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Abstract: Water scarcity is increasingly being recognized as a global concern. Sustainable Develop-
ment Goal 6 (SDG-6) was established by the United Nations to address water resource governance
within its sustainable development framework. This study employs the entropy weight method
and a two-stage cyclical dynamic slacks-based measure (SBM) model to scientifically evaluate water
resource utilization and governance across various regions in China. The findings reveal notable
disparities in both the production and governance efficiency of water resources. Recognizing gover-
nance efficiency is crucial for promoting sustainable water resource utilization and socioeconomic
development. The eastern, central, and western regions encounter unique challenges in attaining
sustainability. The eastern region exhibits minimal potential for enhancing technical efficiency, neces-
sitating interventions in management strategies and resource allocation. Conversely, the challenges in
the central and western regions are more pronounced, demanding immediate implementation of new
technologies and equipment. The data analysis in this study yields conclusions that offer targeted
improvement recommendations to address disparities across China’s eastern, central, and western
regions, and this is achieved by considering various developmental stages and regional contexts.
These recommendations cover areas such as technical support, financial investment, and policy
incentives, with the aim of enhancing the sustainable utilization of water resources in the country.

Keywords: entropy method; SBM-DEA; SDG-6; sustainable; water resources

1. Introduction

The scarcity of water resources has become a grave concern shared by all of humanity.
Simultaneously, with the growth of the population and the acceleration of urbanization, it
is anticipated that water resource shortages will continue to worsen over the next several
decades. Furthermore, natural factors and human activities have severely disrupted the
water cycle process. This leads to an unstable water supply [1] and imbalances in water
resource provisioning. The accurate assessment of water resource sustainability is funda-
mental to mitigating human–water conflicts [2]. The sixth United Nations’ Sustainable
Development Goal is dedicated to ‘ensuring availability and sustainable management of
water and sanitation for all’, with the expectation of achieving the requirements outlined in
SDG-6 by 2030 [3]. However, China, as the second-largest water consumer in the world [4],
is among the thirteen countries with the lowest urban water resource utilization efficiencies
and is facing severe water resource challenges [5]. The critical lack of water resources
has become one of the primary bottlenecks for urban, economic, and social sustainable
development [6].

Water and energy are two critical natural resources essential for human activities and
socioeconomic development, and water efficiency and energy efficiency are two related
indicators of the United Nations’ Sustainable Development Goals [7]. Among these, energy
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poverty is a typical form of poverty and a hot topic globally related to sustainable energy
development. Scholars have various definitions for energy poverty, with the International
Energy Agency (IEA) [8] proposing a definition that is more suitable for developing coun-
tries, i.e., one that involves a lack of access to electricity, clean fuels, and energy facilities,
as well as a high dependence on traditional fuels. In recent years, the socioeconomic and
environmental impacts of assessing energy poverty have become a widely recognized topic
in this field [9].

In existing research, scholars have employed various methods to measure the efficiency
of water resource sustainability. In studies that have investigated the efficiency scores for
water resource sustainability, the application of data envelopment analysis methods (DEAs)
has been widespread. They have been used to investigate regional heterogeneity in water
resource governance, relevant input–output variables, and strategies through which to
enhance the sustainability of water resource utilization [10–12]. Certain research has
also assessed the drivers of SDG-6 in low- and middle-income countries worldwide [13].
Additionally, panel data studies have constituted a portion of the research, which has
focused on exploring the contributions of different factors to their study variables and
overall trends in change [7].

Meanwhile, certain studies have noted that China’s vast territory is characterized by
economic disparities among different regions, thus leading to inefficiencies in resource
allocation. China’s hydropower resources are spatially distributed in a highly uneven
manner, with water resources concentrated mainly in the southeastern regions. In contrast,
energy resources are predominantly located in the central and northern areas [14]. This
mismatch in energy distribution and efficiency issues in other resource allocations hinder
the integrated utilization of water and energy resources [15].

Based on the above-mentioned research, we have identified certain inherent limitations
in previous studies, including the need to improve the methods and models employed as
well as ameliorate the limitations from a research perspective. Firstly, in studies discussing
urban water resource utilization efficiency, most of the research has focused on the green
use of water resources in the industrial and agricultural sectors, with relatively fewer
studies on regional water resource comprehensive efficiency [16]. Furthermore, certain
scholars have suggested that, for more effective regional research, it is necessary to conduct
studies that compare the production efficiency and technological disparities in different
regions under the same benchmark [17].

In light of the limitations observed in existing research, this study makes significant
advancements in the following areas:

To integrate these complex output indicators and to achieve a more comprehensive
efficiency assessment, we utilized the entropy weight method to calculate the two-stage
output variables and link variables.

Water and energy are critical natural resources for human activities and socioeconomic
development. There are significant variations in resource endowments across different
regions in China. In the model construction, we introduced the exogenous variable ‘energy
poverty’ to explore its impact on efficiency assessment.

This study assesses water resource utilization efficiency by employing suitable models
and methodologies. It identifies stage-specific issues by analyzing the efficiency scores of
stages and components, thereby establishing improvement priorities that target critical
factors influencing overall efficiency. Drawing from issue identification and regional
analyses, this study proposes precise policy recommendations and measures.

This paper is divided into six main sections: the first section is the Introduction; the
second section provides a review and critique of the existing research; the third section
explains the methodology, model construction, and data description; the fourth section
conducts an in-depth data analysis, wherein the efficiency scores obtained through model
construction are analyzed, and the technical efficiency and its variations in the eastern,
central, and western regions are also discussed; the fifth section presents the conclusions;
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the sixth section provides policy recommendations; and the final section is on the research
limitations and prospects.

2. Literature Review

In this section, we review the literature that was conducted on sustainable water
resource utilization and efficiency assessments. We screened the field of study and obtained
approximately a thousand relevant references. The primary focus of this review was on the
literature from the past five years, as well as on summarizing the recent research trends
and the methods employed in the field during this period.

2.1. Research Direction of the Sustainable Utilization of Water Resources

To accurately assess the sustainability of water resources, scholars have combined
three indicators: the Water Resource Fairness Index, the Water Resource Efficiency Index,
and the Water Resource Ecological Security Index. These were outlined to form a Water
Resource Sustainability Index. They have used this index to diagnose the spatial character-
istics of water resource sustainability in various provinces and municipalities in China, and
they have found that low water resource utilization efficiency is a key factor constraining
its sustainability [2]. Furthermore, based on Sustainable Development Goal 6 proposed
by the United Nations, research has also improved the indicator formulas by relying on
documents passed by the United Nations to ensure that more countries can access these
data [18].

While exploring measurement indicators, scholars have also investigated factors influ-
encing environmental sustainability efficiency. Studies like Ding et al. [19] have examined
the impact of economic development level, industrial and agricultural structure, water
resource abundance, and government intervention on regional differences in water resource
utilization. Additionally, macrofactors such as technological progress and industrial struc-
ture are considered to impact water resource utilization efficiency [14]. Additionally, there
has been research from an economic perspective that has examined the influence of financial
agglomeration on green water resource efficiency. In this research, an inverted U-shaped
relationship between financial agglomeration and green water resource efficiency has been
discovered, with significant regional disparities in the effect of financial agglomeration on
water resource utilization efficiency [20].

These frameworks for measuring water resource sustainability provide a possibility
for standardized procedures, thereby contributing to multi-level governance and cooper-
ation in the field, particularly in terms of emphasizing the enhancement of support for
developing countries [21]. Conversely, certain scholars have argued that water governance
models should incorporate collaboration, coordination, and stakeholder participation to
more effectively address sustainability challenges [22]. Translating theoretical insights into
practical applications and targeting the strengthening of water resource management is
crucial. Previous research has suggested that enhancing coordination between jurisdictions
and departments, as well as establishing mechanisms for cooperation and communica-
tion, can promote multi-level cooperation among the various sectors on water resource
issues [23].

Regional disparities exist in resource endowment and economic and social devel-
opment levels among China’s provinces, municipalities, and autonomous regions. In
studies analyzing governance efficiency, regional heterogeneity must be considered. Sun
and Ma [24] identified the characteristics of the spatial correlation network of China’s
water resource green efficiency. The eastern regions are leading in this respect, as they are
dominated by spillover effects, while the central and western regions occupy peripheral
positions within the network structure.

