
Citation: Helmi, A.M.; Farouk, M.I.;

Hassan, R.; Mumtaz, M.A.; Chaouachi,

L.; Elgamal, M.H. Comparing Remote

Sensing and Geostatistical Techniques

in Filling Gaps in Rain Gauge Records

and Generating Multi-Return Period

Isohyetal Maps in Arid

Regions—Case Study: Kingdom of

Saudi Arabia. Water 2024, 16, 925.

https://doi.org/10.3390/w16070925

Academic Editor: Chang Huang

Received: 30 January 2024

Revised: 11 March 2024

Accepted: 20 March 2024

Published: 22 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Comparing Remote Sensing and Geostatistical Techniques in
Filling Gaps in Rain Gauge Records and Generating
Multi-Return Period Isohyetal Maps in Arid Regions—Case
Study: Kingdom of Saudi Arabia
Ahmed M. Helmi 1,* , Mohamed I. Farouk 2,3 , Raouf Hassan 2,4 , Mohd Aamir Mumtaz 2 , Lotfi Chaouachi 2

and Mohamed H. Elgamal 2

1 Irrigation and Hydraulics Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt
2 Civil Engineering Department, College of Engineering, Imam Mohammad Ibn Saud Islamic

University (IMSIU), Riyadh 13318, Saudi Arabia; miradi@imamu.edu.sa (M.I.F.);
rahassan@imamu.edu.sa (R.H.); mmaamir@imamu.edu.sa (M.A.M.); lotfich64@gmail.com (L.C.);
mhelgamal@imamu.edu.sa (M.H.E.)

3 Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt
4 Civil Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
* Correspondence: ahmed.helmi@eng.cu.edu.eg

Abstract: Arid regions are susceptible to flash floods and severe drought periods, therefore there is a
need for accurate and gap-free rainfall data for the design of flood mitigation measures and water
resource management. Nevertheless, arid regions may suffer from a shortage of precipitation gauge
data, whether due to improper gauge coverage or gaps in the recorded data. Several alternatives
are available to compensate for deficiencies in terrestrial rain gauge records, such as satellite data
or utilizing geostatistical interpolation. However, adequate assessment of these alternatives is
mandatory to avoid the dramatic effect of using improper data in the design of flood protection works
and water resource management. The current study covers 75% of the Kingdom of Saudi Arabia’s
area and spans the period from 1967 to 2014. Seven satellite precipitation datasets with daily, 3-h, and
30-min temporal resolutions, along with 43 geostatistical interpolation techniques, are evaluated as
supplementary data to address the gaps in terrestrial gauge records. The Normalized Root Mean
Square Error by the mean value of observation (NRMSE) is selected as a ranking criterion for the
evaluated datasets. The geostatistical techniques outperformed the satellite datasets with 0.69 and
0.8 NRMSE for the maximum and total annual records, respectively. The best performance was found
in the areas with the highest gauge density. PERSIANN-CDR and GPM IMERG V7 satellite datasets
performed better than other satellite datasets, with 0.8 and 0.82 NRMSE for the maximum and total
annual records, respectively. The spatial distributions of maximum and total annual precipitation for
every year from 1967 to 2014 are generated using geostatistical techniques. Eight Probability Density
Functions (PDFs) belonging to the Gamma, Normal, and Extreme Value families are assessed to fit
the gap-filled datasets. The PDFs are ranked according to the Chi-square test results and Akaike
information criterion (AIC). The Gamma, Extreme Value, and Normal distribution families had the
best fitting over 56%, 34%, and 10% of the study area gridded data, respectively. Finally, the selected
PDF at each grid point is utilized to generate the maximum annual precipitation for 2, 5, 10, 25, 50, and
100-year rasters that can be used directly as a gridded precipitation input for hydrological studies.

Keywords: remote sensing; geostatistical techniques; spatial rainfall distribution; isohyetal maps;
Saudi Arabia; rainfall frequency analysis

1. Introduction

Humankind is facing a water security crisis. In 2021, approximately 1.42 billion people
were located in regions of extreme water scarcity [1]. In arid zones, which span 41% of
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the globe, the increasing stress on freshwater resources generated by population growth
and global warming is intensifying the current water scarcity problem [2–4]. Moreover,
arid zones are characterized by irregularities in droughts and flooding events, adding
substantial challenges to water resource management [5]. On the other hand, arid zones
are characterized by flash floods that pose a threat to lives, properties, and infrastructure.
On 10 September 2023, Storm Daniel struck the northern Libyan coast, leading to the
collapse of two dams and the destruction of around one-third of Derna city, along with
an estimated 13,000 casualties. Precipitation is the pivot of the hydrological cycle and the
trigger of droughts and floods [6]. Frequency analysis of maximum daily precipitation
is a dominant process in the design of flood mitigation measures. Additionally, the total
annual precipitation is pivotal for water resource management. Acquiring reliable and
gap-free precipitation data significantly improves the accuracy of hydrological studies [7].
Rain gauges in arid regions are characterized by a sparse arrangement adhering to the
World Meteorological Organization (WMO) guidelines for minimum density. Additionally,
historical rainfall data frequently contains gaps that require filling before the data can be
utilized [8–11]. Several techniques detailed in the literature aim to address these gaps,
including the utilization of satellite data and geospatial interpolation techniques [12–15].
Terrestrial gauged data is the most reliable precipitation data source and is used as a
benchmark for checking the accuracy of any proposed data processing technique [16–18].
Accordingly, the objectives of the study can be summarized as:

• Selecting an appropriate technique to fill the data gaps in the rain gauge records for
the study area.

• Providing gap-free spatial distribution of gridded total annual and maximum daily
precipitation to overcome the deficiency in rain gauge coverage.

