Energy Poverty Impact on Sustainable Development of Water Resources in China: The Study of an Entropy Recycling Dynamic Two-Stage SBM Model
Abstract
:1. Introduction
2. Literature Review
2.1. Research Direction of the Sustainable Utilization of Water Resources
2.2. Research Methods for the Sustainable Utilization of Water Resources
3. Model and Methodology
3.1. Methodology
3.1.1. The Entropy Method
- Step One: Data standardization.
- Step Two: Sum the standardized values calculated in Step One.
- Step Three: Calculate the entropy value for the nth indicator (.
- Step Four: Calculate the weight for the nth indicator .
3.1.2. Meta Entropy, Dynamic, Two-Stage SBM Recycling Method under an Exogenous Variable DEA Model
- (1)
- Meta-frontier (MF)
- (2)
- Group frontier (GF)
- (3)
- Technology gap ratio (TGR)
3.1.3. Total Factor Efficiency (TFE)
3.2. Data Source
4. Result Analysis
4.1. Total Efficiency Analysis
4.2. Stage Efficiency Analysis
4.3. Input–Output Factor Efficiency Analysis
4.4. Technology Frontier Analysis
4.4.1. Group Frontier and Meta-Frontier Analysis
4.4.2. Technology Gap Ratio Analysis
5. Conclusions and Discussion
6. Policy Implication
7. Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khalkhali, M.; Dilkina, B.; Mo, W. The role of climate change and decentralization in urban water services: A dynamic energy-water nexus analysis. Water Res. 2021, 207, 117830. [Google Scholar] [CrossRef]
- Li, D.L.; Zuo, Q.T.; Zhang, Z.Z. A new assessment method of sustainable water resources utilization considering fairness-efficiency-security: A case study of 31 provinces and cities in China. Sustain. Cities Soc. 2022, 81, 13. [Google Scholar] [CrossRef]
- UNDESA. Sustainable Development Goals Report 2018; UNDESA: New York, NY, USA, 2018. [Google Scholar]
- FAO. AQUASTAT—FAO’s Global Information System on Water and Agriculture; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2021. [Google Scholar]
- Lyu, S.; Chen, W.; Zhang, W.; Fan, Y.; Jiao, W. Wastewater reclamation and reuse in China: Opportunities and challenges. J. Environ. Sci. 2016, 39, 85–96. [Google Scholar] [CrossRef]
- Serrao-Neumann, S.; Renouf, M.A.; Morgan, E.; Kenway, S.J.; Choy, D.L. Urban water metabolism information for planning water sensitive city-regions. Land Use Policy 2019, 88, 104144. [Google Scholar] [CrossRef]
- Ke, J.; Khanna, N.; Zhou, N. Analysis of water-energy nexus and trends in support of the sustainable development goals: A study using longitudinal water-energy use data. J. Clean. Prod. 2022, 371, 12. [Google Scholar] [CrossRef]
- IEA (International Energy Agency). Energy and Poverty, World Energy Outlook 2002; IEA: Paris, France, 2002. [Google Scholar]
- Zhao, J.; Jiang, Q.; Dong, X.; Dong, K. Assessing energy poverty and its effect on CO2 emissions: The case of China. Energy Econ. 2021, 97, 15. [Google Scholar] [CrossRef]
- Sun, D.Y.; She, J.W.; Liu, L.Y.; Wang, H.M. Efficiency evaluation for industrial water use and analysis of the Spatio-temporal differences in the Yangtze River Delta urban agglomeration. Resour. Environ. Yangtze Basin 2018, 27, 3–10. [Google Scholar]
- Song, M.L.; Tao, W.; Shang, Y.; Zhao, X. Spatiotemporal characteristics and influencing factors of China’s urban water resource utilization efficiency from the perspective of sustainable development. J. Clean. Prod. 2022, 338, 13. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, L.; Zou, W.; Zheng, D. Water resource utilization efficiency and spatial spillover effects in China. Acta Geograph. Sin. 2014, 5, 771–788. [Google Scholar] [CrossRef]
