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Abstract: Intense anthropogenic activities in arid regions remarkably affect groundwater by causing
phreatic decline and water environmental deterioration. A systematic understanding of groundwater
hydrochemical evolution and recharge is critical to regional water, ecological and agricultural security
in arid regions, but is not well known in arid oasis–deserts. This research identified groundwater
recharge processes and assessed the impact of anthropogenic activities on groundwater hydrochemi-
cal evolution in a representative oasis–desert in Central Asia using stable isotopic indicators (δ2H
and δ18O) and hydrochemical data. Results indicated that the normalized difference vegetation index
(NDVI) and cultivated land area exhibited a significant increasing trend during 2000 to 2020. Stable
water isotopes and the ionic composition of both groundwater and surface water exhibited obviously
spatial heterogeneity and seasonal variation. Generally, the spatial distribution pattern of major
dissolved ions for shallow groundwater was consistent and increased along the groundwater flow
direction from midstream to downstream. Surface water and groundwater were both characterized
by higher δ18O and total dissolved solids (TDS) in the non-flood season than those in the flood season.
Shallow groundwater had a larger seasonal variation in δ18O and TDS than other water components.
Groundwater level in monitored wells generally presented a decreasing trend from 2018 to 2021,
accompanied by a decrease in phreatic water TDS and NDVI in the desert area. Gypsum dissolution
and weathering of silicate and halite had an important role in forming groundwater hydrochemistry.
Anthropogenic activities significantly affected groundwater hydrochemistry and recharge. Shallow
groundwater received its primary recharge from surface water and lateral groundwater flow, con-
stituting 73% and 27% of the total recharge, respectively. Agricultural activities and groundwater
overexploitation were the main factors for variations in groundwater level and quality in the oasis
area, and directly affected groundwater and natural vegetation in the desert area. The results would
be helpful to deeply understand groundwater hydrochemical evolution and cycling, and beneficial
for groundwater efficient utilization and desert ecosystem restoration in the arid areas.

Keywords: groundwater dynamic; stable isotopes; hydrochemistry; recharge; agricultural activities;
oasis–desert region

1. Introduction

Groundwater is a crucial freshwater resource, and exerts a pivotal influence on the
ecosystem and economic-socio development in arid areas owing to low rainfall, deficient
surface water, and high evaporation, particularly in arid oasis–desert areas [1–3]. Since
the 1990s, as a result of the swift progression of agriculture and society in arid regions, the
scarcity of surface water in the typical arid inland of the Tarim River Basin could hardly
meet normal living and production needs; thus, groundwater has emerged as a significant
water source for regional supply [3,4]. Groundwater level and quality were influenced by

Water 2024, 16, 763. https://doi.org/10.3390/w16050763 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16050763
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-9757-7364
https://doi.org/10.3390/w16050763
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16050763?type=check_update&version=1


Water 2024, 16, 763 2 of 19

numerous natural and human factors, especially the intensification of anthropogenic activi-
ties [5–7]. Over 20 percent of irrigation areas are encountering groundwater environment
degradation globally [8]. The augmented replenishment of groundwater recharge from
irrigation water infiltration failed to fully offset the excessive extraction of groundwater
in some irrigation areas [9]. This has led to groundwater level continuously decreasing
and water quality deterioration [10]. Sustainable groundwater utilization is the basis of
agricultural production and economic development in arid areas [11]. The hydrochem-
ical properties of groundwater serve as the principal manifestation of the groundwater
environment [10]. Therefore, assessing the groundwater hydrochemical characteristics and
recharge process impacted by anthropogenic activities in arid areas is critical to efficient
groundwater management and groundwater-dependent ecosystem security [9].

Understanding the groundwater hydrochemical evolution process is of utmost impor-
tance in gaining a comprehensive knowledge of groundwater recharge and discharge [12].
Previous research in arid regions investigated the groundwater hydrochemical character-
istics and evolution, quality and health risks, storage, recharge and discharge, hydraulic
connection, and their influencing factors (e.g., climate variability, groundwater exploitation,
land use change, agricultural activities) [13–18]. The groundwater hydrochemical evolution
process in arid regions is complex, controlled by natural conditions (e.g., hydrodynamic
condition, evaporation, water–rock interactions, flushing and mixing, dissolution and
precipitation, and cation exchange) and anthropogenic activities (e.g., irrigation water
quality and fertilization) [11,19–21]. Yang et al. [22] found that irrigation could alter the
water, nitrogen, and carbon budgets in the cropland area of the arid endorheic river basin.
Zhang et al. [3] reported that the large-scale replacement of land cover types would affect
the processes of rainfall distribution, evapotranspiration, field water composition and
infiltration, thus influencing soil water infiltration and the replenishment of groundwater.
Ullah et al. [13] observed a close association between land cover types and groundwater
nitrate contamination. Along the groundwater flow direction, groundwater hydrochemical
characteristics, salinity and quality evolve regularly, exhibiting an ordered spatio-temporal
distribution [23]. However, the impacts of human activities (e.g., long-term agricultural ir-
rigation) on groundwater hydrochemical evolution and recharge are poorly comprehended
in arid areas, especially in the oasis–desert of the Tarim River Basin.

