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Abstract: The water yield of aquifers increases the risk of water inflow, threatens the safe production
of coal mines, and even causes geological disasters and construction hazards. To predict water
yield quickly and accurately, multiple composite factors are used to invert unit water inflow rates
to judge water yield grade. Taking the typical representative of north China-type coal fields as an
example, six factors are selected: aquifer thickness, the radius of influence, normalized drawdown,
permeability coefficient, the core rate of drilling holes, and the proportion of clay thickness to the
thickness of the lower group. The whale optimization algorithm (WOA)–convolutional neural
network (CNN)–support vector machine (SVM) model is established with the unit water inflow rate
as the forecast target, and different models are selected for comparison. The water yield zoning map
is obtained by bringing the borehole data into the model for prediction. The findings indicate that
the root mean square error and average absolute error of the composite predictive model models
are 0.0318 and 0.0268, respectively, and the model outperforms alternative models. The predicted
water yield zoning aligns well with the actual conditions, offering a novel paradigm for water
yield assessment.

Keywords: risk analysis; WOA-CNN-SVM model; water yield; global search

1. Introduction

Coal resources occupy a dominant position in China’s energy structure [1], and its
demand is huge [2]. With the increasing mining scale and intensity, the problem of coal
seam roof water disasters has become increasingly prominent, which seriously threatens
the safe mining of coal mines, resulting in surface subsidence and affecting the stability of
buildings [3,4]. However, the water yield of aquifers directly affects the occurrence and
frequency of water inflow [5]. Moreover, due to the influence of coal seam mining, the
water yield of aquifers changes dynamically, and the borehole data are scarce and cannot
be characterized globally in space [6]. Therefore, it is of great practical significance to do a
good job in predicting roof water yield to reduce water inflow accidents and ensure coal
mine safety in production.

Traditional aquifer water yield prediction methods mainly use the analytic hierar-
chy process (AHP) [7,8], entropy weight method [9], technique for order preference by
similarity to an ideal solution (TOPSIS) [10,11], and other analytical methods to construct
the weighting matrix and draw the water yield partition, but their shortcomings such as
strong subjectivity, weak correlation between the indicators, and strong dependence on the
weighting matrix lead to the low accuracy of model prediction. With the development of
artificial intelligence, machine learning and neural networks are widely used in different
fields [12–15], and in recent years, they have been gradually applied to the prediction of
water yield. According to the water yield characteristics of coal seam roofs, many scholars
have proposed a variety of prediction and evaluation methods from different perspectives.
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Cheng et al. [16] used a bat algorithm to optimize the backpropagation (BP) neural network
to realize a quantitative prediction of the water yield of rock strata. Ma et al. [17] proposed
a genetic algorithm to optimize a nonlinear gray Bernoulli model for predicting the risk of
surge water. Wu et al. [18] proposed a method for assessing the probability of occurrence
of mine water emergencies based on the combination of scenario analysis and Bayesian
networks. Qu et al. [19] used the information theoretic learning and VlseKriterijuska Op-
timizacija I Komoromisno Resenje (ITL-VIKOR) method with triangular fuzzy number
extension to establish a binary semantic evaluation mathematical model for water yield.
Mulumba et al. [20] developed a safety risk assessment model for underground coal mines
based on particle swarm optimization and backpropagation (PSO-BP) neural networks.
Gul et al. [21] proposed a safety risk assessment method based on Pythagorean fuzzy
VIKOR. Mishra et al. [22] used the Bayesian network for risk assessment of roof collapse.
The above studies provide new methods for the prediction of aquifer water yield, but the
number of samples required is large, which prevents fast and accurate prediction of water
yield. Therefore, this paper proposes a model based on WOA-CNN-SVM to improve the
prediction accuracy.

The WOA-CNN-SVM prediction model is constructed by selecting multifactor evalua-
tion indexes based on coal mine geological data, which can efficiently predict aquifer water
yield with small samples. Compared with other models, this model has higher evaluation
accuracy. It can be used to predict the water yield of an area in the absence of unit water
inflow rate data and can more accurately portray the spatial dynamic characteristics of
water yield.

