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Abstract: With the increase in both rainfall and intensity due to climate change, the risk of debris
flows is also increasing. In Korea, the increasing damage caused by debris flows has become a social
issue, and research on debris-flow response is becoming increasingly important. Understanding the
rainfall that induces debris flows is crucial for debris-flow response, and methods such as the I-D
method have been used to evaluate and predict the risk of debris flows. However, previous studies
on debris flow-induced rainfall analysis have been limited by the subjective decision of the researcher
to select the impact meteorological stations, which greatly affects reliability. In this paper, in order to
establish an objective standard, various maximum allowable distances between debris-flow disaster
areas and meteorological stations were adjusted to 1, 3, 5, 7, 9, 11, 13, and 15 km using the CTRL-T
automatic calculation algorithm, and the optimal maximum allowable distance suitable for Korean
terrain was derived through parameter sensitivity analysis. Based on this, we developed a nomogram
for sediment disaster risk prediction and warning in Gangwon-do, and applied it to past disaster
cases, and found that, although the prediction time for each stage varies depending on the maximum
allowable distance, on average, it is possible to predict the risk of sediment flows 4 to 5 h in advance.
It is believed that the results of this study can be used to reduce sediment flow damage in advance.

Keywords: debris flow; rainfall threshold; automatic calculation algorithm; rainfall intensity–
duration relationship

1. Introduction

Increasing rainfall intensity due to climate change has raised the hazard of a debris-
flow disaster in the vicinity of mountainous areas in Korea, resulting in higher risks to
human lives and properties [1]. In particular, 43 people died from torrential rains caused by
debris-flow disaster damage in Woomyeonsan in Seoul and Majeoksan in Chuncheon City
in July 2011. In 2020, five deaths occurred in Gokseong-gun, Jeollanam-do. The damage
caused loss of life and property, further emphasizing the social issue at hand. To address
debris-flow disasters, establishing standards for early forecasting and alert issuance is
essential. Preceding rainfall conditions, which influence soil stress and pore water pressure,
are crucial factors that should be considered the direct cause of a debris-flow disaster [2–5].

Many studies have been conducted on debris-flow disaster research recently. Ref. [6]
developed a low-cost tilt-based rainfall-induced landslide monitoring system using the
economical and precise MEMS sensor to record displacement and volumetric water content.
Ref. [7] introduced a methodology for establishing rainfall thresholds critical for debris
flow early warnings in regions lacking extensive data, utilizing a hydraulic initiation
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model. This research confirmed the approach’s reliability through analysis in the Guojuan
Gorge, further suggesting an early warning model based on precise rainfall thresholds.
Such advancements are pivotal for improving disaster response and mitigation efforts
in mountainous territories with similar geographical characteristics. Ref. [8] studied the
specific rainfall intensity and cumulative precipitation levels required for the initiation
of soil flow in the region through an in-depth analysis of three major storms in Beijing
and proposed integrating real-time rainfall intensity for accurate soil flow prediction and
early warning systems. Ref. [9] employed rainfall data spanning 2012 to 2015 to elucidate
rainfall patterns and identify critical thresholds that instigate periglacial debris flows
in the Parlung Zangbo Basin, located in the southeastern Tibetan Plateau. The study
underscored the significant influence of varied sediment conditions and rainfall dynamics
on the initiation of debris flows, advocating for the necessity of conducting site-specific
assessments to enhance the precision and reliability of debris flow monitoring and early
warning mechanisms. Ref. [10] details a data-driven methodology combining artificial
neural networks (ANNs) and particle swarm optimization (PSO) for establishing rainfall
thresholds crucial for debris flow initiation. This approach, when applied to the Beijing
and Wenchuan earthquake regions, refines early warning models by accurately identifying
intricate, non-linear thresholds for rainfall intensity and duration. This strategy surpasses
traditional linear regression techniques in enhancing debris flow hazard prediction and
management efficacy. Ref. [11] developed and tested an algorithm for the objective and
reproducible reconstruction of rainfall events that have resulted in landslides. Ref. [12] used
a new release of the algorithm that allows calculating reproducible rainfall thresholds from
multiple ED rainfall conditions that have resulted in landslides. and tested the algorithm
in Sicily, southern Italy.