- Pereira, M.A.; Marques, R.C. Sustainable water and sanitation for all: Are we there yet? Water Res. 2021, 207, 11. [Google Scholar] [CrossRef]
- Wang, M.; Sun, C.Z.; Wang, X.L. Analysis of the Water-Energy Coupling Efficiency in China: Based on the Three-Stage SBM-DEA Model with Undesirable Outputs. Water 2019, 11, 632. [Google Scholar] [CrossRef]
- Pei, Y.J.; Song, W.W.; Shi, J.W.; Pang, H. Flow field and strength analysis of composite space guide blade structure of inclined flow pump. Water Resour. Power 2017, 6, 40. [Google Scholar]
- Guo, Y.R.; Hu, Y.; Shi, K.; Bilan, Y. Valuation of Water Resource Green Efficiency Based on SBM-TOBIT Panel Model: Case Study from Henan Province, China. Sustainability 2020, 12, 6944. [Google Scholar] [CrossRef]
- Chen, C.Y.; Lin, S.H.; Chou, L.C.; Chen, K.D. A comparative study of production efficiency in coastal region and non-coastal region in Mainland China: An application of metafrontier model. J. Int. Trade Econ. Dev. 2018, 27, 901–916. [Google Scholar] [CrossRef]
- Cai, J.L.; Zhao, D.; Varis, O. Match words with deeds: Curbing water risk with the Sustainable Development Goal 6 index. J. Clean. Prod. 2021, 318, 14. [Google Scholar] [CrossRef]
- Ding, X.H.; He, J.H.; Wang, L.Y. Inter-provincial water resources utilization efficiency and its driving factors considering undesirable outputs. China Popul. Resour. Environ. 2018, 28, 157–164. [Google Scholar]
- Zhang, W.; Wang, D.; Liu, X.M. Does financial agglomeration promote the green efficiency of water resources in China? Environ. Sci. Pollut. Res. 2021, 28, 56628–56641. [Google Scholar] [CrossRef]
- Messerli, P.; Kim, E.M.; Lutz, W.; Moatti, J.-P.; Richardson, K.; Saidam, M.; Smith, D.; Eloundou-Enyegue, P.; Foli, E.; Glassman, A.; et al. Expansion of sustainability science needed for the SDGs. Nat. Sustain. 2019, 2, 892–894. [Google Scholar] [CrossRef]
- Di Vaio, A.; Trujillo, L.; D’Amore, G.; Palladino, R. Water governance models for meeting sustainable development Goals: A structured literature review. Util. Policy 2021, 72, 23. [Google Scholar] [CrossRef]
- Yang, J.; Liu, X.; Ying, L.; Chen, X.; Li, M. Correlation analysis of environmental treatment, sewage treatment and water supply efficiency in China. Sci. Total Environ. 2020, 708, 8. [Google Scholar] [CrossRef]
- Sun, C.; Ma, W. Spatial correlation network of water resources green efficiency between provinces of China. Geogr. Res. 2020, 39, 53–63. [Google Scholar]
- Fu, L.; Xu, Y.; Xu, Z.; Wu, B.; Zhao, D. Tree water-use efficiency and growth dynamics in response to climatic and environmental changes in a temperate forest in Beijing, China. Environ. Int. 2020, 134, 105209. [Google Scholar] [CrossRef]
- Liang, X.D.; Li, J.; Guo, G.; Li, S.; Gong, Q. Urban water resource utilization efficiency based on SBM-undesirable-Gini coefficient-kernel density in Gansu Province, China. Environ. Dev. Sustain. 2023, 25, 13015–13034. [Google Scholar] [CrossRef]