Analyzing water resource utilization efficiency at the city level is vital for promoting
urban sustainability. Certain scholars have examined issues related to water resource
utilization efficiency, wastewater treatment efficiency, water resource utilization planning,
regional optimization allocation, and disparities in efficiency averages, as well as in spatial
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distribution based on China’s regional divisions [11,23,25–27]. Furthermore, the existing
research has focused on improving overall regional water use efficiency by optimizing water
usage structures and spatial layouts [28]. However, most of these studies have primarily
provided descriptive statistics on regional differences; thus, more dynamic modeling and
differentiated numerical representations over time are needed.

As it is different from idealized research modeling, defining a single governance
model is impossible. Sustainable development is a vital area where the objectives of energy
and water intersect, and some of the scholars researching SDG-6 have also analyzed the
relationship between water and energy, as well as the connections with the other Sustainable
Development Goals [29]. Wang et al.’s study estimated the water–energy coupling efficiency
in different regions of China using a three-stage SBM-DEA model with panel data from
30 provinces and municipalities [14].

Simultaneously, certain researchers have argued that the degree of energy poverty
is correlated with economic levels; thus, studies that have only explored the relationship
between energy poverty and the other Sustainable Development Goals need further refine-
ment [9]. The connections between energy poverty and various policy areas that influence
energy poverty have yet to be sufficiently researched [30].The relevant summary of this
part is shown in Table 1.

Table 1. Summary of the existing research topics.

Research Directions Subdivision Topics Related Scholars

Construction of index system to
measure the sustainable development

of water resources

Water Resource
Sustainability Index Li et al., 2022 [2]

Sustainable Development Goals Cai et al., 2021 [18]

Factors affecting environmental
sustainability efficiency

Economic and financial factors
Ding et al., 2018 [19]
Wang et al., 2019 [14]
Zhang et al., 2021 [20]

Policy and industrial structure

Technical level

Spatial dimension and
resource endowments Regional heterogeneity

Song et al., 2022 [11]
Fu et al., 2020 [25]

Yang et al., 2020 [23]
Liang et al., 2023 [26]

Urban differentiation and
related policies

Sustainable development of cities Messerli et al., 2019 [21]
Di Vaiort et al., 2021 [22]

Yang et al., 2020 [23]
Standardization management and

multi-level cooperation

2.2. Research Methods for the Sustainable Utilization of Water Resources

To analyze water resource utilization efficiency over time and across spatial dimen-
sions, certain studies have utilized polynomial regression models to analyze the changes
and trends in water and energy efficiency over the period covered by the panel data [7]. Is-
sues related to water resources and economic growth have also attracted scholarly attention.
Hao et al. [31] conducted related research in the context of China using the Environmental
Kuznets Curve. This method focuses on exploring trends, calculating the correlations of
factors, and assessing their contributions to outcomes.

The entropy method is a comprehensive approach that integrates multiple indicators
by representing different allocation principles, thereby allowing for a more rational alloca-
tion of results. This method overcomes the limitations of a single indicator by determining
the dispersion level of each indicator, and indicators with higher dispersion should be
assigned higher weights. The process of water resource utilization and governance is com-
plex. Under the framework of the United Nations’ SDG-6, different scholars have selected
a rich set of indicators to calculate the efficiency of this process. To scientifically couple
these complex indicators, the entropy method has become a commonly used approach to
determining indicator weights, thus achieving comprehensive evaluation [32]. Du et al. [33]
combined the entropy method with the fuzzy linguistic judgment method to derive weights
for various indicators.
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The methods for input–output efficiency evaluation are primarily categorized into
parametric and non-parametric methods. Among the parametric methods, stochastic
frontier analysis (SFA) is the most commonly used approach. However, this method needs
help in addressing problems involving multiple outputs [34]. Therefore, data envelopment
analysis (DEA), as a non-parametric method, has become the mainstream approach in
recent years.

The classical models of DEA also have certain limitations. For example, the BCC
model lacks the property of unit invariance, and improvements in both radial and non-
radial aspects can lead to information loss [35]. To address the deficiencies of existing
models, the SBM (slacks-based measure) model was introduced to provide a more accurate
measurement of efficiency. The SBM model estimates efficiency using non-radial and non-
oriented approaches, as well as by considering both input and output slacks. Furthermore,
its estimated efficiency values fall between 0 and 1. When the efficiency value of a decision-
making unit (DMU) is equal to 1, it signifies that the unit operates on the production frontier
with no slack in inputs and outputs. This method allows for the adjustment of inputs and
outputs in unequal proportions, and it avoids assuming the radial growth of undesirable
outputs [36].

Yang et al. used the SBM-DEA model under constant returns to scale (CRS-SBM-DEA)
technology to find solutions [23]. Guo et al. employed the SBM–Tobit model and took
Henan Province in China as an example through which to calculate and analyze the internal
urban water resource sustainable utilization efficiency, as well as to investigate the operating
mechanism of related influencing factors [16]. Similarly, Liang et al. evaluated water
resource utilization efficiency in 14 cities within Gansu Province using the SBM-undesirable
model and analyzed the regional efficiency differences and trends [26]. This study also
used the Dagum Gini coefficient to measure regional disparities. Zhang et al. combined
DEA and AHP methods to explore the efficiency of residential and industrial agricultural
water use, thereby highlighting the importance of technical efficiency in influencing water
use efficiency [37].

Traditional DEA models can only measure static efficiency to some extent and cannot
facilitate dynamic comparisons. Under this static framework, the heterogeneity of water use
technology among Chinese provinces (cities and autonomous regions) has yet to be fully
considered [38]. To provide a more realistic reflection of the efficiency issues in the input–
output process, multistage DEA models that focus on dynamic processes are becoming
increasingly popular. Static DEA models overlook the temporal inter-correlation between
subsequent time points, while dynamic DEA and network DEA approaches are based on
the concepts of “multi-period production” and “multistage production”, respectively [39].

Yang used a data envelopment analysis–Tobit (DEA–Tobit) two-stage model to assess
water resource utilization efficiency, analyze regional differences in water resource utiliza-
tion and influencing factors, and investigate the relationship between various types of water
use and industrial structure with water resource utilization efficiency [40]. Liang et al. [41]
proposed an improved two-stage network DEA model that determined the weights for each
stage from both the weight and solution method aspects under the VRS assumption. They
divided the overall water resource sustainability process into water resource utilization
and wastewater treatment parts. Bronner et al. (2022) introduced a dynamic network DEA
model and used it to assess the water economic and technical efficiency of the German
federal states. A study evaluating the efficiency and spatio-temporal differences in water
resource utilization in Chinese cities employed a two-stage DEA model combined with
spatial econometrics. This helped to improve the traditional DEA model using Shannon
entropy [42].

In summary, the existing research on sustainable water resource utilization primarily
focuses on establishing standardized frameworks for environmental sustainability indi-
cators and exploring related factors. These studies delved into water resource utilization;
multi-level cooperation; efficiency score calculations at the national, regional, and city
levels; temporal trend analysis; and differential examinations based on regional analyses.
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The main methods used include regression models to investigate impact contributions and
trend changes; stochastic frontier analysis (SFA), which considers multiple input–output
factors; and data envelopment analysis (DEA). Scholars have conducted various model
explorations based on the specific needs of their research designs within these frameworks.

However, most of these evaluations of water resource sustainability benefits focus on
overall water resource green efficiency, thus neglecting the internal structure and mech-
anisms of complex systems. In response to the research background and limitations of
the existing studies described earlier, this study—in conjunction with the United Nations’
Sustainable Development Goal SDG-6—has constructed a comprehensive input–output
indicator system intending to provide more practical macro-level recommendations. Ad-
ditionally, to better integrate multiple indicators, the entropy weighting method was em-
ployed to calculate the output indicators in a two-stage process. Subsequently, a dynamic,
two-stage SBM-DEA model that accounts for exogenous variables like energy poverty was
developed. This study examines the water resource green efficiency scores in different
regions and stages, as well as the regional technical efficiency differences under various
frontier frameworks.