2. Overview of Baodian Coal Mine

The study area is located in the Jining City area, Shandong Province, and the stratigra-
phy from top to bottom is Quaternary (Q), Jurassic, (J), Permian (P), Carboniferous (C), and
Ordovician (O). The total thickness of the Quaternary layer, composed of brownish yellow,
gray-green to gray-white clay, sandy clay, clayey sand (gravel), and sand and gravel layers,
is 110~228 m, with an average thickness of 171 m, thin in the southeast and thick in the
northwest, and divided into the upper, middle, and lower groups, with average thicknesses
of 59 m, 67 m, and 41 m, respectively. The water-bearing layer and water-isolating layer are
interlaced with each other, the lenticular body is relatively developed, and the lithology is
complicated. The main aquifer is the water-yielding layers of the lower group of sand and
gravel layers, which are mainly distributed in the middle, western, and middle-north part
of the coal field and are missing in the southeast part of the coal field, which is mainly the
alluvial flood layer.

The coal field in the study area belongs to the simple tectonic type. The southern flank
is cut by the Huangfu fault, while the northern flank is relatively intact. The stratigraphy of
the coal field is undulating, and the folds are characterized by wide and slow short-axis
dips, with dips ranging from 2◦ to 13◦, and the dips only vary greatly in local areas (up to
27◦). Except for the southern boundary fault (Huangfu fault), the southwestern boundary
fault (Majialou fault), and the Puzi fault in the northern part of the coal field, the other
faults all have a drop of less than 30 m.

The surface river, Sihe, flows from the western part of the coal field and flows through
the upper part of the five mining areas, with a total length of 159 km, a watershed area of
2357 km2, a riverbed width of 100~1000 m, and a maximum flow rate of 4020 m3/s. The
Sihe River is seasonal, and it also has a certain hydraulic connection with the Quaternary
layer. An outline of the coal mine area is shown in Figure 1.
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Figure 1. Coal Mine Outline Diagram.

3. Determination of the Main Controlling Factors of Water Inflow

The measurement of water content depends on the unit water inflow rate, and the lack
of data makes it impossible to describe the water yield globally. Therefore, by analyzing the
influencing factors of water yield, the water yield prediction model is established. Through
training the existing data, the results are compared with the actual aquifer pumping test results,
which can effectively evaluate the water yield degree of mines lacking the actual inflow data.

Based on the reports of hydrogeological data from 2019 to 2023 by Baodian Coal
Mine, such as raising the upper mining limit and the Quaternary aquifer water-yield
property research report, private data on hydrology and geology are used to guide coal
mine production, and considering the factors affecting water yield of the aquifer and other
scholars’ [23–25] experience in index selection, six factors are selected from the aspects of
hydraulic connection characteristics and aquifer lithology, including aquifer thickness (X1),
radius of influence (based on the drilling diameter of 91 mm and the pumping water level
drop of 10 m) (X2), normalized drawdown (X3), permeability coefficient (X4), core recovery
percentage (X5), and the proportion of clay thickness to lower layer thickness (X6). The
thematic map of evaluation indicators is shown in Figure 2.

The thickness of the aquifer is the basis for determining the strength of water yield and
is also a direct influence [5]. The greater the thickness of the aquifer, the stronger the water
yield. The coefficient of permeability is a quantitative index characterizing the permeability
properties of rocks and is positively correlated with water yield. The size of the radius of
influence is related to the permeability coefficient of the aquifer and the normalized drawdown.
The larger the permeability coefficient of the aquifer is, the larger the normalized drawdown
and radius of influence are, and the higher the water yield of the rock is. The core recovery
percentage reflects the degree of rock fragmentation. The lower the core take rate is, the better
the rock fracture that is developed. The water yield of the bedrock aquifer with coarse and
large fissures is better than that of the bedrock drilling with weak fissure development, and
vice versa, with a weak water yield, the core recovery percentage has a negative correlation
to the water yield and a negative influence on the water yield. The permeability coefficient
of the clay layer is smaller than that of the sand layer. The greater the thickness of the clay
layer accounting for the thickness of the lower group of Quaternary layers, the smaller its
permeability coefficient is and the weaker the aquifer’s ability to produce water, and it shows
a negative correlation to the aquifer’s water yield.
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4. Composite Modeling Framework
4.1. Convolutional Neural Network Modeling Framework

A convolutional neural network (CNN) is a feed-forward neural network [26] that includes
an input layer, a convolutional layer, a pooling layer, a fully connected layer, and an output
layer [27,28]. The structure of a traditional CNN model is schematically shown in Figure 3.
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The input layer is the first layer of the model, where the image input is passed into
the convolutional layer with feature extraction. The convolutional layer is the basis of the
model, and the convolutional kernel moves a sliding window over the input image param-
eters during the established quantization step, thus extracting the feature parameters [29].
After that, the extracted features are fed into the pooling layer, which effectively reduces the
redundancy of the information and prevents overfitting [30]. The fully connected layer is
connected to the output layer to convert the filtered image into the labeled categories [31].