- He, W.J.; Lai, Y.S.; Karmacharya, B.M.; Dai, B.F.; Hao, Y.T.; Xu, D.R. Geographical heterogeneity and inequality of access to improved drinking water supply and sanitation in Nepal. Int. J. Equity Health 2018, 17, 40. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jia, Y.; Niu, C.; Gan, Y. Spatial Pattern Analysis of Regional Water Use Profile Based on the Gini Coefficient and Location Quotient. J. Am. Water Resour. Assoc. 2019, 55, 1349–1366. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, S.N. The global governance of water, energy, and food nexus: Allocation and access for competing demands. Int. Environ. Agreem. Polit. Law Econ. 2020, 20, 377–391. [Google Scholar] [CrossRef]
- Stojilovska, A.; Zivcic, L.; Barbosa, R.; Grossmann, K.; Guyet, R. Compendium: On Existing and Missing Links between Energy Poverty and Other Scholarly Debates; ENGAGER, COST Association: Brussels, Belgium, 2020. [Google Scholar]
- Hao, Y.; Hu, X.L.; Chen, H.Y. On the relationship between water use and economic growth in China: New evidence from simultaneous equation model analysis. J. Clean. Prod. 2019, 235, 953–965. [Google Scholar] [CrossRef]
- Xu, W.J.; Zhang, X.; Xu, Q.; Gong, H.; Li, Q.; Liu, B.; Zhang, J. Study on the Coupling Coordination Relationship between Water-Use Efficiency and Economic Development. Sustainability 2020, 12, 1246. [Google Scholar] [CrossRef]
- Du, Y.B.; Tu, Y.; Li, Z.; Nie, L. Regional water resources security grading evaluation considering both visible and virtual water: A case study on Hubei province, China. Environ. Sci. Pollut. Res. 2022, 29, 25824–25847. [Google Scholar] [CrossRef]
- Yao, X.; Feng, W.; Zhang, X.; Wang, W.; Zhang, C.; You, S. Measurement and decomposition of industrial green total factor water efciency in China. J. Clean. Prod. 2018, 198, 1144–1156. [Google Scholar] [CrossRef]
- Liu, J.; Tone, K. A multistage method to measure efficiency and its application to Japanese banking industry. Socio-Econ. Plan. Sci. 2008, 42, 75–91. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Goto, M. Environmental assessment by DEA radial measurement: U. S. coal-fired power plants in ISO (independent system operator) and RTO (regional transmission organization). Energy Econ. 2012, 34, 663–676. [Google Scholar] [CrossRef]
- Zhang, S.J.; Liu, J.; Li, C.; Yu, F.; Jing, L.; Chen, W. Evaluation of Water Resources Utilization Efficiency Based on DEA and AHP under Climate Change. Water 2023, 15, 718. [Google Scholar] [CrossRef]
- Shi, C.F.; Zeng, X.; Yu, Q.; Shen, J.; Li, A. Dynamic evaluation and spatiotemporal evolution of China’s industrial water use efficiency considering undesirable output. Environ. Sci. Pollut. Res. 2021, 28, 20839–20853. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.S.; Lu, L.Y.Y.; Lu, W.M. Research fronts in data envelopment analysis. Omega 2016, 58, 33–45. [Google Scholar] [CrossRef]
- Yang, Y. Evaluation of China’s water-resource utilization efficiency based on a DEA-Tobit two-stage model. Water Supply 2021, 21, 1764–1777. [Google Scholar] [CrossRef]
- Liang, X.D.; Li, J.; Guo, G.; Li, S.; Gong, Q. Evaluation for water resource system efficiency and influencing factors in western China: A two-stage network DEA-Tobit model. J. Clean. Prod. 2021, 328, 12. [Google Scholar] [CrossRef]
- Xie, Q.W.; Ma, H.; Zheng, X.; Wang, X.; Wang, F.Y. Evaluation and Spatial-Temporal Difference Analysis of Urban Water Resource Utilization Efficiency Based on Two-Stage DEA Model. IEEE Trans. Comput. Soc. Syst. 2022, 9, 1282–1296. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Network DEA: A Slacks Based Measurement Approach. Eur. J. Oper. Res. 2009, 197, 243–252. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Dynamic DEA with network structure: A slacks-based measure approach. Omega-Int. J. Manag. Sci. 2014, 42, 124–131. [Google Scholar] [CrossRef]