At present, the methods for assessing groundwater recharge mainly included the direct
measurement method, numerical modeling method, water balance method, and isotope
tracer techniques based on in situ measurement data, GRACE data and remote sensing
data [3,24,25]. Various researchers applied the stable isotope technique to study the spatial-
temporal variations, environmental effects and impact factors of hydrogen–oxygen stable
isotope values in different water bodies [25–27]. The stable isotope technique could also
provide an important method for recognizing the replenishment origins of water bodies and
reflecting water circulation mechanisms [28,29]. The concentration of stable natural tracers
is not influenced by hydrogeochemical reactions and behaves conservatively [30]. Hence,
the stable isotope technique is particularly useful to investigate groundwater sources and
cycling processes in arid areas with scarce hydrological monitoring data [25].

Situated in the arid area of Central Asia, the Tarim River Basin is China’s most exten-
sive inland river basin, and is also an important area for the development of the “Silk Road
Economic Belt” [31]. The Tarim River Basin underwent profound changes in groundwater
hydrological process under the changing environment, which challenge regional water
resource and ecological security [32]. In light of the “grain-increasing and water-saving”
initiative, and alongside the rising demand for irrigation water and advancements in ir-
rigation technology, the influence of agricultural practices on groundwater in the Tarim
River Basin has intensified in recent decades [11,32]. This has had a fundamental influ-
ence on regional groundwater management [33]. The plain of Dina River serves as a
prototypical oasis–desert within the Tarim River Basin, where irrigated agriculture devel-
opment has reshaped the groundwater hydrological processes and exacerbated regional
eco-environmental problems in recent years [11]. However, this region still lacks quantita-
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tive research of groundwater recharge and the systematic analysis of the influencing factors
of groundwater hydrochemical evolution.

Here, we examined the groundwater hydrochemistry and recharge process under
the influence of anthropogenic activities in the Dina River Basin’s oasis–desert area using
hydrochemical and stable isotopic data of 105 water samples. The primary objectives
of this study were: (i) to examine the variations in climate, vegetation, and land cover
in the basin, (ii) to analyze the variability features of groundwater hydrochemistry and
level, (iii) to identify the recharge sources and recharge process of groundwater, and
(iv) to assess the influence of anthropogenic activities on groundwater hydrochemical
evolution. The findings contribute to a comprehensive understanding of groundwater
hydrochemical process in arid areas, and are helpful for establishing sustainable use of
groundwater resources and groundwater environment protection in the context of rapid
irrigation agriculture development.

2. Materials and Methods
2.1. Study Area

The plain of the Dina River is situated in the midstream and downstream of the Dina
River Basin, covering a total expanse of 7.76 × 103 km2. The Dina River Basin, situated in
the southern Tianshan Mountains and northern Tarim Basin, comprises four tributaries
namely the Dina River, Yeyungou River, Cedaya River, and Yangxia River (Figure 1). The
region experiences a temperate arid continental climate characterized by an annual average
precipitation of 65.4 mm, an average air temperature of 11.2 ◦C, and evaporation ranging
between 1766 and 2450 mm [11]. Precipitation displays an obviously seasonal dynamic,
and more than 70% of it occurs from May to September. The annual streamflow into the
plain is 5.24 × 108 m3, with the flood season occurring between May and September [11].
Rainfall and meltwater are the dominant sources of streamflow. More than 90% of the
streamflow was used for agricultural irrigation over the last 30 years, which has caused the
dried-up river in the plain, with only minimal flood discharging during the flood season.

Our study area was a piedmont plain, and the lithology of geological strata was
primarily overlaid with quaternary unconsolidated sediments. The sediments comprised
pebbly sandstone, pebbly gravel, silty fine sandstone and interstratified fine sandstone
in the vertical profiles, and sandstone was the dominant rock type [34]. Soil particle size
primarily comprised fine sand and medium–fine sand, and the aquifer structure was loose,
with strong hydraulic conductivity [35]. The primary soils were aeolian sand soil, irrigation
silt soil, rock soil, swamp soil, and brown desert soil. Overall, the landscape characteristics
were the gobi in the mountain pass, the oasis in the middle reaches, and the desert in the
lower reaches. Correspondingly, from the mountain pass to the lower reaches, the soil
particles became finer, and the groundwater level depth became smaller, which affected the
formation of landscape pattern. Soil salinization was serious in the plain, which directly
affected local ecological and agricultural security. Furthermore, the main land cover types
in the Dina River Basin’s oasis–desert area were cultivated land, grassland, and bare land
in 2020, accounting for 17.18%, 18.84%, and 62.85%, respectively. The plain was primarily
cultivated with cotton and wheat, while the artificial economic forests were predominantly
composed of pear, apricot, red date, and walnut trees. The dominated natural plants
include Phragmites communis, Tamarix spp., and Halostachys capsica [11].
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2.2. Data Collection

Water samples were gathered from April 2019 to September 2020 within the plain
of the Dina River Basin in the non-flood season (April and November) and flood season
(August and September) (Figure 1c). Water samples from the surface were gathered from
the river, reservoir, and channel, which were collected with a sample bottle at a 5 cm depth
below water surface. Groundwater samples were collected from boreholes and pumped
wells, including irrigation wells, industrial wells, and domestic wells, throughout the
sampling period. The collection and preservation of groundwater samples were strictly
proceeded in accordance with the “Chinese technical specifications for the environmental
monitoring of groundwater (HJ164-2020)”. Based on hydrogeological characteristics, the
groundwater samples were categorized into three groups: shallow groundwater (with well
depths less than 20 m), middle groundwater (with well depths ranging between 20 m and
100 m), and deep groundwater (with well depths exceeding 100 m) [36]. A cumulative
number of 105 water samples were procured, comprising 43 surface water samples, 5 deep
groundwater samples, 32 middle groundwater samples, and 25 shallow groundwater
samples. The water samples were sifted using a 0.22 µm filter and then securely enclosed
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in 100 mL polyethylene bottles with parafilm. These samples were subsequently stored in
a refrigerator until they were ready for measurement.

