn, C. Chemical weathering and landscape development in mid-latitude alpine environments. Geomorphology 2005, 67, 127–145. [Google Scholar] [CrossRef]
- Pope, G. Weathering in the tropics, and related extratropical processes. In Treatise on Geomorphology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 279–298. [Google Scholar]
- Liu, X.; Zhang, D.; Jia, Y. Soil physical properties of collapsing hill and gully and their indications for soil erosion: An example of Liantanggang collapsing hill and gully in Wuhua County of Guangdong. Adv. Earth Sci. 2013, 28, 802–811. [Google Scholar]
- Liu, P.; Chen, R.; Wu, K.; Kang, X. Effects of Drying-Wetting Cycles on the Mechanical Behavior of Reconstituted Granite-Residual Soils. J. Mater. Civil Eng. 2020, 32, 04020199. [Google Scholar] [CrossRef]
- Guo, T.; Wong, L.; Wu, Z. Microcracking behavior transition in thermally treated granite under mode I loading. Eng. Geol. 2021, 282, 105992. [Google Scholar] [CrossRef]
- Bluth, G.J.S.; Kump, L.R. Lithologic and climatologic controls of river chemistry. Geochim. Cosmochim. Acta 1994, 58, 2341–2359. [Google Scholar] [CrossRef]
- Zhao, L.; Ji, J.; Chen, J.; Liu, L.; Chen, Y.; Balsam, W.; Balsam, W. Variations of illite/chlorite ratio in Chinese loess sections during the last glacial and interglacial cycle: Implications for monsoon reconstruction. Geophys. Res. Lett. 2005, 32, 242257. [Google Scholar] [CrossRef]
- Gingele, F.; De Deckker, P.; Norman, M. Late Pleistocene and Holocene climate of SE Australia reconstructed from dust and river loads deposited offshore the River Murray Mouth. Earth Planet. Sci. Lett. 2007, 255, 257–272. [Google Scholar] [CrossRef]
- Buggle, B.; Glaser, B.; Hambach, U.; Gerasimenko, N.; Marković, S. An evaluation of geochemical weathering indices in loess-paleosol studies. Quatern. Int. 2011, 240, 12–21. [Google Scholar] [CrossRef]
- Zhao, L.; Hong, H.; Fang, Q.; Yin, K.; Wang, C.; Li, Z.; Torrent, J.; Cheng, F.; Algeo, T. Monsoonal climate evolution in southern China since 1.2 Ma: New constraints from Fe-oxide records in red earth sediments from the Shengli section, Chengdu Basin. Palaeogeogr. Palaeocl. 2017, 473, 1–15. [Google Scholar] [CrossRef]
- Xu, J. Benggang erosion: The influencing factor. Catena 1996, 27, 249–263. [Google Scholar]
- Liao, Y.; Yuan, Z.; Zheng, M.; Li, D.; Nie, X.; Wu, X.; Huang, B.; Xie, Z.; Tang, C. The spatial distribution of Benggang and the factors that influence it. Land Degrad. Dev. 2019, 30, 2323–2335. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Z.; Wu, X.; Zhang, Y.; Cui, T.; Cai, C.; Guo, Z.; Wang, J.; Cheng, D. Can Benggang be regarded as gully erosion? Catena 2021, 207, 105648. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Kong, L.; Wang, G.; Liu, H. Formation mechanism of collapsing gully in southern China and the relationship with granite residual soil: A geotechnical perspective. Catena 2022, 210, 105890. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Z.; Zhang, Y.; Cui, T.; Guo, Z.; Cai, C.; Li, Z. Analysis of gully erosion susceptibility and spatial modelling using a GIS-based approach. Geoderma 2022, 420, 115869. [Google Scholar] [CrossRef]