3. Model and Methodology
3.1. Methodology

In 2001, Tone introduced the slacks-based measure (SBM) model, which utilizes slack
variables to gauge efficiency [43]. The SBM model considers the gaps (slack) between
input and output variables, and it employs a non-radial estimation method to express
efficiency as a scalar value. In contrast to traditional DEA methods, the SBM model not only
assesses the efficiency of production units but also incorporates slack resources within their
production processes. This enables evaluators to account for instances of underutilized
resources, thus leading to a more comprehensive assessment of operational status and
facilitating the formulation of more effective improvement strategies.

Tone and Tsutsui subsequently proposed the weighted slacks-based measure (WSBM)
network data envelopment analysis (DEA) model [44]. This model utilizes inter-departmental
connectivity within decision-making units as the analytical basis for the network DEA
model. Each department is considered a sub-decision-making unit (Sub-DMU), and the
SBM model is then utilized to determine the optimal solution. In 2014, Tone and Tsut-
sui proposed the WSBM dynamic network DEA model [45]. This model utilizes the
inter-connectivity (linkage) between various departments within decision-making units
as the analytical foundation for the network DEA model. Each department is treated as
a Sub-DMU, and carryover activities spanning multiple periods are considered linkages.
However, the dynamic network DEA model introduced by Tone and Tsutsui [45] did not
take into account issues related to exogenous variables, regional disparities, the circular
economy, and the challenge of dealing with an excessive number of variables. To address
the aforementioned issues, this study integrates the entropy method proposed by Shannon
(1948), the dynamic network DEA model employed by Tone and Tsutsui [45], and the
circular economy framework mentioned in Sun et al. [46]. Additionally, exogenous factors
are also incorporated.

The entropy method will be introduced first, followed by the meta entropy dynamic
two-stage SBM recycling method under an exogenous variable DEA model.

3.1.1. The Entropy Method

In this model, both the first-stage and second-stage output variables encompass
numerous sub-indicators. Introducing these detailed sub-indicators directly into the DEA
model would result in an intractable problem. Therefore, this model initially employs
the Shannon (1948) entropy method to compute a consolidated value for the first-stage
desirable outputs as follows: (1) per capita water consumption, (2) total agricultural water
usage, and (3) total industrial water usage; and for the second-stage desirable outputs as
follows: (1) per capita wastewater improvement, (2) per capita CDC (chemical oxygen
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demand) improvement, and (3) per capita ammonia improvement output. The undesirable
outputs in the first stage are also calculated using the same entropy weighting method to
obtain indices such as the wastewater index and gas index.

Step One: Data standardization.

Calculate the first-stage output factors and undesirable outputs for the aforementioned
29 provinces and cities using the following formulas:

rmn =
max

m
xmn − xmn

max
m

xmn − min
m

xmn
(m = 1, . . . , 29; n = 1, . . . , N) (1)

where rmn is the standardized value of the nth indicator for the mth province or city; min
m

xmn

is the minimum value of the nth indicator for the mth province or city; and max
m

xmn is the

maximum value of the nth indicator for the mth province or city.

Step Two: Sum the standardized values calculated in Step One.

Pmn =
Rmn

∑29
m=1 Rmn

(m = 1, . . . , 29; n = 1, . . . , N) (2)

where Pmn represents the sum of standardized values for the nth indicator across the m
provinces or cities.

Step Three: Calculate the entropy value for the nth indicator (en).

en = −(ln 29)−1
29

∑
m=1

[Pmnln(Pmn)] (m = 1, . . . , 29; n = 1, . . . , N) (3)

Step Four: Calculate the weight for the nth indicator (wn).

wn =
1 − en

∑N
n=1(1 − en)

(n = 1, . . . , N) (4)

Using the above steps, determine the weights and output values for the first-stage and
second-stage outputs. According to the aforementioned entropy method, the following
meta entropy dynamic two-stage SBM recycling method under an exogenous variable DEA
model is introduced, and its description is as follows.

3.1.2. Meta Entropy, Dynamic, Two-Stage SBM Recycling Method under an Exogenous
Variable DEA Model

Assume there are n decision-making units (DMUs) (n = 1, . . ., n), k stages (k = 1, . . .,
K), and T periods of time (t = 1, . . ., T). Each DMU then has its own set of input and output
variables for each period t, and these variables are interconnected through carryover to the
next period, t + 1.

Let mk and rk represent the input and output variables in each stage k, and let (k, h)i
represent the stage from k to h. Moreover, let Lhk serve as the division set between k and h.
The definitions of the input variables, output variables, links, and carryover are outlined
as follows:

Inputs and outputs

Xt
iokϵR+(i = 1, . . . , mk; o = 1, . . . , n; k = 1, . . . , K; t = 1, . . . , T)

refers to input i at time period t for DMUo division k; X1t
iok. In the first stage, the production

utilization stage, labor, and water supply are considered input variables. In the second
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stage, X2t
iok, we have the governance stage, which uses the wastewater treatment input as

the input variable.

Yt
rokϵR+(r = 1, . . . , rk; o = 1, . . . , n; k = 1, . . . , K; t = 1, . . . , T)

refers to output r in time period t for DMUo division k; Y1t
rok. Furthermore, the GDP, per

capita water usage, total agricultural water usage, and total industrial water usage are
considered, similarly to the favorable output variables for the first stage.

Bt
uok(u = 1, . . . , Uk; o = 1, . . . , n; k = 1, . . . , K; t = 1, . . . , T)

The wastewater index, gas index, and solid waste are considered unfavorable output
variables for the first stage.

Y2t
rok represents the favorable output variables for the second stage.

Exogenous variable
Eajt(a = 1 . . . A) is the outside of a given economic model that often impacts the

outcome of the model. Energy poverty is treated as an exogenous variable.
Links

Zt
do(kh)ϵR+(d = 1 . . . D; o = 1, . . . , n; (kh) = 1, . . . , link; t = 1, . . . , T)

are the period t links from DMUo division k to division h, with (kh) being the number of k
to h links. Z1t

do(12), the wastewater index, gas index, and solid waste index were selected

as the link indicator in the production utilization stage and governance stage. Z2t
do(21) was

selected as the link indicator in the governance stage and production utilization stage.
Carryovers

Z(t,t+1)
cokl

ϵR+(c = 1 . . . .C; o = 1, . . . , n; kl = 1, . . . , ninput; t = 1, . . . , T − 1)

refers to the carryover of t to the t + 1 period from DMUo division k to division h, with Lk

being the number of carryover items in division k, Z(t,t+1)
cokl

(net fixed assets),

where Wt(t = 1 . . . T) is the weight to period t and Wk(k = 1 . . . k) is the weight to
division k.

Other variables

(1) Meta-frontier (MF)

Suppose each of the DMUp has an input and output at time period t and a carryover
(link) to the next t + 1 time period.

Due to differences in management types, environment, and resources, all firms (N)
were composed of decision-making units from g groups (N = N1 + N2 +. . ..+ NG), where
Xio and yro, respectively, represent the ith input (i = 1, 2, . . ., m) and the rth final output
(r = 1, 2, . . ., s) of the jth unit (j = 1, 2, . . ., N). Under the common boundary, decision-making
unit k can select the most favorable weights for its final outputs, thereby maximizing its
efficiency value. Therefore, the efficiency of decision-making unit k under the common
boundary can be determined through the following linear programming program.

The following is the non-oriented model:
(a) Objective function
Overall efficiency:

θ∗p = min
∑T

t=1 Wt

∑K
k=1 Wk

1− 1
mk+ninputk

∑G
g=1 ∑

mk
i=1

St−
gipk

xt
gipk

+∑G
g=1 ∑

ninputk
kl

s(t,t+1)
gcpkl

z(t,t+1)
gcpkl


∑T

t=1 Wt

[
∑K

k=1 Wk

[
1+ 1

rk+Uk+linkk

(
∑G

g=1 ∑
rk
r=1

st+
grpk

yt
grpk

+∑G
g=1 ∑

Uk
u

st−
gupk

Bt
gupk

+∑G
g=1 ∑

linkk
(kl)

st
gdp(kl)

Zt
gdp(kl)

)]]

∑T
t=1 Wt= 1; ∑K

k=1 Wk = 1

(5)
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This is subject to the following:
Stage 1: Production utilization stage

X1t
gip1 =

G

∑
g=1

n

∑
o=1

X1t
gio1λt

gio1 + st−
gio1(i = 1, . . . , mk, g = 1 . . . ..G)

y1t
grp1 =

G

∑
g=1

n

∑
o=1

y1t
gro1λt

gro1 − st+
gro1(r = 1, . . . , rk, g = 1 . . . ..G)

Bt
gup1 =

G

∑
g=1

n

∑
o=1

Bt
guo1λt

guo1 + st−
guo1(u = 1, . . . , Uk, g = 1 . . . ..G)

Z1t
gdo(12) =

G

∑
g=1

n

∑
o=1

Z1t
gdo(12)λ

t
gdo(12) + st−

gdo(12) (d = 1 . . . D; g = 1 . . . ..G)

λt
gio1 ≥ 0, λt

gro1 ≥ 0; λt
guo1 ≥ 0; λt

gdo(12) ≥ 0; st−
gio1

≥ 0, ; st+
gro1 ≥ 0; st−

guo1 ≥ 0; st−
gdo(12) ≥ 0

where st−
gio1, st+

gro1, and st−
guo1 are Stage 1 of the input for the good output and bad output

slacks. st−
gdo(12) represents the link slacks.