Stable water isotopes (δ2H and δ18O) and hydrochemical components of water samples
were assayed at the State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of
Ecology and Geography (XIEG), Chinese Academy of Sciences (CAS). The concentrations
of Cl−, SO4

2−, Na+, K+, Ca2+ and Mg2+ in the samples were measured using an ion
chromatograph (Dionex-320, Thermo Fisher Scientific, Massachusetts, USA), and CO3

2−

and HCO3
− were determined using the titration method. TDS (total dissolved solids) and

EC (electrical conductivity) values of samples were assayed in situ using a multi-parameter
meter (YSI ProPlus, YSI Incorporated, Yellow Springs, OH, USA). All hydrochemistry
results of water samples were within the acceptable range of ion charge balance error
(ICBE). δ18O and δ2H of samples were analyzed using a liquid water isotope analyzer (LGR
DLT-100, Los Gatos Research Inc., California, USA), and reported relative to the Vienna
Standard Mean Ocean Water (VSMOW) in per mil (δ, ‰).

Daily groundwater level data of 6 monitoring wells (D1–D6) in the downstream
of Dina River from August 2018 to December 2021 were collected from the XIEG, CAS
(Figure 1c). The groundwater level was monitored automatically and recorded using a
Telemetering Stage Recorder (XH17-S1, Xinhe Puhua Technology Co. Ltd., Beijing, China)
every 4 h. Moreover, water samples were gathered from the 6 monitoring wells in different
seasons for stable isotopic and hydrochemical analyses. Furthermore, from the National
Earth System Science Data Center, National Science & Technology Infrastructure of China
(http://www.geodata.cn, accessed on 1 September 2023), we acquired the yearly gridded
dataset of air temperature and precipitation within the study area, spanning from 2000 to
2020, at a spatial resolution of 1 km [37]. Normalized difference vegetation index (NDVI)
data in the Dina River Basin from 2000 to 2021 were obtained from the MOD13Q1 product
by NASA (National Aeronautics and Space Administration), with a temporal resolution of
16 days and a spatial resolution of 250 m. The yearly LULC (land use and land cover) data
in the Dina River Basin from 2000 to 2020 were sourced from the ESA CCI LC products
(spanning 2000 to 2015) and the C3S Global Land Cover products (covering 2016 to 2020),
both with a spatial resolution of 300 m. Annual LULC data in 2021 were derived from
the European Space Agency (ESA) WorldCover 2021 products, with a spatial resolution of
10 m [38].

2.3. End-Member Mixing Analysis Method

In this study, the end-member mixing analysis method (EMMA) based on stable
water isotopes is applied to analyze the contributing proportions from lateral groundwater
flow and surface water to shallow groundwater in the plain of the Dina River Basin,
which has been extensively utilized to assess the possible origins of surface water or
groundwater [29,39]. The formulas are given as Equations (1)–(4):

CG = fS·CS + fT ·CT (1)

fS + fT = 1 (2)

fS =
QS
QG

=
CG − CT
CS − CT

(3)

fT =
QT
QG

=
CS − CG
CG − CT

(4)

where CG, CS and CT are the concentration of stable water isotope for groundwater, surface
water and lateral groundwater flow, respectively; QG, QS and QT are the amount of ground-
water, surface water and lateral groundwater flow, respectively; fS is the contributing
proportion of surface water; fT is the contributing proportion of lateral groundwater flow.

http://www.geodata.cn
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2.4. Statistical Analysis

In our research, the statistical analysis of data was conducted using MATLAB (ver.
R2018a), Origin (ver. 2021), ArcGIS (ver. 10.5), SPSS (ver. 22.0), and Microsoft Excel (ver.
2016), with a statistical significance level of 5%. Pearson’s correlation analysis was applied
to evaluate the relationship between the hydrochemical components of water samples. The
hydrogeochemical data were interpolated into 250 m grid data using the IDW method
(inverse distance weighting). The IDW method is intuitive and especially valuable for
dealing with scattered data, which could ensure reliable interpolation [13].

The Sen’s slope method was applied to assess the trend and magnitude of precipitation,
air temperature and NDVI in the Dina River Basin, which has been widely applied to
hydrometeorological data variation [11,40]. It can be calculated by Equation (5):

Senij = MEDIAN

(
Xj − Xi

)
(j − i)

(5)

where Senij is the Sen’s slope; Xi and Xj are the sequential values corresponding to times
i and j, respectively, 1 < i < j < n, n is the length of the series. Senij < 0 shows that
the series display a decreasing trend, while Senij > 0 shows that the series display an
increasing trend.