In a previous study on the threshold rainfall that triggers debris flows, ref. [13] identi-
fied 683 rainfall-induced landslides in Lombardy over the period 1927–2008 and calculated
thresholds using mean annual precipitation (MAP)-normalized intensity–duration thresh-
olds. The results showed that debris flows frequently occurred within 1 to 3 h of the
maximum recorded rainfall intensity in summer and within 5 h in spring or fall. Ref. [14]
proposed an equation to determine the rainfall duration–intensity threshold for predicting
debris flows using data from the Sichuan region of China, and indicated that I = 2.09D−0.12.
Ref. [15] indicated that although debris flows and warning thresholds have been derived
from existing 30-year studies, they vary across the United States and thresholds should
be derived for each region, using soil wetting functions, precipitation characteristics, etc.
Ref. [16] defined four groups of rainfall thresholds for landslide occurrence using regression
values at each quantile level of quantile regression based on landslides that occurred in
China from 1998 to 2017, including the original rainfall event–duration (E-D) threshold
and the normalized (normalizing cumulative rainfall to annual mean rainfall) and merged
(EMAP-D) rainfall and Climate Prediction Center Morphing Technique (CMORPH) rainfall
products, respectively. The E-D thresholds defined in the paper were generally lower than
other thresholds in previous studies on a global scale and on a regional or national scale
in China, suggesting that this was due not only to the larger number of landslide cases
used, but also to the combined effects of China’s special geological environment, climatic
conditions, and human activities. Ref. [17] analyzed 85 debris flows from 1910 to 2019 in the
protofino promotor and used 69 clusters of rainfall events that triggered 94 slope failures
for which landslide and rainfall information were known with sufficient geographic and
temporal accuracy to set empirical ID thresholds adopting a frequentist approach, and
used the Mann–Kendall test and Hurst exponent to detect potential trends. The analysis
of the long-term rainfall time series showed a statistically significant increasing trend in
short-term precipitation events and rainfall amounts, suggesting the possibility of future
scenarios where thresholds are exceeded more frequently and landslide risk increases.
Ref. [18] analyzed the occurrence of debris flows in Taiwan and presented short-term (less
than 12 h) high-intensity rainfall, high-intensity and cumulative rainfall, and long-term
(more than 36 h) high-accumulative rainfall as rainfall characteristics that trigger landslides.
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The study proposed a combination of warning models for landslides from cumulative
rainfall–duration plots with rainfall intensity classification and average rainfall–duration
plots with cumulative rainfall classification, and suggested that the thresholds are being
lowered due to climate change.

The concept of marginal rainfall using prior rainfall and rainfall intensity was pro-
posed [19]. Subsequently, an equation for the rainfall intensity-duration curve has been
derived from empirical debris-flow data, leading to the development of various method-
ologies aimed at the probabilistic forecasting of debris flows [20–22]. Recently, ref. [23]
introduced a methodology for automatically selecting rainfall observatories that affect
debris-flow disasters using rainfall and topographic data and calculating the preceding
rainfall for debris-flow disasters. Meanwhile, ref. [24] applied the relevant algorithm to
Slovenia to establish an early warning system for debris-flow disasters. Then, ref. [25]
suggested improving the algorithm’s results using neural networks. Ref. [26] used GLDAS
(Global Land Data Assimilation System) to analyze the effects of air temperature and
precipitation on the characteristics of soil moisture in the eastern region of China from
1961 to 2011, and found that the temperature and precipitation in different seasons have
different degrees of influence on the characteristics of soil moisture in each layer. Ref. [27]
introduced and applied the innovative RSI-Net, which aims to improve the distinguishabil-
ity of correlations among adjacent land covers and address the issue of boundary blurring
in high-resolution remote sensing imagery. Ref. [28] proposed an improved bat algorithm
for dam deformation prediction based on a hybrid-kernel extreme learning machine.