Stage 2: Governance stage

X2t
gip2 =

G

∑
g=1

n

∑
o=1

X2t
gio2λt

gio2 + st−
gio2(i = 1, . . . , mk, g = 1 . . . ..G)

y2t
grp2 =

G

∑
g=1

n

∑
o=1

y2t
gro2λt

gro2 − st+
gro2 (r = 1, . . . , rk; g = 1 . . . ..G )

Z2t
gdo(21) =

G

∑
g=1

n

∑
o=1

Z2t
gdo(21)λ

t
gdo(21) − st+

gdo(21) (d = 1 . . . D; g = 1 . . . ..G)

λt
gio2 ≥ 0, λt

gro2 ≥ 0; λt
gdo(21) ≥ 0, ; st−

gio2
≥ 0, st+

gro2 ≥ 0; st+
gdo(21) ≥ 0

st−
gio2 and st+

gro2 are stage 2 of input/output slacks. st+
gdo(21) is link slacks.

eλt
k = 1 (∀k, ∀t);

Et
gap = ∑G

g=1 ∑n
o=1 Et

gaoλt
gao( a = 1 . . . ..A; g = 1 . . . ..G)

Z(t,t+1)
gcpkl

=
G

∑
g=1

n

∑
o=1

Z(t,t+1)
gcokl

λt
gcokl

+ st(t,t+1)
gcokl

( c = 1 . . . C; g = 1 . . . ..G)

st(t,t+1)
gokl

≥ 0 ; st(t,t+1)
gcokl

is carry over slacks.

The period and division efficiencies are as follows:
(b1) Period efficiency:

∂∗p = min

∑K
k=1 Wk

[
1 − 1

mk+ninputk

(
∑G

g=1 ∑mk
i=1

St−
gipk

xt
gipk

+ ∑G
g=1 ∑

ninputk
kl

s(t,t+1)
gcpkl

z(t,t+1)
gcpkl

)]

∑K
k=1 Wk

[
1 + 1

rk+Uk+linkk

(
∑G

g=1 ∑rk
r=1

st+
grpk

yt
grpk

+ ∑G
g=1 ∑Uk

u
st−

gupk

Bt
gupk

+ ∑G
g=1 ∑link

(kl)
st

gdp(kl)

Zt
gdp(kl)

)] (6)

(b2) Division efficiency:

φ∗
p = min

∑T
t=1 Wt

[
1 − 1

mk+ninputk

(
∑G

g=1 ∑mk
i=1

St−
gipk

xt
gipk

+ ∑G
g=1 ∑

ninputk
kl

s(t,t+1)
gcpkl

z(t,t+1)
gcpkl

)]

∑T
t=1 Wt

[
1 + 1

rk+Uk+linkk

(
∑G

g=1 ∑rk
r=1

st+
grpk

yt
grpk

+ ∑G
g=1 ∑Uk

u
st−

gupk

Bt
gupk

+ ∑G
g=1 ∑linkk

(kl)

st
gdp(kl)

Zt
gdp(kl)

)] (7)
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(b3) Division period efficiency:

ρ∗p = min

[
1 − 1

mk+ninputk

(
∑G

g=1 ∑mk
i=1

St−
gipk

xt
gipk

+ ∑G
g=1 ∑

ninputk
kl

s(t,t+1)
gcpkl

z(t,t+1)
gcpkl

)]
[

1 + 1
rk+Uk+linkk

(
∑G

g=1 ∑rk
r=1

st+
grpk

yt
grpk

+ ∑G
g=1 ∑Uk

u
st−

gupk

Bt
gupk

+ ∑G
g=1 ∑linkk

(kl)

st
gdp(kl)

Zt
gdp(kl)

)] (8)

From the above, the overall efficiency, period efficiency, division efficiency, and divi-
sion period efficiency can be obtained using the meta-frontier model.

(2) Group frontier (GF)

As each DMU under the group frontier chooses the most favorable final weighted out-
put, the DMU efficiencies under the group frontier are solved using the following equations:

(a) The objective function
Overall efficiency:

θ
g∗
p = min

∑T
t=1 Wt

[
∑K

k=1 Wk

[
1 − 1

mk+ninputk

(
∑mk

i=1
St−

ipk

xt
ipk

+ ∑
ninputk
kl

s(t,t+1)
cpkl

z(t,t+1)
cpkl

)]]

∑T
t=1 Wt

[
∑K

k=1 Wk
[

1 + 1
rk+Uk+linkk

(
∑rk

r=1
st+

rpk

yt
rpk

+ ∑Uk
u

st−
upk

Bt
upk

+ ∑linkk
(kl)

st
dp(kl)

Zt
dp(kl)

)]] (9)

This is subject to the following:
Stage 1: Production utilization stage

X1t
ip1 =

n

∑
o=1

X1t
io1λt

io1 + st−
io1(i = 1, . . . , mk)

y1t
rp1 =

n

∑
o=1

y1t
ro1λt

ro1 − st+
ro1(r = 1, . . . , rk)

Bt
up1 =

n

∑
o=1

Bt
uo1λt

uo1 + st−
uo1(u = 1, . . . , Uk)

Zt
dp(12) = ∑n

o=1 Zt
do(12)λ

t
do(12) + st−

do(12) (d = 1 . . . D)

λt
io1 ≥ 0, λt

ro1 ≥ 0; λt
uo1 ≥ 0; λt

do(12) ≥ 0; st−
io1

≥ 0, st+
ro1 ≥ 0; st−

uo1 ≥ 0; st−
do(12) ≥ 0;

where st−
io1, st+

ro1, and st−
uo1 are Stage 1 of the input for good output and bad output slacks.

st−
do(12) represents the link slacks.

Stage 2: Governance stage

X2t
ip2 =

n

∑
o=1

X2t
io2λt

io2 + st−
io2(i = 1, . . . , mk)

y2t
rp2 = ∑n

o=1 y2t
ro2λt

ro2 − st+
ro2 (r = 1, . . . , rk

)
Zt

dp(21) = ∑n
o=1 Zt

do(21)λ
t
do(21) − st+

do(21) (d = 1 . . . D)

λt
io2 ≥ 0, λt

ro2 ≥ 0; λt
do(21) ≥ 0; st−

io2
≥ 0, st+

ro2 ≥ 0; st+
do(21) ≥ 0

st−
io2 and st+

ro2 are stage 2 of input/output slacks.; st+
do(21)is link slacks.

eλt
k = 1(∀k, ∀t);

Et
ap = ∑n

o=1 Et
aoλt

ao( a = 1 . . . ..A)

Z(t,t+1)
cpkl

= ∑n
o=1 Z(t,t+1)

cokl
λt

cokl
+ st(t,t+1)

cokl
(c = 1 . . . C)

st(t,t+1)
cokl

≥ 0; st(t,t+1)
cokl

is carry over slacks.
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(b) Period and division efficiencies
The period and division efficiencies are as follows:
(b1) Period efficiency:

∂∗p = min

∑K
k=1 Wk

[
1 − 1

mk+ninputk

(
∑mk

i=1
St−

ipk

xt
ipk

+ ∑
ninputk
kl

s(t,t+1)
cpkl

z(t,t+1)
cpkl

)]