3. Results
3.1. Variations of Climate, Vegetation and Land Cover

Figure 2 shows the annual averages of air temperature, NDVI, precipitation, and
cultivated land area in the Dina River Basin from 2000 to 2020. The annual average air
temperature and precipitation exhibited some large fluctuations, but with no obvious
variation trend during this period (Figure 2a,b). In addition, the NDVI and cultivated land
area both displayed a notable upward trend from 2000 to 2020, which increased by 0.07
(0.15 for 2000 and 0.22 for 2020) and 244.5 km2 (863.5 km2 for 2000 and 1108.0 km2 for
2020), respectively (Figure 2c,d). This indicated that the increase in vegetation area in our
study area was primarily attributed to the increase in cultivated land area by the oasis
expanding, while it had a weak relation with regional air temperature and precipitation. In
the plain area of the Dina River Basin, the majority of the increase in cultivated land area
was converted from bare land and grassland over the past 20 years [11].

Figure 3 exhibits the fluctuation trends of air temperature, precipitation, and NDVI
within the Dina River Basin during 2000 to 2020. The variation amplitudes and trends of air
temperature, precipitation, and NDVI showed obvious spatial heterogeneity. As shown in
Figure 3a, air temperature in the basin displayed a slight decreasing trend over the period (a
rate of −0.013 ◦C/10a), and the variation in the mountain was obviously larger than that in
the plain. Moreover, the annual precipitation in the entire basin displayed a slight upward
trend during 2000 to 2020, with a rate of 15.76 mm/10a (Figure 3b). Obviously, compared
with the plain area, precipitation in the mountainous area showed a larger increasing
rate. Additionally, the annual average NDVI in the basin exhibited a substantial upward
trend between 2000 and 2020, with an average increase rate of approximately 0.024 per
decade (Figure 3c). During this period, the NDVI in the mountainous region showed an
upward trend, probably due to the influence of precipitation and temperature. NDVI in the
scattered areas on the edge of the oasis exhibited a downward trend, mainly distributed in
grassland, suggesting vegetation degradation within the zone of transition from desert to
oasis [32]. Contrarily, the NDVI in the oasis exhibited an increasing trend, and the largest
increasing rate occurred in cultivated land, indicating that the expansion of cultivated land
significantly enhanced vegetation greenness [41].
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The spatial distributions of the NDVI and LULC for 2021 were prepared for the Dina
River Basin (Figure 4). The NDVI across the Dina River Basin showed a noticeable spatial
distribution (Figure 4a). NDVI values were comparatively high in the north, middle, and
southwest of the basin, whereas they were low in the edge, middle, and southeast of the
basin. Overall, vegetation cover was lower in the desert region, while it was higher in
the oasis region and mountainous region. As shown in Figure 4b, the cultivated land was
primarily concentrated in the central and southwestern regions of the basin, whereas the
grassland was predominantly located in the northern, central, and southwestern areas.
Forest was mainly distributed in the north of the basin (natural forest) and on the edge
of cultivated land (artificial forest). Bare land was primarily located on the periphery of
grassland and cultivated land. Obviously, the dominant land cover type was bare land in
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2021, covering 67.8% of the Dina River Basin. Grassland was the second most dominant
land cover type (16.3% in 2021), followed by cultivated land (9.6% in 2021) and forest (5.3%
in 2021). The marked increase in cultivated land area in the last few decades (7.1% for 2000
and 9.6% for 2021) resulted in a high water demand for agricultural irrigation [34].
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3.2. Stable Water Isotopes

Stable water isotopes (δ2H and δ18O) differed among various water components in
the study area (Figure 5). Overall, surface water exhibited greater isotopic enrichment
compared to groundwater in our study area. The most enriched δ2H and δ18O were found
in surface water (δ2H = −47.75‰, δ18O = −7.89‰), whereas the most depleted δ2H and
δ18O were observed in deep groundwater (δ2H = −58.26‰, δ18O = −9.26‰). δ2H and
δ18O values of surface water ranged from −59.04‰ to −35.64‰ and −9.45‰ to −3.64‰,
respectively, which was more depleted than the rain stable isotopes in Luntai county
(δ2H = −45.2‰, δ18O = −7.0‰; Wang et al. [42]). Furthermore, a great fluctuation in δ2H
and δ18O was displayed in shallow groundwater across the plain (Figure 5), probably due
to intense evaporation and various recharge sources in the oasis–desert region [11]. δ2H
values of shallow groundwater varied between −69.67‰ and −44.44‰, with an arithmetic
mean value of −53.40‰, while δ18O values varied between −10.33‰ and −4.86‰, with
an arithmetic mean value of −8.23‰. δ18O values of middle groundwater had a markable
range of −11.24‰ to −7.69‰, with an arithmetic mean value of −9.07‰. Evidently, the
δ18O value of the middle groundwater ranged between the shallow groundwater and
deep groundwater, indicating the recharge of upper phreatic water to confined water [34].
However, δ2H and δ18O values of deep groundwater differed significantly from other
water components, which exhibited small fluctuations. The differences of δ2H and δ18O
for various groundwater indicated that shallow, middle, and deep groundwater could be
recharged by different sources [43].