Ref. [29] develops slope-specific thresholds for dimensionless discharge and Shields
stress to forecast debris flow initiation following wildfires. This work further presents a
process-oriented approach for deriving rainfall intensity-duration thresholds, showcasing
their consistency with empirical data. This synergy between process-based hydrologic
models and empirical observations significantly advances the accuracy of debris flow warn-
ing systems. Ref. [30] presented the capability of a deep learning algorithm to determine
the distribution of landslide rainfall thresholds in a potential large-scale landslide area and
to assess the distribution of recurrence intervals using probability density functions, as
well as to assist decision makers in early responses to landslides and reduce the risk of
large-scale landslides. Ref. [31] analyzed Kalimpong town in the Darjeeling Himalayas,
which is among the regions most affected by landslides, using the SIGMA model, and
calculated threshold rainfall. Among domestic research cases, refs. [3,32] applied the Rain-
fall Triggering Index (RTI), which is the product of the preceding rainfall duration and
intensity, to Korea, and proposed a debris-flow risk criteria using a probability density
function. Ref. [33] proposed the risk criterion using quantile regression analysis based on
the duration and the intensity of rainfall before the occurrence of a debris-flow disaster. To
establish a Korean early warning system for a debris-flow disaster, a program-based au-
tomation algorithm is required, and an evaluation of the applicability of such an automation
algorithm is deemed necessary.

Based on the above studies, it was found that existing empirical equations are mainly
used in studies to analyze the damage of debris flows or to calculate the critical rainfall
amount that causes debris flows. In this paper, we selected Gangwon-do province, where
many landslides have occurred, as the target area, and collected debris flow occurrence
information, as well as rainfall and topography information. Using this information, we
conducted an analysis using statistical techniques, and finally defined various maximum
allowable distances from debris-flow damage points and meteorological zones to establish
objective criteria. Through the parameter sensitivity analysis of the algorithm proposed
by [12], we derived the optimal maximum allowable distance suitable for Korean terrain.

2. Theoretical Background

2.1. Automated Rainfall Estimation Program for Debris Flow Disasters

Rainfall standards that cause debris-flow disasters are mainly presented using the
intensity–duration (I-D) method, which analyzes the relationship between rainfall intensity
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and duration, and various domestic and overseas studies have been conducted in this
regard. In using the I-D method, selecting meteorological stations and the maximum
allowed delay time between the end of the rainfall season and the occurrence of the
debris-flow disaster are important input parameters that researchers may define differently.
Ref. [22] proposed an automatic rainfall threshold calculation tool to predict debris flows
applicable in southern Sicily, Italy, to address this issue objectively. In this study, the tool
proposed by [12] was adapted and developed with the R language to suit the Korean terrain.
Figure 1 shows the flowchart of this study, while Figure 2 shows the algorithm components
of the rainfall threshold. In the input section, information on the occurrence of debris-flow
disasters (debris-flow.csv), rain gauge stations (table_of_raingauge.csv), and rainfall time
series (TimeSeries_Sensor.csv) are provided. The computation section comprises utils, a
useful utility for programming and developing R packages; caTools for encoders, decoders,
and classifiers; ggmap for spatial data visualization; and MASS for statistical functions.
Finally, the output section provides reconstructed rainfall events affecting debris-flow
disasters and the analysis results of reconstructed rainfall conditions and thresholds.

Figure 1. Flow chart of study.

Figure 2. Components of algorithm for the rainfall threshold.
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2.2. Algorithm for Calculating Debris Flow-Induced Rainfall Thresholds

The computation of the debris flow-induced rainfall threshold is based on the con-
tinuous time rainfall data, geographical coordinates of debris-flow disaster locations, and
the occurrence time of the debris-flow disaster. The algorithm reconstructs rainfall events
and determines the events influencing debris-flow disasters. In this process, the maximum
allowed distance between the representative rain gauge and the debris-flow disaster loca-
tion and the maximum allowed delay time between the end of the rainfall event and the
occurrence of the debris-flow disaster are defined. In this study, the maximum allowed
distance was defined as 15 km, and the maximum allowed delay time was defined as 48 h.