∑K
k=1 Wk

[
1 + 1

rk+Uk+linkk

(
∑rk

r=1
st+

rpk

yt
rpk

+ ∑Uk
u

st−
upk

Bt
upk

+ ∑link
(kl)

st
dp(kl)

Zt
dp(kl)

)] (10)

(b2) Division efficiency:

φ∗
p = min

∑T
t=1 Wt

[
1 − 1

mk+ninputk

(
∑mk

i=1
St−

ipk

xt
ipk

+ ∑
ninputk
kl

s(t,t+1)
cpkl

z(t,t+1)
cokl

)]

∑T
t=1 Wt

[
1 + 1

rk+Uk+linkk

(
∑rk

r=1
st+

rpk

yt
rpk

+ ∑Uk
u

st−
upk

Bt
upk

+ ∑link
(kl)

st
dp(kl)

Zt
dp(kl)

)] (11)

(b3) Division period efficiency:

ρ∗p = min

1 − 1
mk+ninputk

(
∑mk

i=1
St−

ipk

xt
ipk

+ ∑
ninputk
kl

s(t,t+1)
cpkl

z(t,t+1)
cpkl

)

1 + 1
rk++Uk+linkk

(
∑rk

r=1
st+

rpk

yt
rpk

+ ∑Uk
u

st−
upk

Bt
upk

+ ∑link
(kl)

st
dp(kl)

Zt
dp(kl)

) (12)

From the above results, the overall efficiency, period efficiency, division efficiency, and
division period efficiency are obtained.

(3) Technology gap ratio (TGR)

As the meta-frontier model contains g groups, the technical efficiency of the meta-
frontier (MFE) was found to be less than the technical efficiency of the group frontier (GFE).
The ratio value, or the technology gap ratio (TGR), is as follows:

TGR =
θ∗p

θ
g∗
p

=
MFE
GFE

(13)

3.1.3. Total Factor Efficiency (TFE)

The sub-efficiency values of various variables in this study were calculated based on
the total factor efficiency metric, as expressed in the following formula:

Applicable to the input and unfavorable output variables as follows:

TFE =
Target Input
Actual Input

(14)

Applicable to the favorable output variables as follows:

TFE =
Actual Output
Target Output

(15)

If the total factor efficiency value is 1, it indicates an achievement in the efficiency
benchmarks; conversely, values below 1 signify the presence of excess inputs or output
deficiencies, thereby suggesting room for improvement.
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3.2. Data Source

This study’s research concept was illustrated in the model diagram based on the model
construction and method description provided above (Figure 1). The diagram introduces
the concept of cycles, thereby facilitating the linkage from period t to period t + 1 through
link variables. By selecting fixed assets as carryover variables, the model simulates the
transfer and utilization of resources in the cyclic process more accurately. This construction
aids in conducting a comprehensive and efficient system evaluation. The division of sus-
tainable water resource utilization stages is primarily grounded in two fundamental facets
of water resource management: resource acquisition and utilization and resource protection
and management. The initial stage involves the extraction, utilization, and allocation of
water resources, which encompasses agricultural, industrial, and urban water activities.
The subsequent stage pertains to the efficient protection, management, and governance of
water resources, which encompasses wastewater treatment and other related measures.
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Figure 1. The research model.

Table 2 presents the variables used in this research model. Previous studies have em-
ployed diverse variables to evaluate inputs and outputs in the water resource sustainability
process. In this study, the entropy weight method was utilized to measure the output
variables and link variables. When conducting DEA calculations, the S1 output index and
S2 output index served as indicators.

Table 2. Variable description.

Variable Description Unit

Stage 1

Input Labor Total employment Thousands of people

Water supply Annual water supply Million cubic meters

Output

GDP Gross domestic product CNY one hundred
million

S1 output index
Per capita water consumption Cubic meter per person

Adjusted agricultural increase
Adjusted industrial increase CNY per cubic meter
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Table 2. Cont.

Variable Description Unit

Stage 2

Input Wastewater
treatment input

Government financial investment in
sewage treatment CNY ten thousand

Output S2 output index

Per capita wastewater improvement Tons per person

COD improvement per capita
Improvement in ammonia nitrogen

per capita
Kilogram per person

Link

Wastewater index
Total COD emissions in the current year

Total ammonia nitrogen emissions
for the year

Ten thousand tons

Gas index

Total sulfur dioxide emissions from
exhaust gases

Total nitrogen oxide emissions from
exhaust gases

Total amount of smoke and dust emitted
in exhaust gas

Ten thousand tons

Solid waste General industrial solid
amount of waste produced Ten thousand tons

Exogenous variable Energy poverty
Calculated according to the three-level
index constructed by Yi-Ming Wei and

Hua Liao (2018)

Carryover Fixed assets Fixed assets CNY 1000

Note: Data sources: National Bureau of Statistics of the People’s Republic of China, China Energy Yearbook,
China Rural Statistical Yearbook, and China Regional Economic Statistical Yearbook.

To analyze the technological boundaries in different regions of China and to formulate
subsequent policy recommendations tailored to the characteristics of each region, this
study divides the provinces, municipalities, and autonomous regions of China into eastern,
central, and western regions based on the classification standards provided by the National
Bureau of Statistics, as outlined in Table 3.

Table 3. Area classification.

Area Number Provinces

East 1 Beijing, Fujian, Guangdong, Hainan, Hebei, Jiangsu, Liaoning,
Shandong, Shanghai, Tianjin and Zhejiang

Middle 2 Anhui, Heilongjiang, Henan, Hubei, Hunan, Jiangxi, Jilin
and Shanxi

West 3 Chongqing, Gansu, Guangxi, Guizhou, Inner Mongolia, Ningxia,
Qinghai, Shaanxi, Sichuan, Tibet, Xinjiang and Yunnan

Note: Data sources: National Bureau of Statistics of the People’s Republic of China. Available online:
http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/201912/t20191219_1767580.html (accessed on 20 June 2023).

The regions included in this study are indicated in Figure 2 (excluding the areas
shaded in gray).

http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/201912/t20191219_1767580.html
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4. Result Analysis
4.1. Total Efficiency Analysis

Before conducting a detailed analysis of the stages and individual input–output
factors, we first analyzed the total efficiency scores for the 29 provinces with and without
considering the impact of the exogenous variable. The results are presented in Figure 3.
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Figure 3. Total efficiency scores of the provinces and cities in the line chart.
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As shown in the figure, only four provinces—Liaoning, Guangdong, Yunnan, and
Hebei—consistently maintain an ideal state. Overall, there is still significant room for
improvement. Notably, provinces and municipalities such as Beijing, Shanghai, and Zhe-
jiang, which have well-developed infrastructure and rank high in economic development,
have not achieved a moderate level of water resource utilization efficiency, with scores
below 0.600. Furthermore, even coastal cities with robust economies and abundant wa-
ter resources, such as Tianjin, Jiangsu, and Fujian, have not attained efficiency scores
exceeding 0.400.

According to the results of the Shapiro–Wilk analysis, it is evident that the total
efficiency values obtained for each province and municipality, whether considering the
exogenous variable or not, do not follow a normal distribution. Therefore, the paired-
sample Wilcoxon signed-rank test method was employed to examine whether there is
a significant difference in the total efficiency of each province and municipality when
considering the exogenous variable and when not considering it.

The results of the paired-sample Wilcoxon test (Table 4) indicate that there is a signifi-
cant difference between the NO-Score and the YES-Score. Including the exogenous variable,
energy poverty, resulted in a moderate difference in the overall efficiency scores for water
resource utilization. To ensure the analysis’s accuracy, we examined the efficiency of water
resource utilization for each province and municipality, which was achieved by taking into
account the impact of the exogenous variable.

Table 4. Paired-sample Wilcoxon signed-rank test for total efficiency.

Pairing Variable
Median ± SD

z df P Cohen’s d
Pair 1 Pair 2 Pairing Difference

NO-Score-YES-Score 0.338 ± 0.35 0.718 ± 0.309 −0.081 ± 0.254 3.808 28 0.000 *** 0.532

Note: *** represent significance levels of 1%, respectively.

To provide targeted recommendations, the following sections of this paper will analyze
the stage-wise efficiency scores and technological boundaries, thereby aiming to arrive at
practical conclusions.

