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Abstract: Granites, widely distributed in the Earth’s crust, undergo pedogenic processes, shaping
diverse soil-mantled landscapes influenced by climatic factors in different regions. Investigating the
geochemical signatures in granite weathering profiles across varying climatic conditions provides
valuable insights into the intricate interplay between weathering and landscape evolution. In this
study, the geochemical features, particularly major and rare earth elements, and the weathering
degree of granites across temperate to subtropical regions in China were examined. The results
indicated significant variations in the geochemical characteristics of granite weathering profiles, both
at a pedon and regional scale (p < 0.01). With increasing hydrothermal conditions from north to
south, soil pH shifted from neutral to acidic, accompanied by the leaching of major elements (K2O,
Na2O, CaO, and MgO) and the enrichment of Al and Fe. The total rare earth elements (∑REEs)
ranged from 75 to 352 ppm, and light rare earth elements (LREEs) from 71 to 317 ppm, exhibiting less
significant variations across the study area, while heavy rare earth elements (HREEs) showed higher
concentrations in the subtropical region (3 to 35 ppm). Plagioclases dominated the weathering process
in temperate regions, with K-feldspar progressively increasing and, eventually, dominating from
temperate to subtropic regions, resulting in a shift in clay minerals from 2:1-type in the temperate to
1:1-type in the subtropic. The chemical index of alteration (CIA) and comprehensive weathering index
(W) increased from fresh rock to residual soils along the weathering profiles and from north to south
across the study area, ranging from 50.72 to 97.44 and 35.11 to 70.62, respectively. The intensified
granite weathering degree was significantly influenced by climatic conditions (p < 0.05), especially
the multi-year average precipitation (22.4%) and relative humidity (9.1%) (p < 0.01). Gully erosion on
the granite weathering mantle was concentrated in granites with a comprehensive weathering index
exceeding 52.51, and the spatial variation of the granite weathering degree aligned with the spatial
distribution of gully density across the study area.

Keywords: chemical weathering; granite weathering profile; gully erosion; climatic gradient

1. Introduction

Chemical weathering is a pivotal process in providing essential nutrients to ecosys-
tems and regulating the Earth’s surface environment over geological time [1]. The onset
of chemical weathering is initiated by the intricate interplay among rock, water, and the
atmosphere [2]. This process is governed by various factors, including mineral geochem-
istry, temperature, environment, and topography [3]. Granite covers approximately 9% of
the land in China, with an expansive area of up to 800,000 km2 [4], particularly distributed
in the southern regions of China [5]. Research on granite residual soil spans various scales,
from morphological microscopes [6] to weathering under diverse climatic, geomorphic, and
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topography conditions [7–9]. Petrography, mineralogy, geochemistry, and micromorphol-
ogy are employed in these studies. Significant progress has been attained in comprehending
the weathering dynamics of residual granite soil. This progress encompasses various facets,
such as the exploration of microcosmic properties and the disintegration of granite from
both geotechnical and geological engineering perspectives [10–12]. Additionally, inves-
tigations have delved into the amalgamation of mineralogical, chemical, and biological
conditions associated with the heterogeneity of the granite weathering mantle [13–17]. This
includes the formation, migration, and enrichment of secondary minerals and various
elements. Therefore, a study on granite weathering would facilitate a better understanding
of the formation mechanism of gully erosion [18].

In southern China, the granite weathering rate experiences a notable escalation influ-
enced by elevated temperatures and humidity levels, providing abundant materials for
gully erosion [19]. The thick weathering mantle has been regarded as the prerequisite for
the development of this gully with a large dimensional scale [20]. Additionally, this type
of gully erosion exhibits distinctive characteristics, such as rapid expansion, severe soil
loss, extensive damage, and intricate combined erosion patterns [21]. According to the
2005 National Survey on Soil and Water Loss, more than 2.39 × 105 gullies, with an annual
erosion rate exceeding 500,000 t km- 2 yr−1 and covering an area of 1.22 × 105 ha, were
distributed across seven provinces (Hubei, Hunan, Jiangxi, Anhui, Fujian, Guangdong,
and Guangxi) in southern China [22], and it has been reported that these gullies caused
the destruction, burial, or abandonment of 380,000 hectares of cultivated land, resulting in
a direct economic loss of CNY 550 million from 1949 to 2005 [23]. Due to these facts, gully
erosion concentrated in granite weathering mantles has emerged as a significant national
concern in recent decades [24].