- Xia, J.; Cai, C.; Wei, Y.; Wu, X. Granite residual soil properties in collapsing gullies of south China: Spatial variations and effects on collapsing gully erosion. Catena 2019, 174, 469–477. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, X.; Wang, J.; Yu, H.; Xia, J.; Deng, Y.; Zhang, Y.; Xiang, Y.; Cai, C.; Guo, Z. Identification of geo-environmental factors on Benggang susceptibility and its spatial modelling using comparative data-driven methods. Soil Till. Res. 2021, 208, 104857. [Google Scholar] [CrossRef]
- Zhang, X.W.; Kong, L.W.; Yin, S.; Chen, C. Engineering geology of basaltic residual soil in Leiqiong, southern China. Eng. Geol. 2017, 220, 196–207. [Google Scholar] [CrossRef]
- Kirk, P.; Campbell, S.; Flecther, C.; Merriman, R. The significance of primary volcanic fabrics and clay distribution in landslides in Hong Kong. J. Geol. Soc. 1997, 154, 1009–1019. [Google Scholar] [CrossRef]
- Wen, B.; Duzgoren-Aydin, N.; Aydin, A. Geochemical characteristics of the slip zones of a landslide in granitic saprolite, Hong Kong: Implications for their development and microenvironments. Environ. Geol. 2004, 47, 140–154. [Google Scholar] [CrossRef]
- Aydin, A. Stability of saprolitic slopes: Nature and role of field scale heterogeneities. Nat. Hazard Earth Syst. 2006, 6, 89–96. [Google Scholar] [CrossRef]
- Zhang, X.W.; Kong, L.W.; Cui, X.L.; Yin, S. Occurrence characteristics of free iron oxides in soil microstructure: Evidence from XRD. SEM and EDS. Bull. Eng. Geol. Environ. 2016, 75, 1493–1503. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, M.; Lin, J.; Jiang, F.; Huang, B.; Xu, T.; Wang, M.; Ge, H.; Huang, Y. Comparison of soil physicochemical properties and mineralogical compositions between noncollapsible soils and collapsed gullies. Geoderma 2018, 317, 56–66. [Google Scholar] [CrossRef]
- Dicenzo, P.D.; Luk, S.H. gully erosion and sediment transport in a small subtropical catchment, South China. Catena 1997, 29, 161–176. [Google Scholar] [CrossRef]
- Liao, Y.; Yuan, Z.; Zhuo, M.; Huang, B.; Nie, X.; Xie, Z.; Tang, C.; Li, D. Coupling effects of erosion and surface roughness on colluvial deposits under continuous rainfall. Soil Till. Res. 2019, 191, 98–107. [Google Scholar] [CrossRef]
- Jiang, F.; Huang, Y.; Wang, M.; Lin, J.; Zhao, G.; Ge, H. Effects of rainfall intensity and slope gradient on steep colluvial deposit erosion in southeast china. Soil Sci. Soc. Am. J. 2014, 78, 1741–1752. [Google Scholar] [CrossRef]
- Liao, D.; Deng, Y.; Duan, X.; Cai, C.; Ding, S. Variations in weathering characteristics of soil profiles and response of the Atterberg limits in the granite hilly area of South China. Catena 2022, 215, 106325. [Google Scholar] [CrossRef]