4.2. Stage Efficiency Analysis

In this section, we will continue to explore the relationship between the production
and governance stages, as well as the interaction between the two stages, through an
analysis of efficiency scores.

Next, we compare the effect of whether exogenous variables are introduced or not on
the efficiency values of the two phases through bar charts (Figures 4 and 5). In addition,
the trends of the two groups of data with and without exogenous variables were found to
be incredibly similar for both the production and governance stages; overall, the efficiency
values of the group with exogenous variables were more favorable, but the difference was
more significant for the production stage, where the impact of the exogenous variables was
more pronounced for the production stage.

It is evident that all of the provinces’ efficiency values in the production stage were
not lower than those in the governance stage. Among them, Beijing, Qinghai, Chongqing,
Hainan, Hunan, Heilongjiang, and Guangdong had higher average values and better
synergies between the two stages; however, Shanghai, Shandong, Jiangsu, Zhejiang, and
Fujian, which are coastal provinces with a more developed economy, had particularly
low efficiency performances (less than 0.600) in the governance stage, while the efficiency
performance in the production stage tended to be ideal.
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Figure 6 shows the changes in the water sustainability efficiency score of each province
between 2015 and 2020. There are only four provinces (in addition to Shanghai, Shandong,
and Ningxia) that have consistently maintained the desired level, showing a benign trend.
The efficiency scores of Sichuan, Anhui, Jiangxi, Hubei, Fujian, Guangxi, and Shaanxi all
showed an overall decreasing trend, which may require these provinces to make certain
corrections in macropolicies or resource allocation to promote sustainable water resource
development. In addition, Shandong, Yunnan, Gansu, Henan, and Zhejiang have stable
but low efficiency scores, and they may need to break down technical or management
constraints to improve overall efficiency performance.
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Figure 6. Changes in the sustainable efficiency value of water resources by province.

The results of the Shapiro–Wilk analysis indicated that the efficiency scores for both
stages, whether considering the exogenous variable “energy poverty” or not, did not
follow a normal distribution. Therefore, we employed the paired-sample Wilcoxon signed-
rank test to examine whether there are significant differences in the efficiency scores
between the two-stage assessments when considering the exogenous variable and when
not considering it.

The paired-sample Wilcoxon signed-rank test results (Table 5) indicated that there is a
significant difference in the water resource production stage efficiency scores before and
after considering the exogenous variable. From the above test results, we can conclude
that including the exogenous variable significantly affects the efficiency score calculations
for both the production and governance stages. When discussing the topic of sustainable
water resource utilization, incorporating considerations of energy scarcity can enhance the
practicality of the conclusions drawn. In the subsequent analysis in this section, we will
use the efficiency scores calculated with consideration of the exogenous variable.

Table 5. Paired-sample Wilcoxon signed-rank test for Stage Efficiency 1.

Pairing Variable
Median ± SD

z df P Cohen’s d
Pair 1 Pair 2 Pairing Difference

Stage1 (NO)–Stage1 (YES) 0.751 ± 0.263 1.000 ± 0.122 −0.117 ± 0.223 3.724 28 0.000 *** 0.987

Stage2 (NO)–Stage2 (YES) 0.306 ± 0.344 0.510 ± 0.334 −0.011 ± 0.229 3.808 28 0.000 *** 0.350

Note: *** represent significance levels of 1%, respectively.
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Similarly, due to the data not following a normal distribution, we will employ a paired-
sample Wilcoxon signed-rank test to examine whether there are significant differences in
the efficiency scores between the two stages.

The paired-sample Wilcoxon signed-rank test (Table 6) results indicated that, based
on the variable Stage 1 (mean) paired with Stage 2 (mean), the significance p-value was
0.000 ***. This suggested a significant difference between the efficiency scores of the pro-
duction and governance stages. The magnitude of this difference, as measured by Cohen’s
d value, was 1.618, which is extremely large. This analysis result indicated that, in water
resource utilization, the production and governance stages are not developing in parallel.
From the average values, we can see that the efficiency level of the production stage is sig-
nificantly higher than that of the governance stage. This finding aligns with the conclusions
drawn in the previous section.

Table 6. Paired-sample Wilcoxon signed-rank test for Stage Efficiency 2.

Pairing Variable
Median ± SD

z df P Cohen’s d
Pair 1 Pair 2 Pairing Difference

Stage1 (mean)–Stage2 (mean) 1.000 ± 0.122 0.510 ± 0.334 0.423 ± 0.272 4.372 28 0.000 *** 1.618

Note: *** represent significance levels of 1%, respectively.

4.3. Input–Output Factor Efficiency Analysis

In the previous section, we empirically analyzed how including an exogenous variable
significantly affects efficiency value calculations. To arrive at more practical conclusions,
the input–output factor efficiency scores used in this section were derived from models
that consider the exogenous variable “energy poverty”.

Firstly, most of the provinces and municipalities demonstrated relatively ideal utiliza-
tion efficiency for the input factor “Labor” in the production stage, as shown in Figure 7.
Nineteen of them consistently maintained ideal efficiency in utilizing this factor over the
six years from 2015 to 2020. In the remaining regions, nine provinces and municipalities
exhibited fluctuating efficiency scores at a relatively high level.
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Figure 7. Labor efficiency score bar chart for 2015–2020.
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For the input factor “water supply” in the production stage, as shown in Figure 8,
16 of the provinces and municipalities consistently maintained ideal efficiency levels over
the six years. While not consistently ideal, six of the provinces and municipalities ex-
hibited efficiency score changes that remained relatively high. Among them, the Beijing
and Guangxi provinces showed a noticeable upward trend in efficiency scores, with the
Guangxi Province reaching near-ideal efficiency scores in 2019–2020. However, Beijing’s
highest efficiency score still fell within the moderate range, thus indicating significant room
for improvement.
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Figure 8. Water supply efficiency score bar chart for 2015–2020.

For one of the output factors in the production stage—GDP—as shown in Figure 9,
most of the provinces and municipalities included in this study maintained ideal efficiency
scores over the six years. Only three regions experienced fluctuations below the ideal level,
but these fluctuations remained relatively high.
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Figure 9. GDP efficiency score bar chart for 2015–2020.
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Another part of the output factors in the production stage was the first-stage output
indicator, S1, which was obtained using the entropy weight method, as shown in Figure 10.
There were a total of 21 provinces and municipalities that consistently maintained ideal first-
stage output during these six years. Additionally, while not consistently maintaining the
ideal state, six of the provinces had fluctuating efficiency scores that remained at relatively
high levels.
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Figure 10. S1 output index efficiency score bar chart for 2015–2020.

Regarding the “wastewater treatment input” factor in the governance stage (Figure 11),
only the Jiangsu, Jiangxi, Hubei, and Sichuan provinces consistently maintained ideal
efficiency scores over the six years. Most of the other provinces experienced significant
abnormal changes in their numerical values, possibly due to changes in their input and
allocation policies, changes in their immature technology and management models, or
significant external factors influencing governance efficiency.
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Figure 11. Wastewater treatment input efficiency score bar chart for 2015–2020.
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The output factor in the governance stage was the output index S2, which was obtained
using the entropy weighting method, as shown in Figure 12. The efficiency scores of
16 provinces and cities consistently remained ideal. However, five of the provinces—Beijing,
Fujian, Guangdong, Chongqing, and Shaanxi—experienced a sustained decline in efficiency.
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Figure 12. S2 output index efficiency score bar chart for 2015–2020.

In summary, among these input–output factors, the efficiency of labor, GDP, and
the output index in the production stage generally exhibited a relatively ideal state. The
efficiency of water supply and the output index in the governance stage also reached high
levels in more than half of the regions. However, when it comes to the input of wastewater
treatment, only four provinces and cities maintained consistently ideal efficiency. In
contrast, other provinces and cities even showed persistently low efficiency levels below
0.400, with significant fluctuations observed in this indicator on several occasions. This
may be related to China’s policies regarding the allocation of resources for water resource
management or related management models. To provide a more intuitive exploration of
the efficiency of the different factors in each province and city, a radar chart was created
based on the efficiency scores of various factors in 2020.