To achieve effective control of gully erosion in southern China, researchers have in-
creasingly focused on studying the erosion process and formation mechanism of these
gullies [20]. The prevailing consensus is that the thick granite weathering mantle, character-
ized by distinctive soil structures and physic-mechanical properties, serves as an internal
prerequisite for this gully erosion [25–34]. Meanwhile, external factors, such as abundant
precipitation and high temperatures, which drive the weathering process, play a signifi-
cant role in its formation [19,22,24]. On a regional scale, the spatial distribution of these
gullies exhibits a notable zonal characteristic, aligning parallel to the coastline of southern
China. This distribution pattern is strongly influenced by humid and thermal conditions,
which play a pivotal role in the formation of gullies [35]. At the watershed or catchment
scale, factors such as the slope gradient, slope aspect, and altitude or elevation are pivotal
for the formation of these gullies [10,21]. At a pedon/plot scale, certain factors, such as
soil texture [36,37], cements [30], structure [38], moisture [39], shear strength [40], and
anti-erosion ability [31], have been identified as the determinants influencing these gullies.
While it is widely acknowledged that granite weathering plays a pivotal role in shaping
the spatial variability of granitic soil properties, limited research works have delved into
the relationship between granite weathering and gully erosion.

According to the above-mentioned background, this study is centered on the vertical
stratification and zonal distribution of granite residual soil. We explore the evolutionary
characteristics of the granite weathering process and elucidate the impact of chemical
weathering on gully erosion through the measurement and calculation of chemical ele-
ment migration, weathering degree index, and other relevant parameters. This approach
enhances our understanding of the material composition and development of collapsing
gully erosion.

2. Materials and Methods
2.1. Study Sites and Sample Collection

Granite weathering profiles developed from the same parent rocks were selected
from areas with a climatic gradient: from Fushun County (41◦53′ N, 124◦01′ E~41◦62′ N,
124◦10′ E, Liaoning Province, China) to Wuhua County (24◦06′ N, 115◦36′ E~24◦13′ N,
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115◦34′ E, Guangdong Province, China). Across the study area, the mean annual tempera-
ture and precipitation ranged from 9.2 to 22.0 ◦C and from 493 to 1700 mm, respectively,
indicating an escalating trend in hydrothermal conditions from north to south. The average
condition of the climate in the recent five years is summarized in Table 1. This climatic
variation contributes to the spatial heterogeneity observed in desilication and allitization
across the study area. A field investigation indicated a progressive increase in the depth of
granite weathering profiles throughout the study area. In the temperate region, this depth
remained below 5 m, whereas, in the subtropical region, it spanned from ten to a hundred
meters. The granite weathering profiles were categorized into two segments: residual soils,
further subdivided into eluvial (A), illuvium (B), and parent material horizons (C); and
weathered rocks, further subdivided into moderately weathered (MW), highly weathered
(HW), and fresh rock (R) horizons. In the temperate region, where the weathering mantle
had limited thickness, the granite weathering profiles were categorized into four horizons:
A, B, C, and R. All selected granite weathering profiles were situated under similar topo-
graphical conditions and land use. Additional details about the study area and soils are
presented in Figure 1 and Table 1.
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Figure 1. Heatmap of soil properties, geochemical elements, and environmental factors, normalization
of raw data using Z-score method, x’ = x−µ

δ ; µ, the average of raw data; δ, the standard deviation of
raw data. (i) MAP and MAT, mean annual precipitation and temperature. (ii) SiO2, Al2O3, Fe2O3,
CaO, MgO, K2O, and Na2O, the content of major earth elements SiO2, Al2O3, Fe2O3, CaO, MgO,
K2O, and Na2O; La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, the content of rare earth
elements La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; ∑REE, the sum of 14 REE; LREE,
the sum of light REE; HREE, the sum of heavy REE; L/H, the ratio of LREE and HREE.

Table 1. Climatic factors (average values from 2018 to 2024) across the study area.

Climatic Factor FS LY TC GX CT WH

Tmax (◦C) 31 33 35 36 36 34
Tmin (◦C) −15 −5 0 6 7 13

TCI 8 7 6 5 4 4
TCV (%) 1 1 1 0 0 0

T(max-min) (◦C) 46 38 35 30 29 21
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Table 1. Cont.

Climatic Factor FS LY TC GX CT WH

Taverage (◦C) 9 15 17 21 21 24
Tstd (◦C) 13 10 9 8 7 5

Pmax (mm) 307 305 336 272 296 340
Pmin (mm) 1 1 11 7 9 8

PCI 57 62 68 58 61 77
PCV (%) 1 2 1 1 1 1

P(max-min) (mm) 306 304 325 265 287 332
Paverage (mm) 70 64 117 110 120 117

Pstd (mm) 89 93 106 92 94 115
RHaverage (%) 61 66 77 74 77 74

RHmin (%) 8 10 15 15 12 17
Note: T, P, and RH are the temperature, precipitation, and relative humility, respectively; max, min, CI,
CV, (max–min), average, std in subscripts are the maximum, minimum, confidence interval, coefficient of
variation, temperature difference between the maximum and minimum value, average value, and standard
deviation, respectively.

The collection of experimental samples from each site followed a randomized block
design with four field replicates. Composited and undisturbed core samples (100 cm3) were
obtained from each horizon; the composited soils were collected from each horizon using
an S-shaped sampling strategy and stored in rigid plastic boxes to prevent soil structure
disturbance. After thorough air-drying at room temperature, the pretreated soil samples
were analyzed using standardized methods (Table 2).

