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Abstract: As urbanization accelerates, a growing influx of pollutants enters the sea through land
runoff, posing a threat to coastal ecosystems. In this study, we systematically determined the concen-
trations of nutrients and heavy metals in the water and sediments of coastal areas (Yantai, China) and
assessed their sources and ecological risks. The results showed that inland rivers transported large
amounts of NO3

− and PO4
3− into coast water, which caused severe eutrophication. Regarding heavy

metals, copper dominated in seawater, whereas plumbum and arsenic were dominant in sediment,
which was sourced from aerosol deposition and mariculture. Zinc, chromium, copper, mercury, and
cadmium contributed slightly to pollution, with low enrichment factors, mainly from natural sources.
Further analysis showed that zinc, mercury, copper, and arsenic were significantly affected by the
grain size composition in sediment. Ecological risk assessment indicated that the coastal zone of
Yantai City is in a state of light heavy-metal pollution.

Keywords: heavy metal; eutrophication; coastal zone; distribution patterns; ecological risk assessment

1. Introduction

As areas where the exchange of matter and energy occurs between the ocean and land,
coastal zones are home to some of the most biogeochemically diverse systems on Earth,
supporting numerous ecosystem services [1]. With the acceleration of urbanization, an
increasing number of pollutants are being produced and discharged into the environment.
Pollutants entering surface water eventually converge with rivers and enter the sea [2]. The
ongoing impacts of human activities threaten coastal ecosystems, reducing the richness
and diversity of the biome and, over time, leading to the loss of coastal ecosystem services
and economic opportunities [3]. Among the numerous forms of pollution, eutrophication
and heavy-metal pollution are two important and common factors in coastal areas widely
studied in various coastal countries.

Eutrophication involves an increase in nutrients, such as nitrogen and phosphorus,
in coastal seawater, causing phytoplankton to multiply and eventually leading to red
tides [4,5]. In such environments, atmospheric reoxygenation of surface seawater is blocked,
which reduces the dissolved oxygen content in sediments and seawater, resulting in the
death of marine organisms due to hypoxia, producing odors, and increasing the turbid-
ity of seawater [6]. These environmental problems affect the marine ecological balance.
Furthermore, toxins produced by planktonic algae accumulate in marine aquatic products
through the food chain, affecting human health [7]. According to a recent study by Dai et al.
(2003) to 2020, the spatial extent of coastal red tide outbreaks worldwide has increased by
13.2%, and their frequency has increased by 59.2% [8]. Hence, given the rising occurrence
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of severe coastal red tide outbreaks, it is imperative to prioritize and enhance investigations
and monitoring of nutrient discharges in critical areas.

Heavy metals are considered one of the most important pollutants in coastal aquatic
ecosystems and are characterized by high toxicity, environmental persistence, difficult
biodegradation, and bioaccumulation [9,10]. Sediments are the main carriers of heavy
metals in coastal environments and are prone to adherence to fine-grained sediments [11,12].
However, sediment is also a habitat for microorganisms, and benthos at the bottom of
the biological chain [13], and the toxicity of heavy metals is gradually amplified through
the food chain, posing a serious threat to human health [14]. Sediments are the “sink”
of heavy metals in seawater and the “source”. Heavy metals adsorbed on sediments are
re-released into seawater, with changes in the hydrodynamic conditions and sedimentary
environment causing secondary pollution [15,16]. Estuaries and coastal waters, which
are closely affected by human activities, are polluted to varying degrees [17]. Therefore,
identifying the spatial distribution and main sources of heavy metals in seawater and
sediments in densely populated coastal zones and assessing the potential ecological risks of
heavy metals are crucial for planning coastal space utilization and providing environmental
management suggestions.