According to the radar chart (Figure 13), it is evident that the factor with the highest
fluctuation in efficiency levels among the different provinces and cities, as well as the lowest
overall efficiency, was the wastewater treatment input. Notably, Gansu, Yunnan, Henan, An-
hui, Liaoning, Guangdong, Fujian, Hainan, Beijing, Shandong, Shaanxi, Guizhou, Guangxi,
and Ningxia were all significantly constrained by this indicator. Provinces significantly
constrained by these factors in the governance stage also exhibit substantial overlap. In
water resource utilization, these regions may face certain issues related to the technical
models and management processes in the governance stage.



Water 2024, 16, 876 22 of 29
Water 2024, 16, 876 23 of 29 
 

 

 
Figure 13. Factor utilization efficiency radar map. 

4.4. Technology Frontier Analysis 
In this section, we focus on examining technological boundaries and exploring the 

impact of technological differences. Including all the DMUs within a single boundary for 
efficiency comparisons is unfair. Therefore, this paper adopts a reasonable approach and 
divides all DMUs into three groups based on the geographical classification of eastern, 
central, and western regions. 

4.4.1. Group Frontier and Meta-Frontier Analysis 
We conducted a comparative analysis of the technical efficiency in water resource 

production and the governance stages under both the group frontier and meta-frontier 
frameworks to draw further conclusions (Table 7). 

Table 7. Group frontier and meta-frontier efficiency for the eastern, median, and western regions 
from 2015 to 2020. 

Stage 1 
Cluster 1 2 3 

Year GF MF GF MF GF MF 
2015 0.986 0.993 1.000 0.899 0.984 0.865 
2016 1.000 0.994 1.000 0.850 1.000 0.869 
2017 1.000 0.986 1.000 0.885 0.989 0.898 
2018 0.982 0.982 1.000 0.904 0.982 0.874 
2019 1.000 0.999 1.000 0.865 1.000 0.887 
2020 1.000 1.000 1.000 0.886 0.985 0.863 

Mean 0.995 0.992 1.000 0.881 0.990 0.876 
Stage 2 

Cluster 1 2 3 
Year GF MF GF MF GF MF 
2015 0.878 0.578 1.000 0.453 0.805 0.487 
2016 0.882 0.648 1.000 0.302 0.866 0.518 
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4.4. Technology Frontier Analysis

In this section, we focus on examining technological boundaries and exploring the
impact of technological differences. Including all the DMUs within a single boundary for
efficiency comparisons is unfair. Therefore, this paper adopts a reasonable approach and
divides all DMUs into three groups based on the geographical classification of eastern,
central, and western regions.

4.4.1. Group Frontier and Meta-Frontier Analysis

We conducted a comparative analysis of the technical efficiency in water resource
production and the governance stages under both the group frontier and meta-frontier
frameworks to draw further conclusions (Table 7).

From the perspective of the production stage of water resource utilization, the tran-
sition from GF (group frontier) to MF (meta-frontier) had minimal impact on the eastern
region when considering the technical differences between different regions. However, the
central and western regions experienced significant declines in technical efficiency. There
was over 10% improvement potential in terms of optimal efficiency levels. The results also
indicated an enormous technical gap (0.119) between the central region and the potential
common frontier.

Regarding the potential optimal efficiency levels, the eastern, central, and western
regions indicated improvement potentials of 37.8%, 66.3%, and 49.7%, respectively. Similar
to the production stage, if technical differences are not considered, the technical efficiency
of each region would be significantly overestimated. Therefore, within the meta-frontier
framework, which accounts for technical differences, we can measure the technical effi-
ciency of different processes of water resource utilization more accurately.
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Table 7. Group frontier and meta-frontier efficiency for the eastern, median, and western regions
from 2015 to 2020.

Stage1

Cluster 1 2 3

Year GF MF GF MF GF MF

2015 0.986 0.993 1.000 0.899 0.984 0.865
2016 1.000 0.994 1.000 0.850 1.000 0.869
2017 1.000 0.986 1.000 0.885 0.989 0.898
2018 0.982 0.982 1.000 0.904 0.982 0.874
2019 1.000 0.999 1.000 0.865 1.000 0.887
2020 1.000 1.000 1.000 0.886 0.985 0.863

Mean 0.995 0.992 1.000 0.881 0.990 0.876

Stage2

Cluster 1 2 3

Year GF MF GF MF GF MF

2015 0.878 0.578 1.000 0.453 0.805 0.487
2016 0.882 0.648 1.000 0.302 0.866 0.518
2017 0.801 0.617 1.000 0.433 0.795 0.632
2018 0.915 0.604 0.968 0.348 0.813 0.509
2019 0.783 0.581 1.000 0.259 0.893 0.509
2020 0.811 0.705 1.000 0.226 0.917 0.361

Mean 0.845 0.622 0.995 0.337 0.848 0.503

4.4.2. Technology Gap Ratio Analysis

The TGR score reflects the magnitude of the gap between the group technical frontier
and the meta-technical frontier. A higher TGR score indicates a smaller gap. In extreme
cases, a TGR of 1 means unity between the group’s technical and meta-technical frontiers.
At the same time, a TGR score of zero represents the maximum disparity between the
two [47]. The TGR scores for the eastern, central, and western regions over the six years
from 2015 to 2020 are shown in Table 8.

Table 8. TGR analysis for the three regions from 2015 to 2020.

Cluster 2015 2016 2017 2018 2019 2020 Average

1 0.843 0.877 0.891 0.840 0.887 0.942 0.880
2 0.676 0.576 0.659 0.635 0.562 0.556 0.611
3 0.766 0.750 0.854 0.772 0.738 0.656 0.756

The data results revealed that the TGR score for the eastern region showed a noticeable
upward trend over these six years and reached 0.9422 in 2020. This implies that the group
frontier technical efficiency in the eastern region is closer to the meta-frontier compared to
the central and western regions. It also suggests that the eastern region may exhibit better
sustainability performance than the central and western regions.

The TGR gap reflects the differing production technology standards, where higher
TGR scores indicate that the producers’ technology is closer to the meta-frontier. Therefore,
we further analyzed the production efficiency in different regions by comparing the stage-
specific TGR with efficiency scores under the meta-frontier framework (Table 9).
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Table 9. TGR analysis for the two stages.

Stage1

1 2 3

2015 0.999 0.899 0.879
2016 0.994 0.850 0.869
2017 0.986 0.885 0.907
2018 1.000 0.904 0.888
2019 0.999 0.865 0.887
2020 1.000 0.886 0.879

Mean 0.998 0.881 0.884

Stage2

1 2 3

2015 0.627 0.453 0.637
2016 0.734 0.302 0.587
2017 0.719 0.433 0.747
2018 0.645 0.350 0.599
2019 0.668 0.259 0.554
2020 0.829 0.226 0.369

Mean 0.701 0.338 0.577

Firstly, the technical improvement space in the eastern region in these two stages was
0.02% and 29.91%, respectively. Similarly, for the central region, the technical improvement
space in the production stage was 11.86%, while it was as high as 66.21% in the governance
stage. The western region had an 11.62% improvement space in the first stage and a 42.31%
improvement space in the governance stage. This result indicates that, although there
is room for improvement in the production stage, all three regions—eastern, central, and
western—need to focus on the governance stage for sustainable water resource development.

From the changes in TGR scores in the governance stage over the six years, we can see
that the eastern region’s TGR score shows an upward trend. This suggests that the eastern
region’s technological standards are gradually improving and approaching the benchmark
production level. In contrast, for the central and western regions, the TGR scores showed
a decline, which may be attributed to a lack of improvement in investment capital and
technological conditions or to an unreasonable allocation of inputs.