Table 2. Descriptive statistics of soil properties in different climate zones.

Climate Mean std CV
(%) Max Min Kurtosis Skewness Climate Mean std CV

(%) Max Min Kurtosis Skewness

Clay (%)

Temperate

20 5 37 31 11 −0.6 0.6

Subtropic

28 3 43 49 11 −0.3 0.3
Silt (%) 25 4 46 42 10 −0.7 0.2 30 5 24 45 18 −0.6 0.4

Sand (%) 55 6 18 73 43 0.2 0.1 42 4 29 65 19 −0.3 −0.1
pH 6.1 0.8 13.8 7.1 4.9 −0.1 −0.3 5.1 0.6 10.9 6.2 4.1 −0.6 0.5

SOM
(g/kg) 9.8 13.4 13.2 36.7 2.1 5.4 2.3 9.1 4.8 52.8 19.5 2.4 −0.8 0.5

CEC
(cmol/kg) 10.3 4.2 40.9 16.3 4.1 0.2 −0.1 22.6 6.7 29.7 32.8 9.5 −0.7 −0.4

Kao (%) 31 14.9 48.3 48 8 −0.6 −0.6 80 9.3 11.7 91 60 0.1 −0.9
Ill (%) 33 8.5 25.4 42 20 −0.9 −0.7 13 8.0 63.6 33 3 0.5 1.0

Ver (%) 36 20.5 57.4 72 17 1.2 1.2 N/A N/A N/A N/A N/A N/A N/A
1.4 nm

(%) N/A N/A N/A N/A N/A N/A N/A 7 4.7 64.4 20 1 0.5 1.0

Gib (%) N/A N/A N/A N/A N/A N/A N/A 1 1.0 193.0 4 0 3.6 2.1
Fed

(g/kg) 10.9 2.6 23.8 14.2 8.1 −1.8 0.6 17.8 8.1 45.3 37.5 4.6 0.1 0.5

Ald
(g/kg) 2.1 0.6 28.5 3.0 1.5 −1.8 0.4 4.4 1.9 43.8 7.6 1.7 −1.3 0.1

Mnd
(g/kg) 0.3 0.2 70.3 0.6 0.1 −2.2 0.4 0.5 0.4 90.8 1.2 0.0 −1.0 0.8

Note: SOM, soil organic material; CEC, cation exchange capacity; Fed, Ald, and Mnd, free iron, aluminum, and
manganese oxides; mean, std, CV, Max, and Min are average value, standard deviation, coefficient of variation,
and maximum and minimum values, respectively.

2.2. Determination of Geochemical Elements

Major elements, mainly including SiO2, Al2O3, Fe2O3, CaO, MgO, K2O, Na2O, P2O5,
TiO2, and MnO, were determined using the anhydrous lithium tetraborate melting method
with an X-ray fluorescence (XRF) spectrometer (Axios, PANalytical, Almelo, The Nether-
lands) [41]. Rare earth elements (REEs) were analyzed through inductively coupled plasma
mass spectrometry (ICP-MS, NexION 350X, PerkinElmer, Waltham, Massachusetts, USA)
for all soil samples [42]. A regular foreign sample and a blank data quality management
sample were used. In this study, the chondrite proposed by Sun and McDonough [43] was
used to standardize the REEs (~10−6) to remove the odd–even effect, and ∑REEs, LREEs,
HREEs, L/H, δEu, and δCe were used to characterized the REEs. Specifically, the ∑REEs
were the sum of all the identified REEs; LREEs were the sum of the light REEs, including
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La, Ce, Pr, Nd, Sm, and Eu; the HREEs were the sum of the heavy REEs, including Gd,
Tb, Dy, Ho, Er, Tm, Yb, and Lu; L/H was the ratio of LREEs and HREEs. δEu and δCe,
respectively, indicated the abnormality degree of Eu and Ce and were calculated with
Equations (1) and (2):

δEu =
EuN

(SmN+GdN)/2
(1)

δCe =
CeN

(LaN + PrN)/2
(2)

where the subscript N represents chondrite normalization.

2.3. Element Migration Rate

The element migration rate was determined by analyzing the concentration variations
of major elements in different horizons [44]. Herein, Al was selected as the relatively stable
element and the migration rate (τi,j) was calculated with Equation (3) [45]:

τi,j =

(
Cj,w/Ci,w

Cj,p/Ci,p
−1

)
×100 (3)

where C, the concentration of the element; i and j, the stable and moveable elements,
respectively; w and p, the weathering layer and fresh rock layer, respectively. The τi,j > 0
indicates the enrichment of the element compared to the fresh rock. Conversely, τi,j < 0
means the element was leached from the fresh rock. When τi,j = 0, the element remained
stable, indicating neither enrichment nor leaching.