Separate blocks perform threshold calculation in the automatic threshold calculation
program, and each block performs a specific operation (Figure 3). In the first block, the
individual rainfall ideology is reconstructed based on a continuous rainfall time series, and
the duration (D, h) and cumulated rainfall (E, mm) for each rainfall event are calculated. The
separation of continuous rainfall time series is based on climate and seasonal environments.
This study defined the suitable period for Korea, the warm season (March–August). In the
second block, the rain gauge closest to the area where the debris flow occurred is selected.
At this time, the maximum allowed distance between the debris-flow disaster occurrence
point and the rain gauge is selected within a circular area with the defined allowed distance
radius, and the inverse distance weighting (IDW) method is used to determine the multiple
rainfall conditions (MRCs). The stations near the debris flow occurrence site are weighted
by the distance of the rainfall station from the rainfall duration (DL) and cumulative rainfall
(EL) to select the stations most associated with debris flows [15].

w = f (d, EL, DL) = d−2E2
LD−1

L (1)

where w is a weighting factor for the impact on debris flow occurrence, EL is the cumulative
rainfall, and DL is the duration. When reconstructing the rainfall event, missing data along
with no rainfall (0.2 mm) are removed to construct the rainfall event.

Lastly, in the third block, the different exceedance probabilities (EPs) are used to
calculate the relationship between the cumulated rainfall (E) and duration (D). At this time,
the threshold is defined using a frequency approach (Equation (2)) and calculated as a
power function.

E = (α ± ∆α)•D(γ±∆γ) (2)

where α is the scaling parameter (the intercept) and γ is the shape parameter (that defines
the slope of the power law curve). ∆α and ∆γ represent the relative uncertainty of the
two parameters. See Ref. [34] for a detailed description of the above equation.

Figure 3. Data analysis process by block intervals [35].



Water 2024, 16, 828 6 of 15

3. Calculation and Verification of Rainfall Thresholds

3.1. Collection of Information on the Occurrence of Debris-Flow Disasters

The area of Gangwon Province, characterized by its mountainous terrain which ac-
counts for more than 80% of Korea’s frequent debris flow incidents, was selected as the
focal region for this investigation. The geographical distribution of these debris flows
is illustrated in the subsequent figure (Figure 4). Furthermore, an exhaustive literature
review was conducted to amass a historical dataset of debris flow occurrences, with en-
tries lacking precise locational and temporal data being systematically eliminated. As a
result, the specific locations and times of occurrence for 18 debris flow events between
27 July 2011 and 5 August 2020 were compiled (Table 1). Additionally, rainfall data
were sourced from the Korea Meteorological Administration (https://www.weather.go.kr).
While the conventional methodology relied on the nearest rain gauge to establish a link
between debris flows and rainfall, this study introduces an advanced methodology that
automatically incorporates all viable gauges within a defined radius. This method applies
weighting factors that account for both the spatial distance between the debris flow site
and the gauge and hydrological attributes such as the volume of rainfall and the event’s
duration, recognizing that a debris flow may be precipitated by multiple rainfall events.
Moreover, the applicability of the proposed methodology was validated through its ap-
plication to the 2019 debris-flow disaster in Gangwon-do, which tragically resulted in
human casualties.

Figure 4. Analysis area and historical damage [35].

Table 1. Status of debris flow occurrence time and location.

No. Date
(Year Month Day Hour Minute) Longitude Latitude Administrative Division Start Date and End Date of the

Rainfall

Cumulated
Rainfall

(mm)

1 5 August 2020, 06:00 128.4609 38.4484 Geojin-eup, Goseong-gun 3 August 2020–5 August 2020 348
2 5 August 2020, 06:00 128.4627 38.4510 Geojin-eup, Goseong-gun 3 August 2020–5 August 2020 348
3 5 August 2020, 06:00 128.4042 38.5438 Hyeonnae-myeon, Goseong-gu 3 August 2020–5 August 2020 348
4 3 August 2020, 09:00 127.7334 37.8923 Chuncheon-si 3 August 2020–3 August 2020 179
5 2 August 2020, 02:00 128.1731 37.3508 Gangnim-myeon, Hoengseong-gun 3 August 2020–3 August 2020 136
6 2 August 2020, 06:00 128.5316 37.1413 Yeongwol-gun 2 August 2020–2 August 2020 204
7 3 October 2019, 00:56 129.3241 37.2703 Wondeok-eup, Samcheok-si 2 October 2019–3 October 2019 390
8 2 October 2019, 20:00 129.3209 37.1614 Wondeok-eup, Samcheok-si 2 October 2019–3 October 2019 390
9 2 October 2019, 23:00 128.3314 37.2569 Wondeok-eup, Samcheok-si 2 October 2019–3 October 2019 390
10 2 October 2019, 23:00 128.3264 37.2525 Wondeok-eup, Samcheok-si 2 October 2019–3 October 2019 390
11 12 August 2019, 21:20 127.8270 38.1604 Hwacheon-eup, Hwacheon-gun 11 August 2019–12 August 2019 48
12 20 August 2017, 02:30 127.9584 37.8150 Hwachon-myeon, Hongcheon-gun 19 August 2017–20 August 2017 33
13 20 August 2017, 02:30 127.9650 37.7980 Hwachon-myeon, Hongcheon-gun 19 August 2017–20 August 2017 33
14 14 July 2013, 07:30 128.2136 38.0402 Inje-eup, Inje-gun 14 July 2013–14 July 2013 142
15 14 July 2013, 08:20 128.4138 38.0919 Seo-myeon, Chuncheon-si 14 July 2013–14 July 2013 125