5. Conclusions and Discussion

This study developed an entropy recycling dynamic two-stage SBM model, wherein
energy poverty is incorporated as the exogenous variable, to assess the efficiency of water
resource production and governance across 29 provinces in mainland China. There was a
significant difference found in the efficiencies of water resource utilization and governance
when considering the impact or non-impact of energy poverty as an exogenous variable,
thus highlighting the distinct efficiency patterns in the two-stage efficiency as well as the
individual input and output indices. The key findings from this study are as follows:

1. In terms of the total efficiency of the sustainable use of water resources, only 4 of
the 29 provinces of China have achieved an ideal efficiency, and the other 25 provinces
have different degrees of room for improvement. Provinces such as Gansu and Shanxi
need greater improvement. There were fluctuating downward trends in 14 of the provinces
from 2015 to 2020, with the largest decline in Chongqing. Based on empirical findings, it
is evident that the majority of provinces in western China show significant potential for
enhancing water resource sustainability efficiency. Furthermore, these provinces demon-
strated higher fluctuations in efficiency performance, thereby highlighting the need for
heightened attention and proactive measures to bolster governance, as well as the need to
elevate overall efficiency levels, thereby ensuring development stability.
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2. The efficiency performance in the governance stage was better than that observed
in the production stage for most areas among the 29 provinces. There were nine provinces
that achieved the desired scores in the production stage, while only five managed this in
the governance stage. The worst efficiency performance in both stages was in Shanxi. In
most regions, the efficiency of the production stage lagged behind that of the governance
stage, thereby suggesting a higher prevalence of production or management issues in
the former. A deeper analysis of water resource utilization, production process manage-
ment, and technological proficiency in the production stage would be advantageous for
enhancing efficiency.

3. The efficiency scores of the index at the production stage (S1) were found to be
slightly higher than those of the index at the governance stage (S2) for most of the areas.

There are 11 provinces that need improvement in output index efficiency in S1, while
13 of the provinces need substantial efficiency enhancements in S2. The labor efficiency
of the provinces performed better than the wastewater treatment one, for which most of
the provinces had the worst scores, with only 4 of the provinces achieving the desired
efficiencies and 16 of the provinces having an efficiency score of less than 0.6. The average
efficiency score of the other 11 provinces was found to be less than 0.3. Moreover, there
were 14 provinces that had significantly declining efficiency scores; thus, there is a need for
their improvement to keep rising. Between the wastewater index, waste gas index (WGI),
and solid waste (SW) indicators, the WGI efficiency generally needed more improvement,
particularly in provinces such as Shaanxi, Shanxi, Zhejiang, Anhui, Shanghai, Shandong,
Yunnan, and Fujian (whose efficiency values were less than 0.5). The performance for
the SW indicator was also relatively poor, with eight provinces showing a great need for
improvement. There were better performances in the wastewater index, with seven of the
provinces requiring only some room for improvement (though the overall improvement
needs for most of the areas were not less). This indicated a favorable trend toward con-
tinuous efficiency enhancement. Therefore, analyzing the disparities in the input–output
indicator efficiency performance highlighted the need for targeted improvement, primarily
in wastewater treatment. Both urban areas in the eastern and western regions require addi-
tional intervention and technological investment in this aspect, with a potential emphasis
on centralized wastewater treatment.

4. In terms of the TGR, the performance for provinces from the eastern region was
found to be better than the ones from the central region during S1, with the central region
slightly ahead of the western region. The performance of the provinces in the eastern
region maintains its lead in S2. Among the 13 eastern provinces, 7 of them exhibited
relatively poor technology levels, with Zhejiang having the lowest on average. Of the
provinces from the central region, five out of six provinces demonstrated satisfactory tech-
nology levels, with only Jiangxi being slightly below 1. Among the 10 western provinces,
6 of them demonstrated relatively satisfactory technology levels, while the remaining
4 provinces were deficient, with Shaanxi having the lowest technology level. The dispari-
ties in technological proficiency revealed significant variations between China’s eastern,
central, and western regions. While the eastern region leads with respect to the 29 main
provinces, the western region lags behind, thereby necessitating tailored interventions
to bridge this gap. Additionally, notable technological discrepancies were found to ex-
ist within the eastern region itself. Consequently, the policy measures should include
macro-level and regionally coordinated development strategies, along with region-specific
governance initiatives, to systematically address technological disparities and promote the
sustainable development of water resources.

6. Policy Implication

From the above, it can be seen that the efficiency performance of the production stage
for 29 provinces in 2020 was greatly affected by the pandemic, thus resulting in a generally
huge space for efficiency improvement in most areas. Considering the fact that China has
entered the post-pandemic era, the strategy for improving the efficiency of water resource



Water 2024, 16, 876 26 of 29

production and governance efficiency should be considered from other dimensions, and
targeted and comprehensive measures should be taken to carry out this aim. Specific
recommendations are as follows:

Compared to the provinces from the eastern and central regions, the provinces from
the western region need more support from sound policies and activities with more proac-
tive measures to leverage their resource advantages and enhance their overall efficiency
for water resource production and governance. This involves actively upgrading water
resource production and governance through advanced technology. Notably, Gansu and
Yunnan, among the 10 provinces, need heightened attention and more effective measures
due to their better-than-expected water production and governance efficiency, which have
been influenced by energy poverty. Gansu, Shaanxi, and Yunnan have exhibited relatively
lower levels of economic growth and social development when compared with the other
10 western provinces. Gansu faces challenges in water resource distribution due to its
geographic location and topography, which make production, utilization, and management
complex. The region’s management practices also lag behind those of other areas. An
initial step would involve assessing the current state of water resource utilization and man-
agement, conducting an inventory of input factors in water production and management
phases, and focusing on human resource development to enhance personnel efficiency
and output.

Simultaneously, it is crucial to evaluate the degree of exhaust gas, wastewater treat-
ment, and solid waste disposal fundamentals in order to identify the inefficiencies and
proactively address them. Yunnan’s governance priorities should center on improving pro-
duction and management levels during the production phase for exhaust gas, wastewater,
and solid waste. Other provinces in the western region should concentrate on contin-
uous improvement and management-level enhancement. In general, learning from the
governance experience of high-efficiency eastern regions, adopting advanced manage-
ment techniques and production technologies, introducing cutting-edge equipment, and
promoting technical efficiency improvement are essential goals.

Improving the technological competence of urban areas in the central and western
regions can be accomplished through inter-regional technical collaboration, technology
transfer, and the recruitment of scientific expertise. This will enhance the management
of water resources in these regions. Provinces from the central region, particularly the
Shanxi and Henan provinces, have lagged far behind the others in terms of technological
efficiency. For the Shanxi province, great attention needs to be directed to both production
and governance activities. Challenges in the production stage stem from its high energy
and resource dependence. Inadequate production, as well as technology and management
levels, can adversely impact water resource efficiency during production. Given that both
Shanxi and Henan are major coal production bases in mainland China, addressing water
management issues in the coal production industry is crucial. Efficient wastewater, waste
gas, and solid waste treatment demand increased government attention and investment,
including the introduction of advanced equipment and the promotion of improved technol-
ogy. Additionally, learning from advanced experiences, emphasizing technical personnel
training, and integrating technology in environmental management should be key priorities
for future initiatives.

The central government of China should support the western provinces’ development
by leveraging the economic strengths and social development of the eastern region to
encourage regional industry cooperation. This support can be extended to enhance water
resource utilization and management in the western regions through technology and expe-
rience sharing. While the provinces from the eastern region hold a leading position in terms
of economic growth and social development due to their favorable geographical location
and historical factors, it is crucial for relatively developed regions like Shanghai, Zhejiang,
and Fujian to prioritize governance investment and improvement. In comparison to more
highly developed Western countries, mainland China requires more effective technologies
and conditions for gas and solid waste management. Learning from the experiences of de-
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veloped nations, introducing advanced technology and equipment, strategically designing
treatment systems for gas and solid waste, attracting technical and management talents,
improving management standards, and establishing long-term strategic plans for sustain-
ability are all essential steps. These efforts aim to elevate treatment standards and achieve
the Sustainable Development Goals for energy utility and environmental sustainability.

7. Limitations

While we have examined various aspects of water resource sustainability and regional
technological efficiency differences between the provinces and cities in China, further analysis
of the factors influencing regional disparities can provide more detailed policy recommenda-
tions and offer a more comprehensive guide for urban water resource management.

Water resource sustainability presents a multifaceted challenge influenced by geo-
graphical, climatic, and socioeconomic factors. This study exclusively utilized data from
29 provinces in China, thus limiting the spatio-temporal scope and potentially hindering a
more comprehensive depiction of regional dynamics and temporal trends. Future research
could explore the following avenues: Firstly, in the current context, emphasizing climate
change and its policy implications may significantly enhance sustainable resource manage-
ment practices. Secondly, diverse resource endowments across countries and regions could
render resource allocation policies non-universal. Consequently, conducting broader and
more focused studies is imperative for advancing the Sustainable Development Goals.
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