2.4. Evaluation of Weathering Degree

The chemical index of alteration (CIA) [46] was adopted to quantify the weathering degree:

CIA =[Al2O3/(Al2O3 + CaO∗ + K2O + Na2O)]×100 (4)

where CaO*, CaO in silicate excluded carbonate and phosphate. The molar ratio was
employed for the determination of each oxide. Nevertheless, the CIA can only distinguish
weathering stages, and for a quantitative definition of the degree of weathering in each
section, it was necessary to consider the influence of the parent rock as well as the climatic
conditions [3]. As different types of granite contain various rock-forming minerals with
different weathering resistances, a comprehensive weathering index (W) was adopted in
this paper to characterize the weathering degree of each section. The index expression
was relative to the parent rock wetness, providing insight into the geochemical process of
weathering and common properties across various lithologies [1].

W =

[
1 −

(
E′ ×

_
t + E
2

)]
×100% (5)

where
_
t , the average leaching coefficient of five oxides (SiO2, CaO, MgO, K2O, and

Na2O); E, the equilibrium degree of the variation coefficient of seven oxides (SiO2, Al2O3,
Fe2O3, CaO, MgO, K2O, and Na2O ); and E’, the equilibrium degree of seven weath-
ering rates (SiO2/Al2O3, SiO2/Fe2O3, Al2O3/R(Al2O3), Fe2O3/R(Fe2O3), Fe2O3/Al2O3,
Al2O3/Fe2O3, and (Al2O3 + Fe2O3)/SiO2 ); R(Al2O3) and R(Fe2O3), the content of Al2O3
and Fe2O3 in the parent rock, respectively. Additionally, the leaching coefficient was
calculated as follows:

t =
t1 − t2

t1
×100% (6)

t2 = t′ ×
R(Al2O3)

S(Al2O3)
×100% (7)
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where t, the migration of oxides from the fresh rock (%); t1 and t2, oxides in the fresh rock
(%) and oxides under the condition with a consistent Al2O3, respectively; t’, oxides in the
weathering profile (%).

The equilibrium degree (E) was calculated using the following:

E =
eH(S)

S
(8)

H(s) = −∑s
i=1 Pi· ln Pi (9)

where e, Napierian base; H(s), information function; S, number of data; N, sum of series
data, and Pi = ni/N.

2.5. Statistical Analysis

The normalization of different dimensional data was carried out using the Z-score
method. Normality checks were performed using the Shapiro–Wilk statistics before the
analysis. For non-normally distributed results, a natural log transformation was applied,
but the raw data were presented in the figures of this article. To depict variations in soil
properties and REE distribution among sampling sites, a one-way analysis of variance
(ANOVA) was conducted. Pearson’s correlation analysis was employed to illustrate the
relationship between REE distribution, clay minerals, and soil properties. The impact of
environmental factors on soil layers and characteristics of granite weathering was calculated
through a redundancy analysis (RDA). Both statistical analyses were carried out using the
SPSS software package (version 19.0.0) and OriginPro 2020 was used for figure generation.

3. Results
3.1. Spatial Variation of Granitic Soil Properties

Basic soil properties, mainly including clay mineralogy, particle size distribution, and
sesquioxide, were determined for granitic soils in the residual soil horizons. They showed
that the soil horizon and climatic gradient contributed significantly to these basic soil
properties (Table 2 and Figure 2). The tested soils had an average sand content of 41%
(ranging from 15% to 72%) and an average clay content of 20% (ranging from 3% to 49%),
indicating a dense texture characteristic of granite residual soil. The sand content decreased
from the bottom to the top of the soil profile, while the clay content increased steadily,
accompanied by simultaneous increases in the SOM and CEC. The soil pH exhibited
noticeable acidification characteristics from bottom to top. The clay fraction in the soil
FS and soil LY comprised vermiculite, illite, and kaolinite, with relative contents ranging
from 17% to 72%, 20% to 42%, and 8% to 48%, respectively. Along the soil profile, the
kaolinite content gradually increased, while vermiculite and illite generally decreased.
In the soil profiles from TC to WH, there was a high content of kaolinite, and the clay
fractions consisted of kaolinite, illite, and a small amount of 1.4 nm intergrade minerals.
Additionally, a small amount of gibbsite was found in the eluvial or illuvial layer of GX,
CT, and WH.

A heatmap analysis (Figure 1) demonstrated significant variations in soil properties
among the six granite residual soils, with most properties exhibiting significant correlations
with the mean annual precipitation and temperature. This indicated the influential role
of climate in granite weathering. Across the soil profiles from FS to WH, there was a shift
in soil pH from neutral to acidic, indicating an acidification trend along the latitude. The
content of free Ald was lower than that of Fed, with an enrichment pattern observed from
soil FS to WH for both Fed and Ald. Although there were no significant variations in the
SOM and CEC among these residual soils, the soils in the subtropical region exhibited a
higher SOM and CEC compared to those in the temperate region. The clay fraction primarily
consisted of 2:1-type minerals (vermiculite, illite, and 1.4 nm intergrade mineral) in the
temperate, gradually transitioning into 1:1-type minerals (kaolinite) in the subtropic, with
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vermiculite and montmorillonite gradually disappearing. Ultimately, the predominant clay
mineral type in the soil was mainly kaolinite, with the occasional appearance of gibbsite.
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the distribution of elements along the weathering mantle and across the study sites. The area of the
violin plots represents the kernel density of the experimental data. The red asterisks (*) at the bottom
and top of the box denote the minimum and maximum values of the data, while the red circle (•)
inside the box indicates the average value. The pink and yellow boxes represent the interquartile
range, encompassing 50% of the data distribution.