- Sun, J.; Li, G.; Wang, Z. Technology heterogeneity and efficiency of China’s circular economic systems: A game meta-frontier DEA approach. Resour. Conserv. Recycl. 2019, 146, 337–347. [Google Scholar] [CrossRef]
- Chang, M.C.; Hu, J.L.; Chen, C.H. A metafrontier pollution efficiency analysis of Taiwan’s administrative regions. J. Clean. Prod. 2019, 222, 393–406. [Google Scholar] [CrossRef]
Research Directions | Subdivision Topics | Related Scholars |
---|---|---|
Construction of index system to measure the sustainable development of water resources | Water Resource Sustainability Index | Li et al., 2022 [2] |
Sustainable Development Goals | Cai et al., 2021 [18] | |
Factors affecting environmental sustainability efficiency | Economic and financial factors | Ding et al., 2018 [19] Wang et al., 2019 [14] Zhang et al., 2021 [20] |
Policy and industrial structure | ||
Technical level | ||
Spatial dimension and resource endowments | Regional heterogeneity | Song et al., 2022 [11] Fu et al., 2020 [25] Yang et al., 2020 [23] Liang et al., 2023 [26] |
Urban differentiation and related policies | Sustainable development of cities | Messerli et al., 2019 [21] Di Vaiort et al., 2021 [22] Yang et al., 2020 [23] |
Standardization management and multi-level cooperation |
Variable | Description | Unit | ||
---|---|---|---|---|
Stage 1 | Input | Labor | Total employment | Thousands of people |
Water supply | Annual water supply | Million cubic meters | ||
Output | GDP | Gross domestic product | CNY one hundred million | |
S1 output index | Per capita water consumption | Cubic meter per person | ||
Adjusted agricultural increase Adjusted industrial increase | CNY per cubic meter | |||
Stage 2 | Input | Wastewater treatment input | Government financial investment in sewage treatment | CNY ten thousand |
Output | S2 output index | Per capita wastewater improvement | Tons per person | |
COD improvement per capita Improvement in ammonia nitrogen per capita | Kilogram per person | |||
Link | Wastewater index | Total COD emissions in the current year Total ammonia nitrogen emissions for the year | Ten thousand tons | |
Gas index | Total sulfur dioxide emissions from exhaust gases Total nitrogen oxide emissions from exhaust gases Total amount of smoke and dust emitted in exhaust gas | Ten thousand tons | ||
Solid waste | General industrial solid amount of waste produced | Ten thousand tons | ||
Exogenous variable | Energy poverty | Calculated according to the three-level index constructed by Yi-Ming Wei and Hua Liao (2018) | ||
Carryover | Fixed assets | Fixed assets | CNY 1000 |
Area | Number | Provinces |
---|---|---|
East | 1 | Beijing, Fujian, Guangdong, Hainan, Hebei, Jiangsu, Liaoning, Shandong, Shanghai, Tianjin and Zhejiang |
Middle | 2 | Anhui, Heilongjiang, Henan, Hubei, Hunan, Jiangxi, Jilin and Shanxi |
West | 3 | Chongqing, Gansu, Guangxi, Guizhou, Inner Mongolia, Ningxia, Qinghai, Shaanxi, Sichuan, Tibet, Xinjiang and Yunnan |
Pairing Variable | Median ± SD | z | df | P | Cohen’s d | ||
---|---|---|---|---|---|---|---|
Pair 1 | Pair 2 | Pairing Difference | |||||