Yantai City is located on the southern coast of the Yellow Sea in China, where in-
dustrial, agricultural, fishing, tourism, mining, and other activities have been integrated
for decades. The long coastline provides Yantai with an opportunity to develop marine
activities; however, it also inevitably releases pollutants into the water. Agricultural ac-
tivities, industrial wastewater discharge, and atmospheric aerosol deposition continue
to transport pollutants from inland into the ocean [3]. Nutrients and heavy metals from
marine economic activities and inland transport pose the risk of environmental pollution
and ecological damage to the Yantai coastal zone. Additionally, the southern part of the
Yellow Sea is a partially closed coastal shelf sea, and its limited diffusion capacity may
have led to the coastal waters of Yantai accumulating more pollutants discharged inland.
There existed few available data on the assessment of eutrophication and heavy-metal
pollution in the coastal zone of Yantai, and the potential ecological risks caused by them
remain unclear.

This study collected seawater and sediments from the coastal waters of Yantai City
and water samples from two rivers that flow into the sea to assess eutrophication and
heavy-metal pollution in the Yantai coastal zone. The purpose of this study was to (I) clarify
the degree of eutrophication of coastal seawater in Yantai City and evaluate the influence
of nutrients imported from rivers into the sea on coastal eutrophication, and (II) illustrate
the occurrence, distribution, and potential ecological risk of heavy metals in sediments.
This study provides a reference for preventing and treating coastal eutrophication and
heavy-metal pollution in coastal cities.

2. Materials and Methods
2.1. Sampling Site Layout and Sample Collection

The investigation area of this study includes the coastal zones of four main admin-
istrative districts in Yantai where human activities are the most concentrated—the Eco-
nomic and Technological Development Zone and the Zhifu, Laishan, and Muping Districts
(37◦04′–37◦43′ N, 121◦42′–121◦55′ E). The entire survey area has a temperate monsoon
climate. The two rivers that flow into the sea, the Jiahe River and the Qinshui River
that are involved in this study are located in the Economic and Technological Develop-
ment Zone and Muping District, respectively. Wang et al. (2016) proved that domestic
sewage, industrial wastewater, aquaculture wastewater, and agricultural wastewater were
discharged into the sea in the coastal areas of Yantai. At the same time, Yantai is an im-
portant fertilizer-producing area in China, and the mass production and use of fertilizer
also is concerning [18]. We established 30 sampling sites along the coast of the four main
administrative regions. These sampling sites were categorized based on their specific
locations within each region, and the classification results can be found in Table S1. In
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addition, 29 sampling sites were established on the Jiahe River, and six sampling sites
were established on the Qinshui River (Figure 1). In August 2022, we conducted a sample
collection. Two water samples were collected; one of them was collected directly, and the
other one was filtered with a 0.45 µm filter membrane immediately after collection. The
water samples were placed in brown glass bottles and acidified with sulfuric acid to pH < 2.
A grab bucket sampler was used for sampling. We collected 0–3 cm of surface sediment
using a wooden spoon and placed it in a polyethylene plastic bag. Water and sediment
samples were stored at 4 ◦C immediately after sampling and brought to the laboratory on
the day of sampling.
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2.2. Water Sample Characterization

Water samples not filtered by a 0.45 µm filter membrane were used for the determina-
tion of the heavy metal, and nutrients were determined using the filtered water samples.
All tests were performed according to the standard testing methods of the Chinese national
standard. Nitrate (NO3

−) and nitrite (NO2
−) were detected using ion chromatography;

PO4
3− was measured using ammonium molybdate spectrophotometry, and chemical oxy-