3.2. Major Earth Element Migration

Among the granite residual soil profiles, SiO2, Al2O3, and Fe2O3 were identified as
the main components, constituting 88%, 86%, and 92%, respectively, from soil FS to WH
(Figure 2). The content distribution followed the order SiO2 > Al2O3 > Fe2O3. A consistent
variation trend was observed for each major element across the granite residual soils of
the six sampling sites. The Al2O3 and Fe2O3 content increased from the bottom to the
top of the profile, while SiO2, K2O, Na2O, MgO, and CaO leached from the parent rock to
the upper soil layers. The variance analysis indicated the experience of weathering, the
eluviation of base cations, and desilicification–allitization in all profiles, with weathering
severity increasing steadily from the parent rock to the surface soil layer.
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Comparing the weathering profiles in the temperate and subtropical regions, it was
evident that weathering in the subtropical region was more intense, with a larger difference
in element leaching and enrichment, particularly in the later stages of the weathering
process. Taking the eluvial layer (horizon A) as an example, the average contents of easily
migratable K2O, Na2O, CaO, and MgO in the subtropical region were 2.5%, 2.7%, 1.0%,
and 1.3%, respectively, compared to 2.0%, 0.10%, 0.0%, and 0.4%, respectively, in the
temperate region. The contents of K2O, Na2O, CaO, and MgO in the subtropical region
were significantly lower than those in the temperate region, indicating more leaching and
a stronger degree of weathering. Similarly, the comparison of Al2O3 and Fe2O3 contents in
the subtropical and temperate regions showed that the enrichment trend of the Al element
in subtropical regions was more pronounced than that in temperate regions.

3.3. Rare Earth Element Migration

The spatial variation of rare earth elements (REEs) in granite weathering profiles across
different sampling sites and soil layers is shown in Figure 3. The ∑REEs of soil FS to WH
ranged from 91 to 141 ppm, 110 to 207 ppm, 76 to 216 ppm, 97 to 289 ppm, 95 to 277 ppm,
and 77 to 248 ppm, respectively. When compared with the parent rock, each soil layer
exhibited enrichment in ∑REEs, with the maximal values appearing in the illuvial layer,
except for soil CT. The L/H of the six sample sites ranged from 11.9 to 17.4 (mean 14.0),
from 8.3 to 12.8 (mean 11.0), from 12.7 to 21.7 (mean 17.7), from 3.7 to 9.0 (mean 5.9), from
4.8 to 8.4 (mean 6.6), and from 12.4 to 24.3 (mean 18.5). δEu ranged from 0.2 to 0.8, and δCe
ranged from 0.8 to 1.1. The redistribution of REEs in the soil profiles was a consequence of
long-term weathering, resulting in a vertical distinction.
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Figure 3. Rare earth element distribution of granite weathering profile across the study area. A, B, C,
HW, MW, and R mean eluvial horizon, illuvium horizon, parent horizon in the residual soil layers,
highly weathered, moderately weathered, and fresh rock horizon, respectively.

REEs and light rare earth elements (LREEs) showed less significant variations across
the study area, while heavy rare earth elements (HREEs), L/H, (La/Yb)N, δEu, and δCe
exhibited significant differences. The LRRE enrichment was most evident in all granite
residual soil profiles, with the separation of LRREs and HRREs being most visible in the
illuvial layer, except for soil CT, showing a similar functionality to La/Yb. The ∑REEs
demonstrated the greatest enrichment in the moderate weathered layer, with enrichment
coefficients of 1.6, 1.9, 3.3, 3.6, 3.5, and 3.7, respectively. The enrichment coefficient generally
improved from north to south across the study area. The redistribution of REEs in the soil
profiles was a result of long-term weathering, establishing a vertical distinction.
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3.4. Assessment of Granite Weathering Degree