4.2. Support Vector Machine Model

Support vector machine (SVM) transforms complex low-dimensional nonlinear regres-
sion problems into high-dimensional linear regression problems via a nonlinear mapping
function Φ(x) [32,33] and constructing the regression function as [34]:

f (x) = ωT · Φ(x) + b (1)

where: ω is the high-dimensional feature space; Φ(x) is the nonlinear mapping; b is the
threshold value.

The above problem is equivalent to the following optimization [34]:
min

[
1
2∥ω∥2 + c

n
∑

i=1
(ξi + ξ∗i )

]
f (xi)− yi ≤ ε + ξi

yi − f (xi) ≤ ε + ξ∗i

(2)

where: ξi and ξ∗i are relaxation factors; ε is the insensitivity loss factor; c is the penalty
factor; yi is the corresponding output of xi.

The regression function can be obtained by introducing the Lagrangian method of
solving and transforming the original problem into a pairwise problem [34]:

f (x) =
n

∑
i=1

(α∗
i − αi)k(x, xi) + b (3)

where: αi and α∗
i is Lagrange operator; k(x, xi) is the kernel function.

The convolutional neural network part is designed with convolutional layer–BN
layer–activation layer–discard layer–fully connected layer structure. The traditional CNN
pooling layer achieves dimensionality reduction for high-dimensional redundant data [35],
while water yield features have low dimensionality compared to image pixels. Using the
pooling layer results in the loss of information [36], so it is not necessary to use the pooling
layer stacked into the model structure. Batch normalization can speed up convergence
without losing data features [37], the activation layer improves convergence and prevents
overfitting [38], and the drop layer enhances the generalization of the model [39].
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SVM has the advantages of strong generalization ability and fast computation speed [40]
and is good at solving nonlinear classification problems. SVM is used to replace the
traditional classifier of the CNN to obtain good prediction performance. The flowchart of
the CNN-SVM algorithm is shown in Figure 4.
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The prediction steps of the CNN-SVM model are: (1) normalize the data using
Formulas (4) and (5) to eliminate the effect of magnitude, divided into a training set and
test set, to comply with the model’s need to preprocess the data by tiling; (2) input the
training set to the CNN model for training and select the ReLU function as the activation
function to achieve the convergence effect and save it; (3) use CNN-extracted feature vectors
as the input to the SVM classifier to continue to train; (4) substitution of the test set into the
trained model outputs the water yield prediction results and measurement of the accuracy
of the predictive model by the prediction results and comparison with the real value.

gi =
Gi − min(G)

max(G)− min(G)
(4)

gi =
max(G)− Gi

max(G)− min(G)
(5)

where: gi is the normalized data; G is the original data; Gi is the i-th value of the original data.

4.3. Whale Optimization Algorithm

Whale optimization (WOA) [41] is a nature-inspired meta-heuristic optimization
algorithm proposed by Seyedali Mirjalili in 2016, which is inspired by the humpback whale
bubble-net hunting strategy. Humpback whales can identify the position of prey and
surround them. According to their hunting characteristics, three behaviors are abstracted:
surround prey, predation, and random search [42].

(1) Surrounding the prey. This behavior is represented by the following equation [41]:{
D =|C · X∗(t)− X(t)|
X(t + 1) = X∗(t)− A · D

(6)

where: D is the distance between the search agent and the prey; A and C are the coefficient
vectors; X∗ is the position vector of the global optimal solution, updated in each iteration;
X is the position vector; and t denotes the number of current iterations.
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The equations for the coefficient vectors A and C are as follows [41]:{
A = 2a · r1 − a
C = 2r2

(7)

where: a is the convergence factor, which decreases linearly from 2 to 0 during the iteration;
r1, r2 is a random vector distributed between [0, 1].

(2) Prey predation. Humpback whales attack their prey with a bubble-net strategy, describ-
ing the predation behavior designed with both a constricting envelope mechanism and a spiral
to update the position. Both occur simultaneously and the mathematical expression is [41]:

X(t + 1) =

{
X∗(t)− A · D, p < 0.5
X∗(t) + D′ · ebl · cos(2πl), p ≥ 0.5

(8)

where: D′ denotes the best distance obtained; b is a constant defining the shape of the
logarithmic spiral; l is a random number in [−1, 1]; p is a random number in [0, 1].