gen demand (COD) was measured using the alkaline potassium permanganate method.
The total amount of Pb, Zn, Cu, Cr, and Cd was determined by inductively coupled plasma
emission spectrometry. A proper amount of nitric acid was added immediately after sample
collection to make the nitric acid content reach 1%. We sent the samples to the laboratory
for testing. The first step of detection was to digest the sample. A 100 mL sample was taken,
and 5.0 mL of 50% concentration nitric acid solution was added to it. Then, it was put on
an electric heating plate for heated digestion and slowly heated until it was nearly dry
without boiling. Next, remove the sample and let it cool. Repeat this process until the color
of the sample solution becomes lighter or more stable. After cooling, add a few milliliters
of 50% nitric acid and a small amount of water in turn, and continue heating on the electric
heating plate to dissolve the residue. Wait for the sample to cool, and fill it with deionized
water to the original sample volume so that the solution maintains 1% (v/v) nitric acid
acidity. Measure the emission intensity of the sample to obtain the content of the target
element from the emission intensity value on the calibration curve. In the process of sample
measurement, if the concentration of elements to be measured in the sample exceeds the
range of the calibration curve, the sample should be diluted and re-determined. The total
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amount of Hg is determined using the atomic fluorescence method. After collecting the
river sample, add hydrochloric acid at the ratio of 5 mL of high-grade pure hydrochloric
acid per liter of the water sample, and add hydrochloric acid to the seawater sample to the
same pH as the river sample. Send the samples to the laboratory for testing. The 5.0 mL
sample is put into a 10 mL colorimetric tube, and 1 mL hydrochloric-nitric acid solution is
added. Heat and digest the solution in a water bath of boiling water for 1 h, during which
time shake the colorimetric tube once or twice and open the lid to deflate. Wait for the
sample to cool, and fill it with water to mark the line of the colorimetric tube. After mixing
well, Measure the atomic fluorescence intensity. Obtain the content of Hg by querying the
calibration curve. If the sample exceeds the high concentration point of the calibration
curve, dilute the digestion solution and then determine.

2.3. Sediment Sample Characterization

The heavy metal content of the sediments was measured according to the Method
for Chemical Analysis of Submarine Sediments [19]. Specific methods and procedures to
determine the heavy metal content and grain size composition in sediments have been
described in previous studies [20]. The total organic carbon (TOC) content of the sediment
was determined with a non-dispersive infrared absorption method using a carbon-sulfur
meter. The TFe2O3 content was determined using wavelength-dispersive X-ray fluorescence
spectrometry to calculate the Fe content in the sediments.

2.4. Pollution Assessment
2.4.1. Evaluation of Eutrophication

The eutrophication index (Ei) was used to assess the eutrophication degree of water.
Eutrophication is defined in three degrees: mild eutrophication (1 ≤ Ei ≤ 3), moderate
eutrophication (3 < Ei ≤ 9), and severe eutrophication (Ei > 9). Ei is calculated based on
Equation (1) [21].

Ei =
CCOD × CCIN × CCIP

4500
× 106 (1)

where Ei is the eutrophication index, COD, DIN, and DIP represent the chemical oxygen
demand, dissolved nitrogen (the sum of ammonia nitrogen (NH4

+), nitrate nitrogen (NO3
−),

and nitrous nitrogen (NO2
−)), and dissolved phosphorus (phosphate (PO4

3−)), respectively.
Furthermore, CCOD, CDIN, and CDIP are the COD, DIN, and DIP concentrations (mg/L),
respectively.

2.4.2. Heavy Metal Enrichment Factor (EF)

The EF of heavy metals in sediments was calculated to evaluate the degree of heavy
metal enrichment. Fe was used as the reference element in this study. The degree of heavy
metal pollution in sediments was determined as follows: EF < 1, unpolluted; EF = 1–3,
mildly polluted; EF = 3–5, moderately polluted; EF = 5–10, moderately to severely polluted;
EF = 10–25, severely polluted; EF = 25–50, very heavily polluted; and EF > 50, extremely
heavily polluted. The EF was calculated as follows [22]:

EF =
Ci/Fei
Cb/Feb

(2)

where EF is the enrichment factor, Ci is the measured value of element i in the sample, Fei
is the measured value of element i in the sample, Cb is the reference value of element i, and
Feb represents the reference value of Fe. The reference values of each element in this study
were selected from the soil geochemical background values of Yantai City determined by
Pang et al. [23]: Zn = 60.4, Pb = 27.2, Cr = 57, Hg = 0.034, Cu = 26, As = 6.4, Fe = 2.814 µg/g.