According to the Al2O3-CaO + Na2O-K2O (A-CN-K) diagram (Figure 4), the evolution
of granite weathering in the study area could be classified into three categories: granite
weathering profiles in the temperate region (FS and LY) (Figure 4a), granite weathering
profiles in TC and WH (Figure 4b), and granite weathering profiles in GX and CT (Figure 4c).
The transformation of soil in FS and LY from the parent rock to the residual soil aligned
mostly with the A12O3–(CaO + Na2O) line and gradually shifted towards the A12O3–K2O
line. This shift suggested that plagioclase weathering was the primary cause for the release
of Na and Ca in the temperate region. The variability in TC was comparable to the profiles
in the temperate region, but the release amount of Ca and Na was greater, and the leaching
layer was even near 0%. Moreover, weathering trends were not fully consistent with the
A12O3–(CaO + Na2O) line, indicating that in the process of plagioclase weathering, a small
amount of weathering also occurred in potassium feldspar. In the temperate region, granite
underwent a phase dominated by plagioclase weathering with leaching of Ca and Na,
followed by a period dominated by K-feldspar weathering with a decline in K. In contrast,
the intense weathering in the subtropical region compelled a shift in the weathering trend
towards the Al element enrichment.
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Figure 4. A–CN–K triangle diagram of investigated samples. A, CN, and K are the mole fraction of
Al, the sum of the mole fractions of Ca and Na, and the mole fraction of K, respectively. (a) granite
weathering profiles in the temperate region (FS and LY); (b) granite weathering profiles in TC and
WH; (c) granite weathering profiles in GX and CT.

The chemical index of alteration (CIA) and comprehensive weathering index (W)
exhibited a gradual decrease with increasing depth in the granite weathering profiles
(Figure 5), signifying a progressive decline in the weathering degree. The CIA for granite
residual soil in the temperate region ranged from 50.1 to 69.5, categorizing it as moderately
weathered, extending from fresh rock to horizon A. Conversely, subtropical-zone granite
residual soil showed a wider range, varying between 50.7 and 97.4. CIA values exceeding
65 in residual soil horizons (A, B, and C) indicated a strongly weathered state. Notably,
the coefficient of variation for the CIA in the subtropical region exhibited more significant
variations (0.2~18.7) compared to the temperate region. In addition, similar trends were
observed for the W values, suggesting common parent rock sources for these weathering
profiles. Moreover, most of the considered climatic factors had significant correlations
with the CIA and W (p < 0.05) (Figure 6a). Among these factors, multiple-year average
precipitation (22.4%) and relative humidity (9.1%) had the predominant contribution
(p < 0.01) to the granite weathering degree (Figure 6b). In general, both the CIA and
W consistently increased from the fresh rock to the residual soil horizon and displayed
a north-to-south increase across the study area. The spatial variation of the granite
weathering degree was primarily determined by the comprehensive effects of temperature
and precipitation (Figure 6c).



Water 2024, 16, 751 10 of 15

Water 2024, 16, x FOR PEER REVIEW 10 of 16 
 

 

state. Notably, the coefficient of variation for the CIA in the subtropical region exhibited 
more significant variations (0.2~18.7) compared to the temperate region. In addition, 
similar trends were observed for the W values, suggesting common parent rock sources 
for these weathering profiles. Moreover, most of the considered climatic factors had 
significant correlations with the CIA and W (p < 0.05) (Figure 6a). Among these factors, 
multiple-year average precipitation (22.4%) and relative humidity (9.1%) had the 
predominant contribution (p < 0.01) to the granite weathering degree (Figure 6b). In 
general, both the CIA and W consistently increased from the fresh rock to the residual soil 
horizon and displayed a north-to-south increase across the study area. The spatial 
variation of the granite weathering degree was primarily determined by the 
comprehensive effects of temperature and precipitation (Figure 6c). 

 
Figure 5. Weathering degree of investigated samples across the study area. A, B, C, HW, MW, and 
R mean eluvial horizon, illuvium horizon, parent horizon in the residual soil layers, highly 
weathered, moderately weathered, and fresh rock horizon, respectively. 

 
Figure 6. Correlation between granite weathering degree and climatic factors (a), ordination plot of 
redundancy analysis (RDA) for the granite weathering degree and climatic factors (b), and partitions 

Figure 5. Weathering degree of investigated samples across the study area. A, B, C, HW, MW, and R
mean eluvial horizon, illuvium horizon, parent horizon in the residual soil layers, highly weathered,
moderately weathered, and fresh rock horizon, respectively.

Water 2024, 16, x FOR PEER REVIEW 10 of 16 
 

 

state. Notably, the coefficient of variation for the CIA in the subtropical region exhibited 
more significant variations (0.2~18.7) compared to the temperate region. In addition, 
similar trends were observed for the W values, suggesting common parent rock sources 
for these weathering profiles. Moreover, most of the considered climatic factors had 
significant correlations with the CIA and W (p < 0.05) (Figure 6a). Among these factors, 
multiple-year average precipitation (22.4%) and relative humidity (9.1%) had the 
predominant contribution (p < 0.01) to the granite weathering degree (Figure 6b). In 
general, both the CIA and W consistently increased from the fresh rock to the residual soil 
horizon and displayed a north-to-south increase across the study area. The spatial 
variation of the granite weathering degree was primarily determined by the 
comprehensive effects of temperature and precipitation (Figure 6c). 