(3) Random search. When the coefficient |A|< 1 , the whale is inside the envelope
and selects the spiral envelope prey. When |A|≥ 1 , the whale is outside the constricted
envelope, at which point a random search is performed; the random search is updated with
the following equation [41]:

X(t + 1) = Xrand(t)− A·|C · Xrand(t)− X(t)| (9)

where: Xrand is the randomly selected whale position.
The selection of different parameters has a significant impact on the CNN model per-

formance. To achieve the optimal performance of the model, it is optimized using the whale
optimization algorithm. The CNN model optimized by the whale algorithm is constructed.
(1) normalize the data using Formulas (4) and (5) to eliminate the effect of magnitude, set the
number of WOA optimization parameters and the upper and lower limits of the optimization
objective, initialize the position of the whale population, and search for the optimal results
and output them; (2) construct the CNN model according to the optimal results and train the
data to obtain the feature parameters; (3) feed the extracted feature parameters into the SVM
network to continue to complete the prediction and output the results of the prediction of the
water yield. The framework of the WOA-CNN prediction model is shown in Figure 5.
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5. Model Construction and Validation
5.1. Model Construction

China’s “Detailed Rules for Water Prevention and Control in Coal Mines” takes the
unit water inflow rate (q) of boreholes as the basis for judging the water content of aquifers.
Therefore, the unit water inflow rate was taken as the target value for regression prediction.
A nonlinear prediction model based on each characteristic variable and unit water inflow
rate was established, and the model was trained and predicted according to the model
prediction process in Figures 4 and 5. The relevant parameters of the model were set as fol-
lows: the population size of whales in WOA N = 10, and the number of target optimization
parameters D = 3. The learning rate, the batch size, and the regularization coefficient [43]
were optimized, and their optimization search ranges were [1 × 10−3, 1 × 10−2], [32, 256],
[1 × 10−4, 1 × 10−1], respectively. The CNN model was optimized for a maximum of
300 iterations, and the learning rate decreased after 240 iterations.

The borehole data in Table 1 are substituted into the established WOA-CNN-SVM
prediction model. Eighty percent of the data are used as training samples for model
training, and the remaining data are used as test samples to check the model prediction
accuracy. The loss function is used to record the degree of matching between predicted
and true values [37] and, as shown in Figure 6a, it can be seen that the function decreases
sharply in the early stages and gets closer to the true values and tends to be stabilized after
the 150th iteration, indicating that the model converges on the training set. The optimal
parameter combination is 0.0037 for the learning rate, 87 for the batch size, and 0.0001 for
the regularization factor.
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The prediction results of the samples in the training set and test set are shown in
Figure 6b,c. It can be seen that the predicted values are basically in line with the real values.
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Table 1. Water Yield Index Value.

Drill Hole Number
Dominant Factors Unit Water

Inflow Rate/
L·s−1·m−1X1/m X2/m X3/m X4/m·d−1 X5 X6

1 29.00 23.61 3.63 0.42 0.62 0.43 0.05
2 23.61 5.00 51.78 0.03 0.76 0.48 0.00
3 13.35 66.47 11.52 0.90 0.55 0.39 0.12
4 35.10 93.16 6.32 0.50 0.82 0.12 0.09
5 22.80 10.12 51.98 0.00 0.74 0.49 0.00
6 23.10 79.04 10.00 0.75 0.80 0.41 0.10
7 19.35 82.03 10.00 0.76 0.61 0.60 0.08
8 11.70 75.84 15.26 0.53 1.00 0.17 0.15
9 23.75 39.01 1.68 2.02 0.36 0.55 0.19