Figure 6c displays the seasonal variation in δ18O values for water samples in the
study area. The δ18O values of surface water and groundwater displayed remarkable
seasonal variation in the plain of Dina River Basin, probably attributable to the temporal
fluctuations in temperature, precipitation, water source, and even human activities in the
plain [29]. Generally, surface water and groundwater were both characterized by higher
δ18O values in the non-flood season compared with those in the flood season, indicating
the massive recharge from runoff with more negative isotopes in the flood season [43].
Furthermore, the average δ18O values of shallow groundwater were less than those of
surface water during both flood and non-flood seasons, yet they were greater than those of
middle groundwater. The seasonal variation in δ18O for surface water was smaller than
that for shallow groundwater, but larger than that for middle groundwater, possibly due to
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different recharge sources, evaporation, and mixing processes among various seasons [36].
However, the disparity in seasonal fluctuation for the mean δ18O value was not obvious
among surface water, shallow groundwater, and middle groundwater, indicating the close
relationship among surface water, phreatic water, and confined water [33]. Furthermore,
there was no seasonal variation in the deep groundwater δ18O in the plain.
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3.3. Dissolved Ions

Surface water pH was noted to exhibit a slightly alkaline nature, averaging at 7.9. Ca2+

concentration (141.2 mg/L) prevailed as the primary cation in surface water, followed by
Na+ (104.6 mg/L), Mg2+ (44.8 mg/L), and K+ (2.4 mg/L). By contrast, SO4

2− concentration
(295.6 mg/L) prevailed as the primary anion in surface water, succeeded by HCO3

−

(155.3 mg/L) and Cl− (151.4 mg/L). The mean TDS value of surface water was observed to
be 982.8 mg/L, which was lower than the groundwater (9025.5 mg/L). In addition, TDS
values of groundwater in different aquifers over the plain showed significant fluctuations,
with the TDS ranging from 476.0 to 39,770.0 mg/L (Figures 7 and 8). Shallow groundwater
had the highest TDS, with mean values of 21,337.9 mg/L and 7253.6 mg/L for TDS and
Cl−, respectively. Middle groundwater exhibited higher TDS and Cl− (TDS = 965.0 mg/L,
Cl− = 165.4 mg/L) than the deep groundwater (TDS = 751.2 mg/L, Cl− = 110.4 mg/L).
Moreover, the alkalinity of middle groundwater (pH = 8.0) was greater than the shallow
groundwater (pH = 7.7), whereas the temperature of middle groundwater (11.6 ◦C) was
cooler than the shallow groundwater (14.1 ◦C). Furthermore, surface water belonged to
the Ca-SO4 hydrochemical type, while shallow, middle, and deep groundwater were
Na-Mg-Cl-SO4, SO4-Cl-Na-Ca, and HCO3-Cl-Ca-Na hydrochemical types, respectively.
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for shallow groundwater in the Dina River Basin’s oasis–desert area.

The spatial distributions of ion concentrations for surface water differed significantly
among the major dissolved ions in the Dina River Basin’s oasis–desert area (Figure 7). The
ion concentrations of surface water in the plain exhibited obvious spatial heterogeneity,
and varied among the water sampling sites. The highest values of Na+ + K+, Ca2+, Cl−,
and SO4

2− for surface water mainly occurred in the southwest region, while the lowest
values were mainly in the northeast region. In contrast, the northwest region of the surface
water exhibited the lowest concentrations of Mg2+ and HCO3

−, whereas the highest con-
centrations were dispersed throughout the central area. Generally, the spatial distribution
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pattern of Na+ and Cl− values for surface water was consistent, while the spatial distribu-
tion pattern of Ca2+ and SO4

2− values was consistent (Figure 7). As depicted in Figure 8,
the ion concentrations of shallow groundwater in the Dina River Basin plain displayed
evident spatial variability. The spatial distribution pattern of dissolved ions in shallow
groundwater, excluding HCO3

−, remained consistent. In general, the concentrations of the
primary dissolved ions in shallow groundwater rose along the direction of groundwater
flow, moving from midstream towards downstream in the designated study area. (Figure 8).
The concentration of Cl− in shallow groundwater varied between 38.1 and 16,016.3 mg/L,
with significantly higher levels observed in the southern region compared to the northern
part. This was probably attributed to intense phreatic water evaporation, agricultural
drainage of salt water, and dissolved soil salinity by irrigation water infiltrating into the
phreatic aquifer in the oasis–desert region [34].

Figure 6 exhibits the seasonal variations in TDS and Cl− concentrations in the water
samples gathered from the study region. The seasonal variations in TDS and Cl− values
for surface water and groundwater were significant in the plain of the Dina River Basin
(Figure 6a,b), mainly due to different precipitation, air temperature, and water sources
among various seasons [11]. Generally, the Cl− and TDS levels in surface water and
shallow groundwater during the non-flood season were greater than those in the flood
season in the plain. This was primarily attributed to significant replenishment from rainfall
and runoff, which had lower ion concentrations during the flood season [29]. In contrast,
middle groundwater had higher values of Cl− and TDS in the flood season than those
in the non-flood season. Furthermore, in the flood season, the mean Cl− and TDS of
middle groundwater were less than those for shallow groundwater, but greater than those
for surface water. However, in the non-flood season, the mean Cl− and TDS of surface
water were less than those for shallow groundwater, but greater than those for middle
groundwater (Figure 6a,b). The seasonal variation in Cl− and TDS for surface water was
smaller than that for shallow groundwater, but larger than that for middle groundwater,
indicating the close relationship between surface water and phreatic water.