- Wang, K.; Wang, H.; Shi, X.; Weindorf, D.; Yu, D.; Liang, Y.; Shi, D. Landscape analysis of dynamic soil erosion in Subtropical China: A case study in Xingguo County, Jiangxi Province. Soil Till. Res. 2009, 105, 313–321. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Kong, L.; Wang, G.; Liu, H. Chemical weathering indices and how they relate to the mechanical parameters of granite regolith from southern China. Catena 2022, 216, 106400. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, X.; Cai, C. Splash erosion of clay–sand mixtures and its relationship with soil physical properties: The effects of particle size distribution on soil structure. Catena 2015, 135, 254–262. [Google Scholar] [CrossRef]
- Xia, D.; Deng, Y.; Wang, S.; Ding, S.; Cai, C. Fractal features of soil particle size distribution of different weathering profiles of the collapsing gullies in the hilly granitic region, south China. Nat. Hazards 2015, 79, 455–478. [Google Scholar] [CrossRef]
- Wei, Y.; Cai, C.; Guo, Z.; Wang, J. Linkage between aggregate stability of granitic soils and the permanent gully erosion in subtropical China. Soil Till. Res. 2022, 221, 105411. [Google Scholar] [CrossRef]
- Deng, Y.; Duan, X.; Ding, S.; Cai, C.; Chen, J. Suction stress characteristics in granite red soils and their relationship with the collapsing gully in south China. Catena 2018, 171, 505–522. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, X.; Xia, J.; Miller, G.A.; Cai, C.; Guo, Z.; Hassanikhah, A. The effect of water content on the shear strength characteristics of granitic soils in South China. Soil Till. Res. 2019, 187, 50–59. [Google Scholar] [CrossRef]
- Longerich, H. Analysis of pressed pellets of geological samples using wavelength-dispersive X-ray fluorescence spectrometry. X-ray Spectrom. 1995, 24, 123–136. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.; Bai, L. Rare earth element migration in gullies with different Dicranopteris dichotoma covers in the Huangnikeng gully group, Changting County, Southeast China. Chemosphere 2016, 164, 443–450. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Brimhall, G.H.; Dietrich, W.E. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis. Geochim. Cosmochim. Acta 1987, 51, 567–587. [Google Scholar] [CrossRef]
- Ceryan, S. Weathering indices for assessment of weathering effect and classification of weathered rocks: A case study from NE Turkey. Earth Sci. 2012, 19–44. [Google Scholar] [CrossRef]
- Nesbitt, H.; Young, G. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta 1984, 48, 1523–1534. [Google Scholar] [CrossRef]
- Li, Y.H.M.; Zhao, W.W.; Zhou, M.F. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model. J. Asian Earth Sci. 2017, 148, 65–95. [Google Scholar] [CrossRef]
- Jin, L.; Ma, L.; Dere, A.; White, T.; Mathur, R.; Brantley, S.L. REE mobility and fractionation during shale weathering along a climate gradient. Chem. Geol. 2017, 466, 352–379. [Google Scholar] [CrossRef]
- Anderson, S.P.; Dietrich, W.E.; Brimhall, G.H. Weathering profiles, mass-balance analysis, and rates of solute loss: Linkages between weathering and erosion in a small, steep catchment. Geol. Soc. Am. Bull. 2002, 114, 1143–1158. [Google Scholar] [CrossRef]
- Deng, Y.; Xia, D.; Cai, C.; Wang, Q.; Lyu, G.; Ding, S. Simulation of water characteristic curve in the soil profile of the collapsing gully on granite area of South China based on the fractal theory. Sci. Soil Water Conserv. 2016, 14, 1–8. [Google Scholar]