10 35.10 61.12 17.58 0.49 0.71 0.38 0.09
11 24.35 701.35 114.77 1.90 0.54 0.10 0.08
12 21.40 184.69 10.00 2.02 1.00 0.55 0.19
13 28.34 68.12 7.09 0.88 0.62 0.50 0.06
14 43.10 153.01 1.04 0.39 1.00 0.46 0.20
15 22.80 98.49 10.36 0.90 0.71 0.20 0.09
16 28.94 6.49 27.27 0.39 0.70 0.23 0.00
17 23.80 18.94 2.66 0.63 0.73 0.26 0.16
18 23.80 49.44 10.00 0.48 0.65 0.51 0.07
19 5.30 99.88 51.78 0.04 0.42 0.29 0.00
20 18.11 126.40 9.80 1.63 0.78 0.39 0.10
21 21.45 116.86 0.95 8.51 0.35 0.35 0.00
22 19.26 21.16 17.40 0.56 0.41 0.08 0.12
23 10.35 25.94 1.40 0.76 0.41 0.51 0.08
24 29.00 64.97 5.02 1.78 0.59 0.19 0.18
25 21.45 28.58 0.95 8.51 0.69 0.29 0.63
26 20.06 85.13 7.29 0.58 0.78 0.45 0.02
27 8.85 45.19 11.16 0.51 0.52 0.57 0.05
28 23.11 75.06 8.03 0.75 0.49 0.18 0.10
29 28.71 37.29 1.78 2.14 0.50 0.52 0.46
30 11.22 137.15 10.00 1.78 1.00 0.17 0.18
31 30.45 1.15 10.00 1.15 0.74 0.31 0.54
32 36.41 58.63 5.52 0.53 0.82 0.36 0.14
33 5.30 70.97 51.78 0.04 0.87 0.49 0.00
34 27.40 66.47 27.27 0.06 0.53 0.47 0.00
35 25.15 297.87 46.87 1.90 0.35 0.36 0.08
36 36.41 96.61 26.72 0.54 0.49 0.29 0.12
37 20.42 118.71 6.05 1.72 0.46 0.19 0.02
38 29.00 75.03 3.63 0.42 0.57 0.23 0.01
39 20.05 223.85 14.40 1.42 0.65 0.59 0.04
40 28.23 40.13 7.04 0.312 0.82 0.28 0.06

Two indicators, root mean square error (RMSE) and mean absolute error (MAE), are
usually used to evaluate the performance of each model [44,45]. Smaller RMSE and MAE
indicate more accurate prediction results. Their calculation formulas are as follows:

RMSE =

√
∑N

i=1 (Yi−yi)
2

N

MAE = 1
N

N
∑

i=1
|Yi−yi|

(10)

where: N is the number of samples; Yi is the true value; yi is the predicted value.
The RMSE of the training set and test set are 0.0269 and 0.0318, respectively. The

MAE is 0.0125 and 0.0268, respectively, which is a good prediction effect, and there is no
overfitting phenomenon. The model can be applied to the prediction of water yield.

5.2. Model Prediction Performance Testing

To test the effectiveness of the model optimization results, the same set of borehole
data is used as training and testing samples, and the unoptimized machine learning models
SVM, CNN, WOA-SVM, WOA-CNN, and CNN-SVM are selected for comparison.
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The parameter settings of each model are as follows: 2 CNN hidden layers, 300 iterations,
0.01 learning rate, and 0.3 discarded layers. The penalty factor c and kernel function
parameter g of the SVM model are 4.5 and 0.6, respectively [46]. To control the variables,
the parameter settings mentioned before are used for all models.

To obtain a more intuitive picture of the difference between the predicted and true
values of each model, a line graph of the predicted and true values of each model is plotted.
As shown in Figure 7. The higher the overlap between the two, the more accurate the
model prediction.
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It can be seen from Figure 7 that the predicted value and the real value of the WOA-
CNN-SVM model match to the highest degree. The CNN model has the worst prediction
effect, and the correct rate is increased by 5.88% after combining with the SVM model,
which shows that the generalization ability of regression prediction by the SVM classifier
is improved. However, there are errors in the 11th, 16th, and 20th samples, because the
characteristic data are similar and errors easily occur in the prediction. The accuracy of
SVM and CNN models optimized by the whale algorithm is improved by 22.73% and
5.88%, respectively, which shows that the whale optimization algorithm plays an active
role in improving the accuracy.

To ensure the reliability of the results, multiple runs were averaged. The prediction
performance of each model is presented in Figure 8a. The WOA-CNN-SVM model exhibits
the highest and most stable prediction accuracy, with RMSE and MAE values of 0.0318 and
0.0268, respectively. The predictions of the unoptimized model deviated more compared to
the true values. The optimized composite model matched the true values to the highest
degree, with a correct rate of around 92%. The results show that the optimized model has
better prediction performance and is closer to the true value.