2.4.3. Assessment of Potential Ecological Risk of Heavy Metals

The potential ecological risk of heavy metals in sediments was assessed using the
method proposed in a previous study [24]. The method includes the potential ecological
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risk index of a single heavy metal (Ei
r) and the comprehensive potential ecological risk

index (ERI). The calculation formulas are given by Equations (3) and (4). According to
Ei

r, the potential ecological risks of different heavy metals can be determined: Ei
r < 40,

low risk; 40 ≤ Ei
r < 80, medium risk; 80 ≤ Ei

r < 160, considerable risk; Ei
r ≥ 160, high

risk. ERI is an indicator to comprehensively evaluate the potential ecological risks caused
by multiple heavy metal pollution in a region, and its potential ecological risk grade is
divided according to ERI < 150, low risk; 150 ≤ ERI < 300, medium risk; 300 ≤ ERI < 600,
considerable risk; ERI ≥ 600, high risk.

Ei
r = Ti

r × Ci
f = Ti

r ×
Ci

Ci
n

(3)

ERI = ∑ Ei
r (4)

where Ei
r is the potential ERI of heavy metal i, Ti

r is the coefficient of toxicity response
of heavy metal i, Ci is the measured content value of heavy metal i, Ci

n is the reference
content value of heavy metal i, and ERI is the comprehensive potential ERI for the study site.
According to the standardized heavy metal toxicity coefficient formulated by Hakanson,
the Ti

r of each heavy metal was Zn = 1, Cu = 5, Pb = 5, Cr = 2, Hg = 40, and As = 10.

2.5. Statistical Analysis

SPSS 25.0 software (SPSS Inc., Chicago, IL, USA) was used for the statistical analysis,
and the analyzed items include hierarchical cluster analysis, principal component analysis,
and the correlation and significance difference of experimental data [25,26]. Pearson
correlation coefficient was chosen for the type of correlation analysis. The t-test was used
to evaluate the statistically significant difference. When the p-value is lower than 0.05, the
difference between the data is considered significant.

3. Results and Discussion
3.1. Occurrence, Distribution and Evaluation of Nutrients

The distribution of nutrients along the coast is shown in Figure 2A. Among the
three nitrogen forms, NO3

− content was the highest, ranging from 1.35 to 8.44 mg/L
(mean 3.56 mg/L), and NH4

+ content was the lowest, ranging from 0.127 to 0.737 mg/L
(mean 0.38 mg/L). NO2

− content fluctuates widely, with a concentration range of
0.08–3.44 mg/L (mean 0.97 mg/L). The PO4

3− concentration in most areas ranged
from 0 to 0.58 mg/L (mean 0.28 mg/L). However, in a few samples collected from the
Muping District, the concentration of PO4

3− was higher than 0.89 mg/L. The concentra-
tion range of COD was 22.0–31.9 mg/L (mean 25.87 mg/L). The results show that the
coastal seawater of Yantai was lower than the Class IV seawater standard (China National
Standards) (Table S2), indicating that the pollution is serious. Compared to the Zhifu and
Laishan districts, the nutrient content in the Economic and Technological Development
Zone and the Muping district fluctuated more, and the concentration was slightly higher.
Furthermore, both the Economic and Technological Development Zone and the Muping
district were closer to the mariculture zone. Previous studies have shown that maricul-
ture increases nitrogen and phosphate in coastal areas, and nitrate accounts for a large
proportion of inorganic nitrogen in water [27], which agrees with the findings of this study.

Figure 2B,C show that the eutrophication of coastal seawater was affected by the
two rivers entering the sea from water samples collected and analyzed at 35 sites along the
Jiahe and Qinshui Rivers. Nutrient element pollution in the Jiahe River is more serious
than that in the Qinshui River, especially regarding nitrogen content, where NO3

− content
was 30.42–66.83 mg/L (mean 49.05 mg/L) and 14.76–21.42 mg/L (mean 18.66 mg/L), re-
spectively; much higher than the average concentration of 3.56 mg/L in seawater samples.
Phosphorus pollution was also serious in both rivers. The average concentration of PO4