3.4. Groundwater Level

Figure 9 exhibits the variation characteristics of the monthly mean DGL (depth to
groundwater level), NDVI, δ18O, and TDS of groundwater for the six monitoring wells
(D1–D6) from 2018 to 2021 in our study area. Overall, NDVI, groundwater level and
hydrochemistry showed obvious spatio-temporal variation, and differed obviously between
the monitoring wells, maybe due to the different underlying surface conditions, vegetation
coverage, lithology, and hydrogeological conditions [31]. Except for the D5 well, the DGL
of the other monitored wells presented an increasing trend from 2018 to 2021, while the
variation in precipitation during the same period was not obvious (about 70 mm for annual
precipitation) [35]. This indicated that the effect of rainfall on groundwater was weak in the
desert area. The largest increase in DGL occurred in the D6 well (0.83 m), and the smallest
increase in the DGL was in the D4 well (0.02 m). On the contrary, the DGL of the D5 well
exhibited a downward trend from 2018 to 2021, and the average annual DGL decreased by
0.10 m (Figure 9). The DGL was the largest in the D2 well (12.14 m), and was the smallest
in the D1 and D6 wells (5.31 m for D1, and 5.12 m for D6). Furthermore, the fluctuation
range of intra-annual DGL variation was relatively small for the D1, D4, and D6 wells,
while it was relatively large for the D2, D3, and D5 wells. For the D2, D3, and D5 wells, the
maximum DGL generally occurred in September, while the minimum DGL occurred in
April or May. However, the groundwater level in the monitoring wells did not display a
rising trend after precipitation (daily precipitation ≤ 27 mm) [35]. This suggested that the
infiltration of agricultural drainage and irrigation water in the oasis region could laterally
replenish the groundwater in the desert area, with an obvious time lag [11,36].
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As shown in Figure 9, the temporal variation in vegetation cover was correlated to the
groundwater level in the desert area, and the NDVI generally decreased with the decrease
in water level. In general, the greater the groundwater level decrease (0.82 m for D1, and
0.83 for D6), the greater the NDVI decrease (−0.021 for D1, and −0.014 for D6). The TDS
was larger in the D2, D3 and D4 wells, while it was the smallest in the D5 well (Figure 9).
Overall, the TDS of groundwater in the monitored wells exhibited a decreasing trend from
2018 to 2021, with the smallest decrease in the D5 well and the largest decrease in the D2,
D3, D4, and D6 wells. That is, the decrease in groundwater level in the desert area coincided
with a reduction in TDS in the phreatic aquifer, suggesting that the evaporation of phreatic
water significantly affected phreatic water quality in desert area [32]. Furthermore, the
stable isotope values of groundwater varied among the monitoring wells, and exhibited
obvious temporal variation, indicating the different effects of evaporation and water sources
on shallow groundwater [43].

4. Discussion
4.1. Influence of Human Activities on Groundwater Hydrochemistry

Natural factors are important factors affecting groundwater hydrochemistry [36].
The natural mechanisms of major hydrochemical compositions can be deduced from
the mixing diagrams of Na-normalized ratios, which serve to ascertain the sources and
determining factors of major hydrochemistry in surface water and groundwater [44]. The
mixing diagrams of Na-normalized ratios showed that most surface water samples were
plotted between the silicate and carbonate end-members (Figure 10), suggesting that the
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samples were probably in the environments with gypsum/anhydrite and halite [44]. By
contrast, a majority of middle groundwater and deep groundwater samples were adjacent to
silicate end-members (Figure 10), suggesting the dominance of silicate weathering. Shallow
groundwater was dominated by silicate weathering and evaporate dissolution, due to the
complex lithology in the region [19]. The Na+/Cl− molar ratio in shallow groundwater
in the plain of Dina River Basin was close to one, suggesting that silicate weathering and
evaporate dissolution (e.g., halite dissolution) were the effective processes of releasing
Na+ into shallow groundwater [44,45]. Hence, hydrogeological characteristics can exert a
notable influence on the hydrochemical composition of streamflow and groundwater [46].
The soil salinization in the plain of Dina River Basin is serious, which significantly affects
the hydrochemistry of soil moisture and phreatic water [11].
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Correlations between hydrochemical parameters serve as an effective means for ex-
amining the primary hydrochemical processes that govern hydrochemical traits [47]. Pear-
son’s correlation analysis was utilized to investigate the relationship among hydrochemical
parameters in groundwater (Figure 11). Most of the hydrochemical parameters were sig-
nificantly correlated with each other. Cl− was significantly related with Na+ and HCO3

−

(correlation coefficients of 0.98 and 0.73, respectively), indicating that the weathering of
silicate and halite was a key process regulating groundwater chemistry in the region [48].
Similarly, Ca2+ exhibited a significant correlation with SO4

2− (correlation coefficients of
0.84), suggesting that SO4

2− was sourced from gypsum dissolution [36,48]. TDS serves
as an indicator of groundwater salinity, arising from the combined contribution of all
dissolved ions. In this region, TDS was significantly correlated with Na+, Ca2+, Mg2+,
Cl−, and SO4

2− (Figure 11), suggesting the importance of gypsum dissolution and the
weathering of silicate and halite in forming groundwater hydrochemistry in our study
area [33].



Water 2024, 16, 763 14 of 19
Water 2024, 16, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 11. Pearson’s correlation coefficients between hydrochemical parameters for groundwater 
samples in the Dina River Basin’s oasis–desert area. * Correlation was significant at the 0.05 level (p 
≤ 0.05). 