Water 2024, 16, x FOR PEER REVIEW 13 of 18 
 

 

5.88%, respectively, which shows that the whale optimization algorithm plays an active 
role in improving the accuracy. 

To ensure the reliability of the results, multiple runs were averaged. The prediction 
performance of each model is presented in Figure 8a. The WOA-CNN-SVM model exhib-
its the highest and most stable prediction accuracy, with RMSE and MAE values of 0.0318 
and 0.0268, respectively. The predictions of the unoptimized model deviated more com-
pared to the true values. The optimized composite model matched the true values to the 
highest degree, with a correct rate of around 92%. The results show that the optimized 
model has better prediction performance and is closer to the true value. 

  
(a) (b) 

Figure 8. Comparison of predictive performance of different models: (a) Optimized vs. unoptimized 
models; (b) Optimization model vs. other models. 

In addition, the optimized composite model is compared with other types of com-
monly used models, such as a BP neural network, random forest (RF) network, and long 
short-term memory (LSTM) network. Among them, the relevant parameter settings of the 
BP neural network and long short-term memory network are the same as those of the 
CNN mentioned earlier, the number of decision trees in the random forest network is 300, 
and the minimum number of leaves is 2. The prediction performance results of each model 
after training are shown in Figure 8b. 

The composite model showed high performance, followed by random forest net-
works. The BP neural network exhibits less stable predictive performance. These results 
indicate that the automatically learned data features of the water yield prediction model 
based on WOA-CNN-SVM can more effectively characterize the mapping relationship 
between the unit water inflow rate and the influencing factors, thus obtaining a higher 
prediction accuracy. 

6. Discussion 
6.1. Water Yield Zoning Predictions 

Substituting the borehole data lacking the unit water inflow rate into the model, the 
predicted unit water inflow rate was obtained in the range of 0.00003~0.5293 L/(s·m), and 
the results of the borehole predictions are shown in Table 2. 

Table 2. Unit water inflow rate prediction results. 

Drill Hole 
Number 

Dominant Factors Projected 
Results 

/L·s−1·m−1 X1/m X2/m X3/m X4/m·d−1 X5 X6 

41 7.83 5.21 51.78 0.04 0.76 0.26 0.00 
42 8.36 158.21 28.68 0.42 0.47 0.39 0.00 
43 36.41 96.61 26.72 0.54 0.49 0.29 0.12 

Figure 8. Comparison of predictive performance of different models: (a) Optimized vs. unoptimized
models; (b) Optimization model vs. other models.

In addition, the optimized composite model is compared with other types of commonly
used models, such as a BP neural network, random forest (RF) network, and long short-
term memory (LSTM) network. Among them, the relevant parameter settings of the BP
neural network and long short-term memory network are the same as those of the CNN
mentioned earlier, the number of decision trees in the random forest network is 300, and
the minimum number of leaves is 2. The prediction performance results of each model
after training are shown in Figure 8b.

The composite model showed high performance, followed by random forest net-
works. The BP neural network exhibits less stable predictive performance. These results
indicate that the automatically learned data features of the water yield prediction model
based on WOA-CNN-SVM can more effectively characterize the mapping relationship
between the unit water inflow rate and the influencing factors, thus obtaining a higher
prediction accuracy.

6. Discussion
6.1. Water Yield Zoning Predictions

Substituting the borehole data lacking the unit water inflow rate into the model, the
predicted unit water inflow rate was obtained in the range of 0~0.54 L/(s·m), and the
results of the borehole predictions are shown in Table 2.
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Table 2. Unit water inflow rate prediction results.

Drill Hole Number
Dominant Factors Projected Results

/L·s−1·m−1X1/m X2/m X3/m X4/m·d−1 X5 X6

41 7.83 5.21 51.78 0.04 0.76 0.26 0.00
42 8.36 158.21 28.68 0.42 0.47 0.39 0.00
43 36.41 96.61 26.72 0.54 0.49 0.29 0.12
44 24.05 233.81 46.87 0.40 0.63 0.26 0.02
45 28.23 40.13 7.04 0.32 0.82 0.28 0.06
46 12.69 33.64 29.62 0.12 0.07 0.36 0.05
47 7.12 23.17 24.55 0.45 0.01 0.12 0.05
48 22.03 12.57 17.35 0.13 0.01 0.26 0.02
49 17.25 45.12 69.22 0.44 0.01 0.07 0.54
50 15.44 18.69 11.62 0.26 0.07 0.46 0.05