3−

in the Jiahe River and Qinshui River was 0.97 mg/L and 0.58 mg/L, respectively, which
was higher than the average concentration of 0.28 mg/L in seawater samples. According to
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survey data from the United States Geological Survey, among three types of rivers flowing
through farmland (n = 104), urban areas (n = 38), and forests (n = 36), those passing through
farmland exhibit the highest nutrient concentrations on a flow-weighted basis, with nitro-
gen and phosphorus concentrations approximately 4.3 mg/L and 0.28 mg/L, respectively.
Rivers flowing through urban areas have nitrogen and phosphorus concentrations, roughly
half of those flowing through farmland, while those passing through forests have even
lower concentrations [28]. Clearly, the nitrogen and phosphorus pollution levels in Jiahe
River and Qinshui River appear to be worse than the general global level, especially in
terms of nitrogen pollution. The accumulation of pollutants in rivers ultimately enters
the sea, somewhat exacerbating eutrophication in coastal areas. Therefore, the results
indicate that the two rivers were affected by urban industrial and agricultural activities.
Nitrogen and phosphorus pollutants continue to flow into rivers and eventually enter the
ocean, intensifying the eutrophication of coastal seawater to some extent. Unlike nitrogen
and phosphorus pollutants, the average concentration of COD in the two rivers is only
6.49 mg/L and 5.79 mg/L, respectively, which is less than the average concentration of sea-
water samples of 25.87 mg/L. This result indicates that the main source of COD pollution
in Yantai coastal waters is not the inflow of land rivers and transport of COD by ocean
hydrodynamic action must be considered.
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To better understand the eutrophication of coastal seawater in the Yantai area, we
selected a suitable method for evaluation. Common eutrophication evaluation methods
include trophic index, chlorophyll-a biomass classification scheme, eutrophication index,
etc. This study aimed to evaluate the effects of human activities on nearshore eutrophication,
so more attention was paid to nutrient enrichment caused by sewage discharge than to
the increase in phytoplankton biomass caused by nutrient excess. Based on this goal,
the eutrophication index evaluation method based on carbon, nitrogen, and phosphorus
content is a better choice for this study. The Ei value of the investigated area was calculated
(Figure 2D). The Ei range of the Yantai coastal area was 1367–43,715. The results for all
sampling sites were much higher than the criteria for severe eutrophication, indicating that
the coastal seawater of Yantai is in a serious state of eutrophication and that remediation
measures are urgently needed.
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3.2. General Characteristics of Sediments

The grain size composition and TOC content of the sediment samples were determined,
and their general characteristics were obtained (Figure 3). The sediment in the survey area
is mainly sand, followed by silt. A few sampling sites with gravel distribution were located
in scenic spots such as bathing beaches and tourist islands, which may be because the
artificial maintenance of scenic spots changed the transport law of coastal sediments in the
natural state. The average contents of sand and silt were 94.54% and 2.68%, ranging from
71.71% to 99.90% and 0.05% to 4.51%, respectively. The clay content was the lowest, at only
0–1.65%. The proportion of fine sediments (silt + clay) in the Economic and Technological
Development Zone was relatively high. In the Muping District, at sampling sites 25 and 26
of the estuary of the Qinshui River, there was an increase in fine sediment, indicating that
the river carried fine sediment from the land into the sea and settled in the estuary. The ratio
of TOC content to dry sediment weight ranged from 0.04% to 0.78%, which was lower than
the previously reported TOC content of 0.9% to 7.2% in coastal sediments of Bohai Bay [29].
This may be because the investigation area of this study was mainly concentrated in Yantai
City, and resources along the coast were developed. Most of the carbon sequestration at the
surface occurs in fine-grained sediments at the continental margins [17,30]. Furthermore,
clay content—an important carrier of organic matter storage—was much lower than in
other coastal areas undisturbed by human activities, resulting in a lower TOC content
in sediments.
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3.3. Occurrence and Distribution of Heavy Metals