https://www.weather.go.kr
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Table 1. Cont.

No. Date
(Year Month Day Hour Minute) Longitude Latitude Administrative Division Start Date and End Date of the

Rainfall

Cumulated
Rainfall

(mm)

16 14 July 2013, 08:50 127.7564 37.8454 Dongsan-myeon, Chuncheon-si 14 July 2013–14 July 2013 125
17 14 July 2013, 09:30 127.7822 37.8247 Dongnae-myeon, Chuncheon-si 14 July 2013–14 July 2013 125
18 27 July 2011, 00:08 127.7920 37.9356 Sinbuk-eup, Chuncheon-si 27 July 2011–27 July 2011 262

3.2. Meteorological Stations and Collection of Rainfall Information

As shown in Figure 4, we collected weather and rainfall data from 46 Automatic
Weather System (AWS) locations in Gangwon Province provided by the Korea Meteorologi-
cal Administration. The data included hourly rainfall data from 00:00 on 1 January 2010 to
23:00 on 31 December 2020. Only 22 of the 46 rain gauges corresponded to the rainfall that
caused the debris-flow disaster and were used to build the data. The final data, including
the ID, name, and location of the 46 weather stations, are shown in Table 2.

Table 2. Location of meteorological stations and points.

No. ID Name Lon. Lat.

1 310 GungChon 129.2647 37.32471

2 320 Hyangnobong 128.3138 38.33104

3 321 Wontong 128.1963 38.1147

4 322 Sangseo 127.6857 38.23158

5 517 Ganseong 128.4745 38.38536

6 518 Haean 128.1211 38.26958

7 519 Sanae 127.5194 38.07545

8 522 Hwachon 127.9838 37.78712

9 523 Jumunjin 128.8214 37.89848

10 524 Gangmun 128.9248 37.78579

11 527 Sindong 128.6413 37.21108

12 529 Wondeok 129.2859 37.14156

13 536 Hoengseong 127.9724 37.4876

14 537 Imgye 128.8459 37.48323

15 554 Misiryeong 128.4371 38.21439

16 555 Hwacheon 127.7029 38.09638

17 556 Yanggu 127.9853 38.09799

18 557 Girin 128.3186 37.95263

19 558 Palbong 127.7007 37.68614

20 559 Nae-myeon 128.3973 37.77805

21 560 Jinbu 128.5645 37.64793

22 561 Cheongil 128.1528 37.58219

23 562 Yeongwol-Jucheon 128.2694 37.27534

24 563 Bukpyeong 128.6828 37.46356

25 579 Hajang 128.9133 37.36684

26 580 Okgye 129.0289 37.61345
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Table 2. Cont.

No. ID Name Lon. Lat.