NO-Score-YES-Score | 0.338 ± 0.35 | 0.718 ± 0.309 | −0.081 ± 0.254 | 3.808 | 28 | 0.000 *** | 0.532 |
Pairing Variable | Median ± SD | z | df | P | Cohen’s d | ||
---|---|---|---|---|---|---|---|
Pair 1 | Pair 2 | Pairing Difference | |||||
Stage1 (NO)–Stage1 (YES) | 0.751 ± 0.263 | 1.000 ± 0.122 | −0.117 ± 0.223 | 3.724 | 28 | 0.000 *** | 0.987 |
Stage2 (NO)–Stage2 (YES) | 0.306 ± 0.344 | 0.510 ± 0.334 | −0.011 ± 0.229 | 3.808 | 28 | 0.000 *** | 0.350 |
Pairing Variable | Median ± SD | z | df | P | Cohen’s d | ||
---|---|---|---|---|---|---|---|
Pair 1 | Pair 2 | Pairing Difference | |||||
Stage1 (mean)–Stage2 (mean) | 1.000 ± 0.122 | 0.510 ± 0.334 | 0.423 ± 0.272 | 4.372 | 28 | 0.000 *** | 1.618 |
Stage1 | ||||||
Cluster | 1 | 2 | 3 | |||
Year | GF | MF | GF | MF | GF | MF |
2015 | 0.986 | 0.993 | 1.000 | 0.899 | 0.984 | 0.865 |
2016 | 1.000 | 0.994 | 1.000 | 0.850 | 1.000 | 0.869 |
2017 | 1.000 | 0.986 | 1.000 | 0.885 | 0.989 | 0.898 |
2018 | 0.982 | 0.982 | 1.000 | 0.904 | 0.982 | 0.874 |
2019 | 1.000 | 0.999 | 1.000 | 0.865 | 1.000 | 0.887 |
2020 | 1.000 | 1.000 | 1.000 | 0.886 | 0.985 | 0.863 |
Mean | 0.995 | 0.992 | 1.000 | 0.881 | 0.990 | 0.876 |
Stage2 | ||||||
Cluster | 1 | 2 | 3 | |||
Year | GF | MF | GF | MF | GF | MF |
2015 | 0.878 | 0.578 | 1.000 | 0.453 | 0.805 | 0.487 |
2016 | 0.882 | 0.648 | 1.000 | 0.302 | 0.866 | 0.518 |
2017 | 0.801 | 0.617 | 1.000 | 0.433 | 0.795 | 0.632 |
2018 | 0.915 | 0.604 | 0.968 | 0.348 | 0.813 | 0.509 |
2019 | 0.783 | 0.581 | 1.000 | 0.259 | 0.893 | 0.509 |
2020 | 0.811 | 0.705 | 1.000 | 0.226 | 0.917 | 0.361 |
Mean | 0.845 | 0.622 | 0.995 | 0.337 | 0.848 | 0.503 |
Cluster | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Average |
---|---|---|---|---|---|---|---|
1 | 0.843 | 0.877 | 0.891 | 0.840 | 0.887 | 0.942 | 0.880 |
2 | 0.676 | 0.576 | 0.659 | 0.635 | 0.562 | 0.556 | 0.611 |
3 | 0.766 | 0.750 | 0.854 | 0.772 | 0.738 | 0.656 | 0.756 |
Stage1 | |||
1 | 2 | 3 | |
2015 | 0.999 | 0.899 | 0.879 |
2016 | 0.994 | 0.850 | 0.869 |
2017 | 0.986 | 0.885 | 0.907 |
2018 | 1.000 | 0.904 | 0.888 |
2019 | 0.999 | 0.865 | 0.887 |
2020 | 1.000 | 0.886 | 0.879 |
Mean | 0.998 | 0.881 | 0.884 |
Stage2 | |||
1 | 2 | 3 | |
2015 | 0.627 | 0.453 | 0.637 |
2016 | 0.734 | 0.302 | 0.587 |
2017 | 0.719 | 0.433 | 0.747 |
2018 | 0.645 | 0.350 | 0.599 |
2019 | 0.668 | 0.259 | 0.554 |
2020 | 0.829 | 0.226 | 0.369 |
Mean | 0.701 | 0.338 | 0.577 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Du, L.; Chiu, Y.-H. Energy Poverty Impact on Sustainable Development of Water Resources in China: The Study of an Entropy Recycling Dynamic Two-Stage SBM Model. Water 2024, 16, 876. https://doi.org/10.3390/w16060876
Li Y, Du L, Chiu Y-H. Energy Poverty Impact on Sustainable Development of Water Resources in China: The Study of an Entropy Recycling Dynamic Two-Stage SBM Model. Water. 2024; 16(6):876. https://doi.org/10.3390/w16060876
Chicago/Turabian StyleLi, Ying, Liu Du, and Yung-Ho Chiu. 2024. "Energy Poverty Impact on Sustainable Development of Water Resources in China: The Study of an Entropy Recycling Dynamic Two-Stage SBM Model" Water 16, no. 6: 876. https://doi.org/10.3390/w16060876
APA StyleLi, Y., Du, L., & Chiu, Y. -H. (2024). Energy Poverty Impact on Sustainable Development of Water Resources in China: The Study of an Entropy Recycling Dynamic Two-Stage SBM Model. Water, 16(6), 876. https://doi.org/10.3390/w16060876