Based on the WOA-CNN-SVM prediction results, the unit water inflow rate is in-
terpolated by inverse distance weight using a GIS spatial drawing tool to realize the
visualization of water yield areas. To obtain a 3D surface map, the interpolation data are
exported by Surfer software(Surfer 15)and then depicted by the Origin drawing tool, as
shown in Figure 9.
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Figure 9a is classified according to the provisions of the water control regulations and
can be used to verify the correctness of the predicted results. According to all the predicted
results, it can be seen that there is no very strong water yield, so it is divided into three class
areas. According to the hydrological records of the fourth system, the unit water inflow rate
of borehole 2009-1 is 0.539 L/(s·m), which belongs to the moderately transmissive zone,
while the unit water inflow rate of borehole 2010-3 is 0.00008 L/(s·m), which indicates a
very poor transmissive zone. This classification result is consistent with the actual degree
of water yield. Other drill holes were similarly validated, with up to 97.56% correct water
yield zoning based on a comparison of known results.

However, due to the wide-area-oriented nature of the water control regulations, they
are generalized and lack the refinement of zoning. The refinement of water yield is also
carried out, and the division results are relative to the entire interior of the mine area.
Figure 9b,c shows that the eastern and southern parts of the study area generally have
a weak water yield, while the western and northern parts have more water yield. This
pattern can be attributed to the fact that the thickness of the Lower Quaternary strata in
the western part of the coal field in the fifth and sixth mining zones ranges from 14 m to
57 m, with an average of 40 m. The aquifers gradually develop from the south to the north,
showing the characteristics of thinness in the south and thickness in the middle and the
north. In addition, the aquifer in the lower part of the Quaternary system and the water
separation layer in the coal field of the southern eight mining areas are relatively stable,
effectively blocking the hydraulic connection. Therefore, the recharge conditions of the
lower aquifer are poor and the water yield is relatively weak. The zoning of strong and
weak water yield is generally in line with the actual situation of the mining area. The
inspection of the stronger zones can be appropriately strengthened to avoid the formation
of water-conducting channels due to mining disturbance.

6.2. Strengths and Limitations

The important achievement of this study is to put forward a compound prediction
model, which can provide a new idea for readers to accurately and reliably evaluate the
water yield of aquifers in mining areas to guide coal mining. The limited borehole data
and dimensions of main control factors may be the main reason for the error between the
predicted results and the actual values. In the future, we can rely on the advantages of big
data to realize data sharing and make the model more suitable for water yield prediction
through more data training.

7. Conclusions

In order to investigate the water yield of aquifers that pose a threat to coal mine
safety production, the water yield in the study area was predicted and categorized based
on mine borehole exploration data using the WOA-CNN-SVM prediction model, with a
representative coal mine selected. The main conclusions are as follows:

(1) The combination of CNN and SVM models improves the correct rate of prediction
results by about 24%, showcasing strong generalization ability. In addition, after
applying the whale optimization algorithm, the prediction correctness is significantly
improved. The whale optimization algorithm demonstrated remarkable global search
ability, preventing it from becoming trapped in local optima and enhancing the ac-
curacy of water yield prediction. Additionally, it overcame the issue of requiring a
large number of samples in traditional methods and effectively addressed data scarcity
caused by a limited number of pumping holes. Therefore, it proved feasible to predict
water yield levels.

(2) A multifactor composite water yield prediction model for aquifers was developed,
using aquifer thickness, influence radius, water level drop, permeability coefficient,
borehole coring rate, and the ratio of clay thickness to the lower group thickness as
evaluation criteria. Compared with the unoptimized model and other models, the
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WOA-CNN-SVM model has significantly lower root mean square error and mean
absolute error.

(3) Based on the validation of the provisions of the water control regulations, the predic-
tions are in accordance with the regulations. It also carries out the delineation of water
yield areas relative to the interior of the mine. The northern part of the fifth mining
area and the north-central part of the sixth mining area in the study area displayed
relatively strong water yield, with well-developed aquifers in the northern section.
Conversely, the southern part of the eighth mining area exhibited generally weak
water yield, with the middle group of the Quaternary system well-developed and
stable, effectively blocking the hydraulic connection between the upper and lower
Quaternary aquifer groups. As a result, the water yield of individual aquifers in
that area was moderately weak. Comparisons within the mining region are simi-
larly realistic, signifying the feasibility of the water yield prediction model based on
WOA-CNN-SVM.
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