 
Figure 5. Weathering degree of investigated samples across the study area. A, B, C, HW, MW, and 
R mean eluvial horizon, illuvium horizon, parent horizon in the residual soil layers, highly 
weathered, moderately weathered, and fresh rock horizon, respectively. 

 
Figure 6. Correlation between granite weathering degree and climatic factors (a), ordination plot of 
redundancy analysis (RDA) for the granite weathering degree and climatic factors (b), and partitions 

Figure 6. Correlation between granite weathering degree and climatic factors (a), ordination plot of
redundancy analysis (RDA) for the granite weathering degree and climatic factors (b), and partitions
of variation of granite weathering degree by climatic factors (c). T, P, and RH are temperature, precip-
itation, and relative humility, respectively; max, min, CI, CV, (max−min), average, and std denote the
maximum, minimum, confidence interval, coefficient of variation, temperature difference between
the maximum and minimum values, average value, and standard deviation, respectively. The blue
and green colors in (a) respectively indicate negative and positive correlations with the climatic
factor, and the size of these circles means the value of the correlation coefficients. * and ** represent
significance at p < 0.05 and p < 0.01 levels, respectively.
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4. Discussion
4.1. Evolution of Geochemical Elements during Granite Weathering

The weathering process of granite results from the intricate interplay of various geolog-
ical and environmental factors [47–49]. It is initiated by the emplacement of the granite body,
proceeds with exposure to a humid subtropical or tropical climate, and culminates under
an essentially continuous weathering episode within a tectonically stable background [50].
According to regional geology and paleoclimate literatures, granites in this study area
formed at a similar geological period [51–53]. Following the intrusion of granite units, it
was hypothesized that they underwent progressive exhumation towards the Earth’s land
surface. This process was attributed to regional tectonic uplift during the late Cretaceous
to Cenozoic period, along with subsequent denudation processes occurring throughout
the Yanshanian–Himalayan geological events. Herein, geochemical elements showed sig-
nificant clustering features with similarities in the same climatic conditions, while the
geochemical attributes of the weathering process manifested distinct characteristics in
various climates [54,55]. Chemical elements underwent widespread mobilization and re-
distribution during weathering, with their evaluation facilitated through the mass transfer
coefficient (τi,j) [45]. Additionally, the τi,j for CaO, MgO, Na2O, K2O, and SiO2 predomi-
nantly exhibited negative values in the residual soil horizons, signifying leaching relative
to the parent rock. The leaching rates followed the order CaO > Na2O > MgO > K2O, with
Fe2O3 exhibiting a positive τi,j, indicating enrichment relative to the parent rock (Figure 3).
Meanwhile, the leaching degrees of CaO, MgO, Na2O, and K2O gradually increased from
fresh rock to residual soils, aligning with the chemical properties of alkali earth metal
ions. Particularly, the leaching rates of CaO and Na2O approached 100%, suggesting near-
complete loss attributed to continuous plagioclase weathering (Figure 4). The variation
in element migration within the soil profile was intricately linked to the retention and
leaching of diverse elements, as well as significant mineral transformations in the weath-
ering crust. Owing to diverse hydrothermal conditions, the leaching levels of individual
elements fluctuated, resulting in distinct weathering stages for the crust [3]. Herein, the
concentration of ions in granite residual soil within the temperate region surpassed that in
the subtropical area, with a heightened enrichment of the Fe and Al elements (Figure 2).
The granite residual soil profiles examined in this study pertained to the weathering stage
characterized by siliconization and aluminization. The subtropic generally represented
a soft and aluminum-rich weathering region, further accentuated by the formation of an Al
portal, constituting an aluminum-rich crust consistent with the distribution of weathering
crusts in China.

Granite weathering also resulted in the redistribution and enrichment of rare earth
elements. While most of the granite weathering profiles in this study exhibited comparable
normalized chondrite curves with a steeper ‘V’ from Sm to Gd and smooth patterns from
Gd to Lu (Figure 5), the presence of highly enriched REEs and variations in Eu and Ce
indicated that weathering processes contributed to the release of REEs into the solution [2].
HREEs had a greater tendency to form soil hydrates with inorganic anions, providing them
with increased stability compared to LREEs. Consequently, HREEs were more stable in the
soil profile. Additionally, HREEs were more prone to release from the profile, resulting
in a larger loss of HREEs compared to LREEs [1]. The content of REEs in weathering
layers was seen to be much greater than that in the parent rock [41]. The secondary
enrichment of rare earth elements (REEs) during the weathering process could have been
influenced by various factors, including climate, clay fraction, pH, soil organic matter,
and clay minerals [40]. The distribution pattern was impacted, on the one hand, by the
kind of parent rock and, on the other hand, by the weathering degree [3]. During this
process, primary minerals within the granite matrix containing REEs initially underwent
chemical weathering due to exposure to atmospheric agents and water [47]. As these
minerals broke down, they released REEs into the soil solution. The released REEs could
then undergo several fate processes, including adsorption, leaching, fractionation, and
secondary mineral formation [48,55]. The enrichment of REEs during granite weathering
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resulted from a combination of mineral dissolution, adsorption–desorption processes,
fractionation, and secondary mineral formation [2]. Herein, similar parent rocks led to
a consistent fractionation model, while decreasing pH levels resulted in an increased
concentration of REEs from north to south across the study area (Figures 3 and 6).