27 581 Sangdong 128.7744 37.11663

28 582 Sillim 128.0799 37.23146

29 583 Anheung 128.1551 37.46463

30 585 Sinnam 128.0742 37.95996

31 587 Bangsan 127.9533 38.22642

32 588 Namsan 127.6429 37.79066

33 593 Yangyang-Yeongdeok 128.5407 38.00731

34 597 Daehwa 128.4411 37.54548

35 661 Hyeonnae 128.4025 38.54385

36 670 Yangyang 128.6297 38.08725

37 671 Cheongho 128.5936 38.19091

38 674 Sabuk 128.8214 37.21963

39 678 Gangneung-Seongsan 128.778 37.7244

40 679 Gangneung-Wangsan 128.7726 37.61058

41 681 Wondong 127.8117 38.24379

42 684 Chunchon-Sinbuk 127.7763 37.9546

43 696 Singi 129.0861 37.34661

44 875 Seorak 128.4606 38.12107

45 876 Samcheok 129.1621 37.45003

46 878 Dogye 129.0961 37.22379

3.3. Setting the Influence Distance of Meteorological Stations

The radius was adjusted to 1, 3, 5, 7, 9, 11, 13, and 15 km from the individual debris-
flow disaster point to analyze the parameter sensitivity of the automatic rainfall threshold
calculation algorithm. Here, the reason why the maximum threshold is assumed to be
15 km is that Korea has a small land area and a close distance between weather stations.
Stations within the affected radius from the location of the individual debris-flow disaster
were selected, and the cumulative rainfall for each duration of the disaster was calculated
for 24 h before the occurrence of the debris-flow disaster (Figure 5).

Figure 5. Status map of the influence distance setting for meteorological stations.

4. Analysis Results

Using the debris flow-induced rainfall threshold calculation program, 16,423 rainfall
events were reconstructed during the study’s target period (2010–2020). In addition, it
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was derived that 14 of the 18 debris-flow disaster events entered, considering the location
of the debris-flow disaster and the distance from the rain gauge, were caused by rainfall.
thirty-six rainfall events were identified as being closely associated with the occurrence of
fourteen debris-flow disaster events. For these, the logarithmic distribution of cumulative
event rainfall (EL) and rainfall event duration (DL) is shown in Figure 6a. Meanwhile,
the empirical cumulative distribution function (ECDF) and duration relationship curve
(Figure 6b) and ECDF and cumulative rainfall (E) relationship curve (Figure 6c) were
derived. As a result of the derivation, it was found that about 40% of debris-flow disasters
occurred within 24 h and 80% occurred in the cumulative rainfall section of less than
200 mm. It can be seen that debris-flow disasters take place due to torrential rains that
occur in a short period of time. In the final nomogram, a logarithmic scale was not utilized
to examine the sensitivity of station distance to debris flow occurrences. Instead, the focus
was on determining the amount of lead time that can be secured prior to a debris flow
event, based on the time of day.

Figure 6. (a) Distribution of the DL (rainfall event duration) and EL (cumulated event rainfall) pairs,
in log-log coordinates (purple dots); (b) ECDF (the empirical cumulative distribution function) of D
(duration); (c) ECDF of E (cumulated rainfall) [35].

Utilizing the compiled datasets of rainfall and debris-flow incidents, thresholds for
cumulative rainfall (E) and event duration (D) across the designated study area were
established. Subsequently, correlation analyses yielded graphs and equations linking
cumulative precipitation to duration for exceedance probabilities (EPs) of 70% (represented
in blue), 50% (in gray), and 10% (in yellow), as illustrated in Figure 7. Nevertheless,
the absence of meteorological stations precluded the generation of graphs for maximum
permissible distances of 1, 3, 5, and 7 km. Conversely, at extended distances of 9, 11, 13, and
15 km, significant correlations were identified. The analysis indicated an increase in the
optimal maximum allowable distance for cumulative rainfall duration at 11 km compared
to 9 km, with a subsequent decrease in correlation strength at distances of 13 and 15 km.
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Figure 7. Plot with the ED (cumulative event rainfall–duration) conditions that triggered debris-flow
corresponding to 70%, 50%, and 10% thresholds (maximum allowed distance: 9 km (a), 11 km (b),
13 km (c), and 15 km (d)).

Table 3 details the parameters α and γ, along with the outcomes of the analysis on
the relationship between cumulative rainfall and duration, contingent upon the maximum
permissible distance from the influencing meteorological station. Table 4 summarizes the
results of calculating cumulative rainfall and rainfall intensity according to the duration of
each maximum allowed distance.

Table 3. Parameters α and γ, at various exceedance probabilities.