- Twidale, C.R.; Campbell, E.M. Pre-Quaternary landforms in the low latitude context: The example of Australia. Geomorphology 1995, 12, 17–35. [Google Scholar] [CrossRef]
- Butt, C.R.M.; Lintern, M.; Anand, R.R. Evolution of regoliths and landscapes in deeply weathered terrain-implications for geochemical exploration. Ore Geol. Rev. 2000, 16, 167–183. [Google Scholar] [CrossRef]
- Wakatsuki, T.; Matsukura, Y. Lithological effects in soil formation and soil slips on weathering-limited slopes underlain by granitic bedrocks in Japan. Catena 2008, 72, 153–168. [Google Scholar] [CrossRef]
- Anand, R.; Paine, M. Regolith geology of the Yilgarn Craton, Western Australia: Implications for exploration. Aus. J. Earth. Sci. 2002, 49, 3–163. [Google Scholar] [CrossRef]
- Gong, Q.; Deng, J.; Wang, C.; Wang, Z.; Zhou, L. Element behaviors due to rock weathering and its implication to geochemical anomaly recognition: A case study on Linglong biotite granite in Jiaodong peninsula, China. J. Geochem. Explor. 2013, 128, 14–24. [Google Scholar] [CrossRef]
- Hu, R.; Oyediran, I.; Gao, W.; Zhang, X.; Li, H. “Plagioclase solution degree index”: A new index to evaluate the weathering degree of granite. B. Eng. Geol. Environ. 2014, 73, 589–594. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, S.; Liu, X.; Luo, W.; Wang, Q. Micro-area transportation of residues: A style of forming the red weathering crusts of carbonate rocks. Acta Geol. Sin-Engl. 2007, 81, 127–138. [Google Scholar] [CrossRef]
- Derakhshan-Babaei, F.; Nosrati, K.; Tikhomirov, D.; Christl, M.; Sadough, H.; Egli, M. Relating the spatial variability of chemical weathering and erosion to geological and topographical zones. Geomorphology 2020, 363, 107235. [Google Scholar] [CrossRef]
- Furbish, D.; Fagherazzi, S. Stability of creeping soil and implications for hillslope evolution. Water Resour. Res. 2001, 37, 2607–2618. [Google Scholar] [CrossRef]
- Zhou, Z.; Su, S.; Diao, Y.; Wang, Z.; Wang, J.; Zhao, H. Seismic response and failure characteristics of granite slope using large-scale shaking table test. Rock Soil Mech. 2022, 43, 4. [Google Scholar]
- Gee, G.W.; Or, D. 2.4 Particle-size analysis. Methods Soil Anal. 2002, 4, 255–293. [Google Scholar]
- ASTM. Annual Book of ASTM Standards 2000: Soil and Rock; American Society for Testing Materials: West Conshohocken, PA, USA, 2000; Volume 4. [Google Scholar]
- Thomas, G.W. Exchangeable cations. In Methods of Soil Analysis Part 2. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeny, D.R., Eds.; Agronomy Monograph, 9. American Society of Agronomy; Soil Science Society of America: Madison, WI, USA, 1982; pp. 159–165. [Google Scholar]
- Mehra, O.P.; Jackson, M.L. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner 1958, 7, 317–327. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis, 2nd ed.; University of Wisconsin: Madison, WI, USA, 1979. [Google Scholar]
Climatic Factor | FS | LY | TC | GX | CT | WH |
---|---|---|---|---|---|---|
Tmax (°C) | 31 | 33 | 35 | 36 | 36 | 34 |
Tmin (°C) | −15 | −5 | 0 | 6 | 7 | 13 |