The heavy metal content in seawater and sediments from 30 sampling sites in the coastal
zone of Yantai City are shown in Figure 4A, where the average concentrations of all seven
heavy metals are ranked from high to low as follows: Cu > Zn > Cr > Pb > As > Cd > Hg.
The content of Cu and Pb in seawater decreased from west to east along the coastline, and
Cu was the most abundant heavy metal element in all marine surveyed waters, with a
concentration range of 134–287 µg/L (mean 197 µg/L), much higher than the upper limit of
50 µg/L standard for Class IV seawater [31]. The high concentration of Cu was significantly
concentrated in the Economic and Technological Development Zone (p < 0.05). Zhifu Island
slowed the exchange of seawater, and the discharge of wastewater from metal smelting
companies may be the reason for its heavy pollution. Furthermore, the contents of Zn,
As, Cr, Cd, and Hg did not show significant differences in their spatial distribution. The
detection results of the sediment samples are shown in Figure 4B. Among the seven heavy
metal elements detected, Cd was the only element whose content was below the detection
limit of 0.08 µg/g at the 30 sampling sites. The concentrations of Zn, As, Cu, and Hg all
decreased from west to east along the coastline, and the areas with high concentrations
were concentrated in the Economic and Technological Development Zone, proving this
is an important area of heavy metal pollution in the coastal area of Yantai. Zn and Cu
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showed higher concentrations at sampling sites 26 and 27 in the estuary of the Qinshui
River, indicating that the Qinshui River brought a certain amount of heavy metals from
the inland and settled in the estuary. Furthermore, the Cu content in seawater was much
higher than other heavy metals, but its concentration in sediments was lower than Pb, Zn,
and Cr, indicating that in the coastal waters of Yantai, a large amount of Cu was free in
seawater and did not settle over time.
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To better evaluate the heavy metal pollution in the coastal zone of the Yantai urban
area, recent studies on the distribution of heavy metals in sediments from different regions
are summarized in Table 1. The degree of heavy-metal pollution in this study was relatively
low. Pb was the highest heavy-metal element in the coastal sediments of Yantai City, with
an 18.3–34.9 µg/g concentration range and 24.46 µg/g average value, which was between
the nearby Dongying and Weihai areas. Except for Pb, the average concentrations of all
other heavy metals were lower than those of coastal areas (Table 1). Taking the Yangtze
River estuary as the boundary including the Yangtze River estuary, the area to the north
includes the Yellow Sea coastal zone, the coastal areas of Dongying and Weihai, and the
western and southern coasts of North Korea, which were the same as the Yantai coastal
area. Zn, Cr, Cu, and Cd were significantly lower than those in the southern area, including
the coastal areas of the Zhoushan Islands, the northern part of the South China Sea, and the
Pearl River Estuary.
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Table 1. Overview of heavy metal content in surface sediments of Yantai coastal area and distribution
of heavy metals (unit: µg/g) in the surface sediments of other coastal areas (literature survey).

Location Pb Zn Cr Cu As Hg Cd Reference

Yantai coast
range 18.3–34.9 11.7–45.3 10.4–51.4 1.8–9.8 1.4–9.5 0.006–0.032

Below the
detection

limit of 0.08
This study

mean 24.46 21.73 20.82 4.4 4.24 0.014
Weihai coast 27.4 69.3 57.9 20.1 8.8 0.036 0.1 [32]

Dongying coast,
Bohai Sea 21.6 70.2 66.4 22.5 12.8 n.a. 0.12 [33]

Coastal areas of the
Yellow Sea, China 26.05 78.72 60.39 22.49 10.58 0.048 0.147 [19]

Zhoushan Islands
coastal sea, East

China Sea
33.93 107.76 74.51 67.84 8.23 0.05 0.2 [34]

Northern South
China Sea 38.5 116.8 70 41 18 n.a. 0.34 [35]

Yangtze Estuary 25.8 71.5 34.4 19.7 8.8 0.065 0.13 [36]
Pearl River Estuary 24.05 119.24 73.63 31.33 17.33 0.12 0.24 [13]

The western and
southern coasts

of Korea
23.1 67 n.a. 12.8 7.4 0.014 0.09 [37]

Note: n.a. means not available.