No. Maximum Allowed
Distance (km)

Exceedance
Probability (%) α ∆α γ ∆γ

1
9

70 48.5 23.8 0.22 0.13
2 50 38.1 19.6 0.22 0.13
3 10 32.9 16.6 0.22 0.13

4
11

70 48.5 23.8 0.24 0.15
5 50 38.1 19.6 0.24 0.15
6 10 28.0 15.5 0.24 0.15

7
13

70 48.5 23.8 0.21 0.13
8 50 38.1 19.6 0.21 0.13
9 10 29.1 15.9 0.21 0.13

10
15

70 48.5 23.8 0.15 0.12
11 50 38.1 19.6 0.15 0.12
12 10 36.8 17.5 0.15 0.12

Table 4. Rainfall analysis results Based on exceedance probability by maximum allowed distance.

Maximum Allowed
Distance (km)

Exceedance
Probability (%)

Rainfall Duration
(h)

Cumulative Rainfall
(mm)

Rainfall
Intensity
(mm/h)

9

70
6 74.6 12.4
12 88.1 7.3
24 104.0 4.3

50
6 56.5 9.4
12 65.8 5.5
24 76.7 3.2

10
6 48.8 8.1
12 56.8 4.7
24 66.2 2.8
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Table 4. Cont.

Maximum Allowed
Distance (km)

Exceedance
Probability (%)

Rainfall Duration
(h)

Cumulative Rainfall
(mm)

Rainfall
Intensity
(mm/h)

11

70
6 74.6 12.4
12 88.1 7.3
24 104.0 4.3

50
6 58.6 9.8
12 69.2 5.8
24 81.7 3.4

10
6 43.0 7.2
12 80.5 4.2
24 60.0 2.5

13

70
6 70.7 11.8
12 81.7 6.8
24 94.5 3.9

50
6 55.5 9.3
12 64.2 5.4
24 74.3 3.1

10
6 42.4 7.1
12 49.0 4.1
24 56.7 2.4

15

70
6 63.5 10.6
12 70.4 5.9
24 78.1 3.3

50
6 49.8 8.3
12 55.3 4.6
24 61.4 2.6

10
6 48.1 8.0
12 53.4 4.5
24 59.3 2.5

Using the results of Table 4 and debris-flow disaster occurrence information and rain-
fall information in Gangwon-do, a soil disaster risk nomogram according to the maximum
allowable distance (9, 11, 13, and 15 km) by excess probability (70%, 50%, and 10% range)
was developed. In this paper, the warning stage was classified according to the excess
probability, and the 10–50% section was classified as alert, the 50–70% section as warn-
ing, and emergency when it was 70% or more. Based on the case of Samcheok Sinnam
Village, an area affected by the debris-flow disaster in October 2019, the applicability of
the time-specific risk matrix was reviewed. Figure 8a illustrates the hyetograph for a case
where a debris flow occurred. In Figure 8b, the formula based on exceedance probability
is presented, with the vertical dashed line indicating the moment when the debris flow
occurred. Figure 8c shows the warning levels according to cumulative rainfall. When
applying the nomogram with a maximum allowed distance of 9 km, it was observed that
it reached the most dangerous “severe” level about 4 h before the debris-flow disaster
occurred (3 October 2019, 01:00), as shown in Figure 8.

Figure 8. Application to Samcheok Sinnam Village damage case and risk rating status [35].
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Upon applying the nomogram to each maximum allowable distance, the analysis
revealed that Figure 9a entered the severe level approximately 4 h prior to the debris flow
disaster, based on a maximum allowable distance of 9 km. Figure 9b entered the severe level
about 4 h before, with a maximum allowed distance of 11 km. Figure 9c, with a maximum
allowed distance of 13 km, entered the severe level about 5 h before, and Figure 9d, with a
maximum allowed distance of 15 km, was found to enter the severe level about 5 h before.
In this context, the arrow indicates the transition from a warning to an emergency phase,
while the black circle denotes the moment when the debris flow occurred.

Figure 9. Results by maximum allowable distance ((a) maximum allowable distance 9 km: entered
emergency stage about 4.3 h before the debris-flow disaster event occurred; (b) maximum allowable
distance 11 km: entered emergency stage about 4.6 h before; (c) maximum allowable distance 13 km:
entered emergency stage about 4.9 h before; and (d) maximum allowable distance 15 km: entered
emergency stage about 5.2 h before).