TCI | 8 | 7 | 6 | 5 | 4 | 4 |
TCV (%) | 1 | 1 | 1 | 0 | 0 | 0 |
T(max-min) (°C) | 46 | 38 | 35 | 30 | 29 | 21 |
Taverage (°C) | 9 | 15 | 17 | 21 | 21 | 24 |
Tstd (°C) | 13 | 10 | 9 | 8 | 7 | 5 |
Pmax (mm) | 307 | 305 | 336 | 272 | 296 | 340 |
Pmin (mm) | 1 | 1 | 11 | 7 | 9 | 8 |
PCI | 57 | 62 | 68 | 58 | 61 | 77 |
PCV (%) | 1 | 2 | 1 | 1 | 1 | 1 |
P(max-min) (mm) | 306 | 304 | 325 | 265 | 287 | 332 |
Paverage (mm) | 70 | 64 | 117 | 110 | 120 | 117 |
Pstd (mm) | 89 | 93 | 106 | 92 | 94 | 115 |
RHaverage (%) | 61 | 66 | 77 | 74 | 77 | 74 |
RHmin (%) | 8 | 10 | 15 | 15 | 12 | 17 |
Climate | Mean | std | CV (%) | Max | Min | Kurtosis | Skewness | Climate | Mean | std | CV (%) | Max | Min | Kurtosis | Skewness | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clay (%) | Temperate | 20 | 5 | 37 | 31 | 11 | −0.6 | 0.6 | Subtropic | 28 | 3 | 43 | 49 | 11 | −0.3 | 0.3 |
Silt (%) | 25 | 4 | 46 | 42 | 10 | −0.7 | 0.2 | 30 | 5 | 24 | 45 | 18 | −0.6 | 0.4 | ||
Sand (%) | 55 | 6 | 18 | 73 | 43 | 0.2 | 0.1 | 42 | 4 | 29 | 65 | 19 | −0.3 | −0.1 | ||
pH | 6.1 | 0.8 | 13.8 | 7.1 | 4.9 | −0.1 | −0.3 | 5.1 | 0.6 | 10.9 | 6.2 | 4.1 | −0.6 | 0.5 | ||
SOM (g/kg) | 9.8 | 13.4 | 13.2 | 36.7 | 2.1 | 5.4 | 2.3 | 9.1 | 4.8 | 52.8 | 19.5 | 2.4 | −0.8 | 0.5 | ||
CEC (cmol/kg) | 10.3 | 4.2 | 40.9 | 16.3 | 4.1 | 0.2 | −0.1 | 22.6 | 6.7 | 29.7 | 32.8 | 9.5 | −0.7 | −0.4 | ||
Kao (%) | 31 | 14.9 | 48.3 | 48 | 8 | −0.6 | −0.6 | 80 | 9.3 | 11.7 | 91 | 60 | 0.1 | −0.9 | ||
Ill (%) | 33 | 8.5 | 25.4 | 42 | 20 | −0.9 | −0.7 | 13 | 8.0 | 63.6 | 33 | 3 | 0.5 | 1.0 | ||
Ver (%) | 36 | 20.5 | 57.4 | 72 | 17 | 1.2 | 1.2 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | ||
1.4 nm (%) | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 7 | 4.7 | 64.4 | 20 | 1 | 0.5 | 1.0 | ||
Gib (%) | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 1 | 1.0 | 193.0 | 4 | 0 | 3.6 | 2.1 | ||
Fed (g/kg) | 10.9 | 2.6 | 23.8 | 14.2 | 8.1 | −1.8 | 0.6 | 17.8 | 8.1 | 45.3 | 37.5 | 4.6 | 0.1 | 0.5 | ||
Ald (g/kg) | 2.1 | 0.6 | 28.5 | 3.0 | 1.5 | −1.8 | 0.4 | 4.4 | 1.9 | 43.8 | 7.6 | 1.7 | −1.3 | 0.1 | ||
Mnd (g/kg) | 0.3 | 0.2 | 70.3 | 0.6 | 0.1 | −2.2 | 0.4 | 0.5 | 0.4 | 90.8 | 1.2 | 0.0 | −1.0 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhang, Y.; Huang, G.; Zhang, B.; Li, Y.; Chen, X.; Xu, J.; Wei, Y. Linkage between Granite Weathering and Gully Erosion in Subtropical Region. Water 2024, 16, 751. https://doi.org/10.3390/w16050751
Zhang S, Zhang Y, Huang G, Zhang B, Li Y, Chen X, Xu J, Wei Y. Linkage between Granite Weathering and Gully Erosion in Subtropical Region. Water. 2024; 16(5):751. https://doi.org/10.3390/w16050751
Chicago/Turabian StyleZhang, Shu, Yong Zhang, Gang Huang, Bo Zhang, Yichan Li, Xin Chen, Junkang Xu, and Yujie Wei. 2024. "Linkage between Granite Weathering and Gully Erosion in Subtropical Region" Water 16, no. 5: 751. https://doi.org/10.3390/w16050751
APA StyleZhang, S., Zhang, Y., Huang, G., Zhang, B., Li, Y., Chen, X., Xu, J., & Wei, Y. (2024). Linkage between Granite Weathering and Gully Erosion in Subtropical Region. Water, 16(5), 751. https://doi.org/10.3390/w16050751