4.2. Linkage between Granite Weathering and Gully Erosion

Chemical weathering and physical erosion synergize in the formation of soils and the
shaping of landscapes [8]. Physical erosion processes may rely on the chemical breakdown
of rock, while chemical weathering is contingent upon the accessibility of newly exposed
mineral surfaces generated through physical erosion. This study focused on similar granite
parent rocks, and the spatial variation in the weathering degree aligned with the increasing
hydrothermal conditions from north to south across the study area. Hence, the spatial
differentiation of the granite weathering degree was predominantly governed by climatic
conditions, especially those related to the temperate zone (Figure 6).

According to previous studies, granitic soils with comparatively low aggregate stabil-
ity are susceptible to soil erosion [56–58]. The inherent metastable structure characterized by
aggregation contributes to the perplexing erosion and slope failure in granitic soil areas [59].
The loose structure of the granite weathering mantle serves as the material foundation
for gully erosion in subtropical China. The thickness of granite residual soil is frequently
utilized to assess the occurrence and severity of gully erosion [60]. Field investigations in-
dicated that gully erosion in subtropical China was predominantly observed to concentrate
on granite residual soils characterized by a thickness ranging from 20 to 50 m [19]. Appar-
ently, gully erosion in granitic soil areas only occurred in subtropical regions and could be
attributed to the restricted thickness of the weathering mantle in temperate regions. It is
widely acknowledged that the weathering degree decreases progressively with the increase
in profile depth [61]. This vertical heterogeneity was more pronounced in subtropical
regions than in temperate ones, consequently, diminishing slope stability in granitic soils in
the subtropical region [20]. Nevertheless, abundant rainfall and rainfall erosivity acceler-
ated soil erosion in the subtropical region. Therefore, the hydrothermal condition in the
subtropical region contributed to the erosion material foundation and driving force for gully
formation in this region. Specifically, temperate-related factors determined gully erosion
materials by controlling the chemical weathering of granite (Figure 6), while rainfall-related
factors acted as the driving force for gully erosion [22]. Collectively, the gully landscape
represented a dynamic balance between granite weathering and soil erosion.

5. Conclusions

This study delved into the geochemical characteristics of granite weathering profiles
across temperate to subtropical regions in China. As hydrothermal conditions increased
from north to south, soil pH exhibited a shift from neutral to acidic, accompanied by the
leaching of major elements, such as K2O, Na2O, CaO, and MgO, alongside an enrichment of
Al and Fe. Dominant 2:1-type clay minerals in the temperate region generally transitioned
to 1:1-type minerals from temperate to subtropic. ∑REEs and LREEs displayed less signifi-
cant variations across the study area, while HREEs exhibited a higher concentration in the
subtropical region. Plagioclases primarily governed the weathering process in temperate
regions, with the involvement of K-feldspar gradually increasing and eventually dominat-
ing the process from temperate to subtropic regions. Furthermore, the quantified granite
weathering degree, assessed by the CIA and W, generally decreased with an increasing
profile depth, but increased from north to south across the study area. Despite the consis-
tent parent rock, the spatial variation in the granite weathering degree was significantly
influenced by climate conditions, particularly the comprehensive effects of temperature
and precipitation. The obtained results suggested that a subtropical climate is essential
for the formation of erosion materials for gully erosion on granite weathering mantles.
However, a further investigation is still needed to establish a quantitative relationship
between granite weathering and gully erosion.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w16050751/s1, Table S1: Basic information of study area. Table S2:
Analysis methods for soil physicochemical properties. Figure S1: Location of the study sites along the
climatic gradient across the East Asian monsoon region. FS, Fushun County in Liaoning Province; LY,
Lingyi County in Shandong Province; QC, Qichun County in Hubei Province; GX, Ganxian County
in Jiangxi Province; CT, Changting County in Fujian Province; WH, Wuhua County in Guangdong
Province. Figure S2: Variations in physicochemical properties of granitic soils. Figure S3: Vertical
variations in major elements are evident along the granite residual soil profiles. The red dot line
represents the average element migration rate in the temperate zone, while the black dot line signifies
the average element migration rate in the subtropic zone. The vertical line, positioned at a horizontal
coordinate of 0, illustrates the migration rate of each element relative to its content in the parent
rock. Figure S4: Regression analysis between plagioclase and Na2O and CaO. Figure S5: Chondrite-
normalized patterns of each REE fraction. Figure S6: Pearson correlation between REE fraction and
soil physicochemical properties. References [62–67] are cited in the Supplementary Materials.
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