In [32], radar rainfall was used to estimate the rainfall of localized debris flows in
mountainous areas, and a radar rainfall calibration model was developed using machine
learning techniques. The basin average rainfall of the calibrated radar rainfall was calcu-
lated and applied to the same area as the subject of this study. The result of [32] showed a
forecasting time of 3 h, as shown in Figure 10, but in this study, an average forecasting time
of 4 to 5 h can be obtained.

Figure 10. Evaluation and verification of applicability to debris-flow forecasting using mean areal
rainfall [32] (Rc: Critical Accumulated Rainfall).
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When comparing the results of this study with other studies, it was found that appro-
priate values were obtained, and although there are limitations in the terrain characteristics
of Gangwon-do, it was concluded that the influence range of each rain gauge could be
applied up to 15 km.

5. Summary and Conclusions

Due to climate change, there has been an increase in rainfall intensity over time, leading
to an escalation in debris-flow occurrence and damages, making it a significant social
issue. Rainfall is a direct factor that causes debris-flow disasters. Therefore, analyzing the
relationship between rainfall and debris-flow disasters is essential as a proactive measure
in developing debris-flow disaster forecasting and response systems. In this study, the
tool proposed by [21] was adapted to calculate the amount of debris flow-induced rainfall
suitable for the Korean terrain through a parameter sensitivity analysis of the automatic
threshold estimation algorithm of rainfall for debris-flow disasters. The main research
content and conclusions are as follows:

(1) Rainfall criteria that cause sediment disasters are mainly presented using the I-D
method for analyzing the relationship between rainfall intensity and duration. How-
ever, the methodologies for selecting the representative rain gauge and the definition
of rainfall that causes debris-flow disasters may vary. Thus, it is necessary to use an
automatic program that can derive objective results for them. Overseas, the devel-
opment and applicability evaluation of automatic rainfall calculation programs for
debris-flow disasters has been conducted in Italy and India. This study conducted
basic research to develop programs suitable for Korea and evaluate their applicability.

(2) In previous studies, there were limitations in using subjective methodologies for
selecting impact meteorological stations and preceding rainfall, which had a high
impact on the reliability of the criteria for debris flow-induced rainfall. This study
adjusted the maximum allowed distance to 1, 3, 5, 7, 9, 11, 13, and 15 km using
an automatic calculation algorithm for debris flow-induced rainfall thresholds, and
a sensitivity analysis was performed automatically. As a result of applying the
automatic calculation algorithm and the maximum allowed distance scenario to the
Gangwon-do region, quantitatively checking the change in the cumulative rainfall
by duration according to EPs was possible. Based on this information, a nomogram
was developed for the prediction and warning of the risk of sediment disasters in the
Gangwon-do region.

(3) The results of applying this study to Sinnam Village, Samcheok City, which was
affected by a debris-flow disaster in 2019, showed that the risk of debris-flow disasters
increases with the occurrence of rainfall, and that the risk forecast for the severe stage
can be predicted as early as 4.3, 4.6, 4.9, and 5.2 h in advance of the very severe stage,
depending on the maximum allowable distance from the rain gauge (9, 11, 13, and
15 km, respectively).

In this study, an algorithm-based approach was utilized to determine rainfall thresh-
olds for the major debris flow occurrence areas in Korea. By deriving quantitative rainfall
thresholds based on the relationship with the maximum allowable distance of rain gauges
from debris-flow disaster site information, we presented a practical methodology that com-
plements the theoretical limitations of existing studies. The results proposed in this study
were analyzed assuming a maximum allowable distance of 15 km, but the applicability
of the results by expanding the range requires further analysis and further research in
conjunction with predicted rainfall information. In addition, since this study utilized only
debris-flow disaster information limited to the Gangwon region, it is necessary to verify
and improve the algorithm by expanding the region, and further verification through com-
parison with physics-based debris flow models is required. If the algorithm and its accuracy
are improved through further research, it is believed that the algorithm used in this study
can be applied to the system to reduce damage before a debris-flow disaster occurs.
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