A correlation analysis was conducted between heavy-metal distribution and the grain
size composition in sediments (Table 2). Previous studies have shown that when there
is a significant positive correlation between multiple heavy metals, it indicates that the
distribution of these heavy metals is affected by the same source [38–40]. The spatial
distribution of Pb negatively correlated with As but was not significantly correlated with
other heavy metals, indicating that Pb may be an independent pollution source. There
were no significant correlations between Cu and As, Cr, and Zn, or As. Furthermore, the
distribution of other metal elements showed a significant positive correlation, indicating
that heavy metal pollution in sediments is a common cause. According to the correlation
analysis between heavy metals and TOC, there is a significant positive correlation between
Cr and TOC. Jardine et al. [41] showed that the adsorption capacity of soil for Cr increased
with an increase in the TOC content in the soil, and the bioavailability of Cr decreased with
an increase in TOC content in the soil, which agrees with this study. The correlation analysis
of the heavy-metal distribution and grain size composition in the sediments showed that
Zn, Hg, Cu, and As were significantly affected by the grain size composition and were
primarily correlated with the clay and silt, whereas the distribution of Pb and Cr appeared
to be unaffected by grain size composition. The surface activity of sediment particles
significantly influences the fate of pollutants, and sediment particle characteristics are
strongly influenced by particle size [42]. Fine-grained sediments benefit from their strong
electroactivity and larger specific surface area, making them more susceptible to heavy
metal adsorption as inorganic particles [43,44].

Table 2. Pearson correlation coefficients of heavy metal composition, TOC and grain size composition
in sediments.

Pb Cr Hg Cu As TOC Clay (%) Silt (%) Sand (%) Gravel (%)

Zn 0.168 0.323 0.584 a 0.941 a 0.459 b 0.151 0.563 a 0.506 a −0.307 0.139
Pb −0.315 −0.117 0.096 −0.492 a 0.044 0.122 −0.094 0.131 −0.116
Cr 0.449 b 0.503 b 0.022 0.542 a 0.229 0.166 −0.163 0.213
Hg 0.555 a 0.482 b 0.022 0.542 b 0.390 0.078 −0.170
Cu 0.299 0.275 0.444 b 0.381 −0.373 b 0.262
As −0.210 0.380 0.484 b 0.062 −0.264

Note: a p < 0.01; b 0.01 < p < 0.05.
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Hierarchical cluster analysis was performed on the sampling points based on the
distribution of heavy metals in the sediments (Figure 5). At sampling sites No. 1–12,
except for No. 5 and 6, the others were clustered into one category earlier, indicating that
most areas of the Economic and Technological Development Zone and Zhifu District had
relatively heavier pollution. In sampling sites No. 13–30, except for No. 23 and 27, the
others were clustered into one category earlier, indicating that most areas in the Laishan
and Muping Districts had relatively less pollution. Based on the cluster analysis results,
the sampling points were divided into two categories for principal component analysis.
As shown in Figure 6, the cumulative variance contribution rate of the first two principal
components reaches 79.0%, representing the main information of the sample. Cu, Zn, Cr,
and Hg had similar and relatively high positive loads on the first principal component (PCl
1), whereas As had relatively low positive loads on the first principal component (PCl 1);
Pb had high negative loads on the first principal component (PCl 1), but high positive loads
on the second principal component (PCl 2). These results indicated that Cu, Zn, Cr, and Hg
may have similar sources, whereas As and Pb may have separate sources. Furthermore,
the projection of the sampling points shows that heavy-metal pollution in the Economic
and Technological Development Zone and the Zhifu District was mainly dominated by Cu,
Zn, Cr, Hg, and As, whereas that in Laishan and Muping Districts was mainly dominated
by Pb.
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3.4. Evaluation of Heavy-Metal Pollution

With the gradual deepening of geochemical research, there are an increasing number
of evaluation methods for heavy-metal pollution. Researchers have systematically eval-
uated heavy-metal pollution in different regions using different evaluation methods and
achieved good results. Common heavy metal pollution assessment methods include the
geoaccumulation index, potential ecological risk assessment (ERI), anthropogenic enrich-
ment assessment, heavy metal enrichment factor (EF), etc. [22,24,45,46]. In this study, the
EF and the ERI were selected to assess the degree of pollution and the potential ecological
risk of heavy metals in sediments along the coastal area of Yantai City.