We further investigated the influences of anthropogenic activities on the hydrochem-
ical compositions and water level of groundwater. It was generally known that a larger 
amount of groundwater exploitation could result in a decrease in the groundwater level 
in arid regions [32]. Agricultural irrigation activities had a notable impact on the local 
groundwater level and quality [31]. In recent years, the irrigation method change and ef-
ficient water-saving irrigation promotion have notably decreased the depth and volume 
of recharge from irrigated water infiltration [49]. Groundwater overexploitation caused 
by the increase in population and cultivated land area could not be balanced with the 
amount of irrigation infiltration, leading to a persistent drop in groundwater level in some 
regions [11,32]. In the Tarim River Basin, the efficient water-saving irrigation area could 
account for about 41.7% of the total irrigation area, and the amount of groundwater ex-
ploitation was about 92.3 × 108 m3 (data from the Water Resources Bulletin of Xinjiang 
Uygur Autonomous Region, China). Meanwhile, the concentrations of dissolved ions in 
groundwater also changed (Figures 7 and 8). Due to serious soil salinization and the in-
fluence of agricultural drainage systems, the salinity of shallow groundwater was high, 
and shallow groundwater in some regions would not be suitable for agricultural irrigation 
[11]. Wang et al. [11] observed that phreatic water in some regions of the Wei-Ku Oasis in 
Tarim Basin was unsuitable for irrigation because of exceptionally high salinity. Further-
more, the variation in groundwater level and quality in the oasis could directly affect the 
natural vegetation. Desert vegetation was heavily dependent on groundwater due to the 
scarcity of surface water, and the decline in the groundwater level in oases could lead to 
the degradation of desert vegetation in arid inland areas [32]. It was found that in the 
desert areas of the northern Tarim Basin, there existed an inverse relationship between the 
depth of the groundwater level and the coverage of natural desert vegetation (NDVI) [35]. 
Li et al. [50] reported that the aboveground biomass of grassland plant communities in 
the lower Tarim River was highest when the groundwater depth was less than 3 m and 
groundwater salt was no more than 5.0 g/L. Therefore, the rational utilization of ground-
water resources is very important to regional ecological and food security [11]. The above 
research results could provide knowledge support for groundwater resource manage-
ment and groundwater environment protection in arid areas worldwide. 

Figure 11. Pearson’s correlation coefficients between hydrochemical parameters for groundwater
samples in the Dina River Basin’s oasis–desert area. * Correlation was significant at the 0.05 level
(p ≤ 0.05).

We further investigated the influences of anthropogenic activities on the hydrochem-
ical compositions and water level of groundwater. It was generally known that a larger
amount of groundwater exploitation could result in a decrease in the groundwater level
in arid regions [32]. Agricultural irrigation activities had a notable impact on the local
groundwater level and quality [31]. In recent years, the irrigation method change and
efficient water-saving irrigation promotion have notably decreased the depth and volume
of recharge from irrigated water infiltration [49]. Groundwater overexploitation caused
by the increase in population and cultivated land area could not be balanced with the
amount of irrigation infiltration, leading to a persistent drop in groundwater level in some
regions [11,32]. In the Tarim River Basin, the efficient water-saving irrigation area could
account for about 41.7% of the total irrigation area, and the amount of groundwater ex-
ploitation was about 92.3 × 108 m3 (data from the Water Resources Bulletin of Xinjiang
Uygur Autonomous Region, China). Meanwhile, the concentrations of dissolved ions
in groundwater also changed (Figures 7 and 8). Due to serious soil salinization and the
influence of agricultural drainage systems, the salinity of shallow groundwater was high,
and shallow groundwater in some regions would not be suitable for agricultural irriga-
tion [11]. Wang et al. [11] observed that phreatic water in some regions of the Wei-Ku
Oasis in Tarim Basin was unsuitable for irrigation because of exceptionally high salinity.
Furthermore, the variation in groundwater level and quality in the oasis could directly
affect the natural vegetation. Desert vegetation was heavily dependent on groundwater
due to the scarcity of surface water, and the decline in the groundwater level in oases
could lead to the degradation of desert vegetation in arid inland areas [32]. It was found
that in the desert areas of the northern Tarim Basin, there existed an inverse relationship
between the depth of the groundwater level and the coverage of natural desert vegetation
(NDVI) [35]. Li et al. [50] reported that the aboveground biomass of grassland plant com-
munities in the lower Tarim River was highest when the groundwater depth was less than
3 m and groundwater salt was no more than 5.0 g/L. Therefore, the rational utilization
of groundwater resources is very important to regional ecological and food security [11].
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The above research results could provide knowledge support for groundwater resource
management and groundwater environment protection in arid areas worldwide.

4.2. Groundwater Recharge Sources and Recharge Process

Identifying the recharge sources of groundwater and quantitatively evaluating their
corresponding contributions are necessary to sustainable groundwater resources manage-
ment [43]. The enriched δ2H and δ18O values in the shallow groundwater in the plain of the
Dian River Basin resembled those of surface water, suggesting a strong hydraulic linkage
between surface water and shallow groundwater [29]. The flat terrain across the plain
and the high permeability of the soil and aquifer permitted the downward percolation of
surface water into the shallow aquifer, including from the canal, riverbank, reservoir, and
irrigation [36]. Furthermore, there is little rain in the plain, while the local evaporation is
very strong, and soil water content is low due to the extreme arid environment [32]. Thus,
the recharge from precipitation to groundwater is very weak, and could be ignored in our
study area [29]. Hence, the potential recharge sources of shallow groundwater in the plain
comprised surface water infiltration, confined water, and lateral groundwater flow.