The EF is a normalization technique that can eliminate the influence of mineralogy
and changes in grain size and more accurately assess the influence of human activities on
heavy-metal content in sediments [47]. Al and Fe are two elements that are usually selected
as normalized proxies. Considering that the natural concentration of Fe in sediments is
more uniform than that of Al and is less influenced by humans [22], Fe was selected as
the principal reference element in this study. The calculation results for EF are shown
in Figure 7. Pb was the most severely polluted heavy metal in the study area, with an
average EF of 4.98. However, the degree of Pb pollution at the different sampling sites
varied greatly, ranging from mild to severe. Followed by As, the average EF was 3.04,
which indicated moderate pollution. The average EF values for Zn, Hg, and Cr were
1.60, 1.33, and 1.26, respectively, indicating these three elements were less enriched and
suggested mild pollution. The average EF of Cu was 0.79, which was the lightest polluting
heavy-metal element in the sediments. Zn, Hg, Cr, and Cu had low degrees of enrichment
in the sediments; therefore, the input of these elements by human activities was small, and
the main source came from the natural environment. However, Pb and As were enriched
in the investigated area, indicating they were at a higher pollution level in the sediments.
This high enrichment indicates that the distributions of Pb and As are significantly affected
by human activities, which is worthy of attention.
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Pb originating from human activities is released into the atmosphere and transported
by wind over long distances, which alters the Pb content in the marine environment through
aerosol deposition [48]. According to Wu et al. (2021), recent sources of anthropogenic Pb
pollution in the Yellow Sea were mainly from aerosol deposition transported by industrial
activities such as combustion and smelting in northern China [49]. Therefore, aerosol depo-
sition may be an important source of Pb in the coastal sediments of Yantai. Heavy-metal
pollution was dominated by As at sampling sites 7–10, located south of the Zhifu Island
mariculture area, which follows the conclusion of previous studies that As-containing aqua-
culture feed additives released in mariculture farms was the main source of As pollution in
surface sediments in coastal areas [50].

Because the toxicity of different heavy metals varies, the volume of heavy metals
is not representative of the ecological risk they pose. The potential ecological risk index
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method proposed by Hakanson can be used to assess the combined pollution status and
environmental impact of heavy metals in sediments using toxicological methods [19]. The
Ei

r of each heavy-metal element at different sampling sites is shown in Figure 8, and the
average Ei

r of the six heavy-metal elements in the Yantai coastal zone was Hg > As > Pb
> Cu > Cr > Zn from largest to smallest. However, Hg, the heavy metal with the lowest
content, had the highest Ei

r. Furthermore, the Ei
r of the six heavy metals in the entire survey

area were lower than 40, indicating that the possible ecological risk caused by a single
heavy metal was low. The result of ERI is shown in Figure 8. The Yantai urban coastal zone
was at low potential ecological risk of heavy-metal pollution, with the ERI ranging from
11.53 to 54.48 (average 26.67), lower than the 150-limit value for low-risk division. The
survey area in this study covers the coastal zones of the four administrative districts with
the most intensive human activities in Yantai City. Therefore, it is expected that the coastal
zones in other areas of Yantai City will not have a higher degree of heavy metal pollution.
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4. Conclusions

In this study, we systematically determined the concentrations of nutrients and heavy
metals in the water and sediments of coastal areas (Yantai, China) and assessed their sources
and ecological risks. The indicators of the coastal seawater in Yantai City were lower than
the Class IV standard. Inland rivers transport large amounts of NO3
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the sea, which is an important cause of increasing offshore eutrophication. Hence, it is
imperative to implement relevant measures to control eutrophication urgently. Yantai coast
is not a Pacific West Coast heavy metal pollution serious area. Ecological risk assessment
indicated that the coastal zone of Yantai City is light pollution with a low enrichment factor.
Cu was the most abundant heavy metal in seawater and the only heavy metal that exceeded
the Class IV standard. Meanwhile, lead and arsenic were dominant in sediment, which was
sourced from aerosol deposition and mariculture, respectively. The grain size composition
of the sediment is significantly correlated with the distribution of zinc, mercury, copper,
and arsenic. This study provides a reference for the pollution prevention of general coastal
cities and suggests that we should pay attention to the excess emission of nutrients and
prevent the occurrence of coastal eutrophication.
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