The end-member mixing analysis method (EMMA; Equations (1)–(4)) was utilized to
identify the dominant sources and to estimate the contribution ratio of each recharge source
to shallow groundwater in the plain. Our findings revealed that approximately 73% of
shallow groundwater was replenished by surface water, while 27% originated from lateral
groundwater flow in the plain of the Dina River Basin (δ18O as the tracer). This indicated
that local surface water infiltration was the primary source of shallow groundwater, with
lateral groundwater flow from the mountains playing a significant role in replenishing
shallow groundwater in the arid oasis–desert region [29]. This was similar to the research
found by Guo et al. [43] in the downstream of the Heihe River Basin; 87% of the shallow
groundwater was from river water infiltration. Surface water infiltration mainly included
the infiltration from the riverbank, reservoir, canal, and irrigation water. More than 90% of
the streamflow was directly diverted from mountain into irrigation districts for agricultural
irrigation, causing the dried-up river in the plain over the last decades [11]. Moreover, the
plain of the Dina River Basin was dominated by agriculture, and the limited streamflow
could not meet the demand of irrigation water, leading to groundwater becoming an
important source of agricultural irrigation [32]. Thus, the irrigation water infiltration
from streamflow and groundwater pumping was an important recharge source of shallow
groundwater in the plain. In the Tarim River Basin, 89.1% of groundwater exploitation was
utilized by agriculture irrigation in 2016 (about 43.07 × 108 m3) [35].

As above, the stable isotopic and hydrochemical signatures of water as well as shallow
groundwater recharge sources provided a perspective on the groundwater recharge process
influenced by human activities in the oasis–desert area [29,43]. Over the past three decades,
advancement in water and land resource utilization has resulted in substantial modifica-
tions of the groundwater recharge process in arid regions due to human activities [26].
As water resource utilization in arid regions has improved, the timing, location, and pat-
tern of recharge from surface water to groundwater have undergone changes [11]. The
frequency and amount of groundwater recharge by irrigation water increased during the
growing season due to the increase in irrigation intensity, resulting in the irrigation return
water being one of dominant sources of shallow groundwater. Meanwhile, the supply
of natural river seepage to groundwater was significantly reduced due to the dried-up
river in the middle and lower reaches, and was mainly from the flood discharge during
flood season. The increase in temperature and extreme precipitation events in the Southern
Tianshan Mountains in recent years has caused an increase in groundwater recharge by
mountain floods [51]. The leakage of mountain reservoirs and plain reservoirs is also one
of the sources of groundwater. Additionally, water exchange between different aquifers
is more frequent. Deep confined water is extracted for agricultural irrigation, which in
turn could infiltrate downward into phreatic aquifers. The cone of depression, formed
due to a precipitous drop in groundwater levels in certain areas, leads to the seepage of
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phreatic water into confined water, thereby inducing an interaction between saline and
freshwater within the aquifers [31]. The above results could provide reference for deeply
understanding the groundwater recharge process and hydrochemical evolution in other
arid areas with a similar landscape in the world.

5. Conclusions

A combined application of isotopic indicators and the EMMA method was performed
to identify the recharge sources and recharge process of groundwater, and to assess the
influence of human activities on groundwater hydrochemical evolution in the oasis–desert
of the Dina River Basin. The following conclusions could be drawn:

(i) During 2000 to 2020, the NDVI and cultivated land area both exhibited a signifi-
cant increasing trend, while the variation trend of air temperature and precipitation
was not obvious, indicating the important effect of cultivated land area increase on
vegetation cover.

(ii) Stable water isotopes and dissolved ions of groundwater and surface water exhibited
obviously spatial heterogeneity and seasonal variation. Except for HCO3

−, the spatial
distribution pattern of major dissolved ions for shallow groundwater was consistent,
increasing along the groundwater flow direction from midstream to downstream.
Surface water and groundwater were both characterized by higher δ18O and TDS in
the non-flood season than those in the flood season, due to the massive recharge from
runoff in the flood season. The seasonal variation in δ18O and TDS was the largest in
shallow groundwater, followed by surface water and middle groundwater.

(iii) DGL showed obvious spatio-temporal variation, and differed obviously among the
monitoring wells. Except for the D5 well, the groundwater level in the monitored
wells presented a decreasing trend from 2018 to 2021, accompanied by a decrease in
TDS in phreatic aquifer. The NDVI in the desert area generally decreased with the
decrease in groundwater level. Generally, the greater the groundwater level decrease
in the desert area, the greater the NDVI decrease.

(iv) Gypsum dissolution and weathering of silicate and halite had an important role in
forming groundwater hydrochemistry in the region. Human activities significantly
affected the hydrochemical evolution and recharge process of groundwater in the plain
of the Dina River Basin. Shallow groundwater was mainly recharged by surface water
and lateral groundwater flow, accounting for 73% and 27%, respectively, indicating
the dominant role of local surface water. Agricultural activities and groundwater
overexploitation were the main factors for the variations in the groundwater level
and quality in the oasis area, which could directly affect groundwater and natural
vegetation in the desert area. Hence, attention should be paid to the importance of
the effect of anthropogenic activities on groundwater level and quality in the efficient
utilization of groundwater resources.
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