• Performing frequency analysis for the maximum daily gridded data to generate
storm isohyetal maps with different return periods across the Kingdom of Saudi
Arabia (KSA).

Numerous research endeavors have been undertaken to explore diverse method-
ologies for addressing data gaps in rainfall records. The adequacy of five gap-filling
approaches—Normal Ratio (NR), Linear Regression (LR), Inverse Distance Weighting (ID),
Quantile Mapping (QM), and Single Best Estimator (BE)—is evaluated for gap-filling in
daily rainfall data in Hawaii. This study aimed to ascertain the optimal method, quantify
the error associated with gap filling, and assess the value before spatial interpolation. The
findings emphasized the crucial significance of the correlation between target and predictor
stations over station proximity when accurately predicting rainfall. Additionally, it was
concluded that the normal ratio method consistently outperformed others, particularly for
sub-monthly data gaps [19]. Ten imputation techniques for monthly rainfall data in arid
regions have been assessed, affirming the efficacy of stepwise multiple linear regression
within the 5% to 20% missing data range, closely followed by the Monte Carlo Markov
chain expectation–maximization-based multiple imputation method [20]. Machine learning
models for filling gaps in rainfall data across Spain’s semiarid regions were evaluated. The
significance of nearby data and the influence of proximity to the sea on model effectiveness
were highlighted [21]. The utilization of satellite-derived products to ameliorate rainfall
data gaps in the Amazon region, with CHIRPS emerging as the standout performer owing
to its finer spatial resolution, was recommended by Cordeiro and Blanco (2021) [12]. Con-
currently, ordinary Kriging was selected as the most efficacious method for filling rainfall
gaps in Portugal’s Guadiana River basin across a majority of rainfall stations [22].

The insufficient spatial coverage of terrestrial rain gauges and the resulting data gaps
can be covered using satellite-borne precipitation data [23]. The majority of existing Satellite
Precipitation Datasets (SPDs) offer near-global coverage with varying coverage periods
and spatiotemporal resolutions. Table 1 provides an overview of some of the available
precipitation dataset’s characteristics. All datasets continue to the near present, except the
TRMM which stopped at the end of December 2019.
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Table 1. Overview of some of the available precipitation dataset characteristics.

Satellite Precipitation Datasets (SPDs) Start Date Coverage Resolution

[CHIRPS] Climate Hazards group Infra-Red Precipitation
combined with terrestrial Stations observations [24]. January 1981 50◦-N 50◦-S 0.05◦/(Daily)

[PERSIANN] Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks [25]. March 2000 60◦-N 60◦-S 0.25◦/(Hourly)

[PERSIANN-CCS] PERSIANN-Cloud Classification
System [25]. January 2003 60◦-N 60◦-S 0.04◦/(Hourly)

[PERSIANN-CDR] PERSIANN—Climate Data Record [25]. January 1983 60◦-N 60◦-S 0.25◦/(Daily)

[PDIR-Now] PERSIANN—Dynamic Infrared Rain Rate near
real-time [25]. March 2000 60◦-N 60◦-S 0.04◦/(Hourly)

[TRMM *] The Tropical Rainfall Measuring Mission [26]. January 1998 50◦-N 50◦-S 0.25/(3-h)

[CMORPH] Climate Prediction Center morphing
method [27]. January 1998 60◦-N 60◦-S 0.07/(30-min)

[GPM-IMERG] Global Precipitation Measurement mission
Integrated Multi-satellitE Retrievals [28]. June 2000 90◦-N 90◦-S 0.1/(30-min)

[GPCP] Global Precipitation Climatology Center [29]. January 2000 90◦-N 90◦-S 0.5/(Daily)

[CPC] Climate Prediction Center [30]. January 1979 89.5◦-N 89.5◦-S 0.5/(Daily)

Note: * TRMM has come to an end after 17 years of operation. The time coverage for TRMM ends to 1 January 2020.

The SPDs have been extensively evaluated in previous studies. The evaluation encom-
passed three approaches: statistical, hydrological, and a combined one that integrates both
approaches. In the statistical approach, categorical and quantitative indices are utilized. The
categorical indices, such as the Probability Of Detection (POD), False Alarm Ratio (FAR),
and the Critical Success Index (CSI), assess the precipitation event prediction accuracy of
the dataset. The quantitative indices, including the Correlation Coefficient (CC), Root Mean
Square Error (RMSE), Kling-Gupta Efficiency Score (KGE), Centered Root Mean Square
Error (CRSME), and Nash-Sutcliffe Efficiency Coefficient (NSE), quantitatively assess the
accuracy of the satellite products by evaluating the difference between the dataset and the
measured values of terrestrial rain gauges as a reference [31–34]. On the other hand, the
hydrologic assessment approach relies on quantifying the error of satellite precipitation-
based streamflow estimates in comparison to gauge-measured stream flows [35]. Table A1
provides a summary of SPDs for several types, areas, and spatiotemporal resolutions from
around the world. Several studies agreed on the following findings:

• The performance of SPDs is highly dependent on rainfall variability. Many datasets
underestimate precipitation during wet seasons and overestimate it during dry ones.

• The majority of SPDs showed a better correlation with coarse temporal resolution
(more than one-day resolution) compared to daily and sub-daily records, but displayed
improved accuracy when using finer-resolution data.

• In high-altitude areas, SPDs demonstrated lower performance compared to lower altitudes.
• The performance of SPDs varies from one area to another and within the same area

from one season to another.

Arid regions are particularly vulnerable to the impacts of climate variability, including
the heightened risk of flash floods, which pose significant threats to life, property, and
infrastructure. Reliable rainfall data is imperative for devising effective flood mitigation
strategies, such as the construction of dams and floodplains.

In recognizing the existing limitations, our study sheds light on two key challenges:

(A) Sparse Rain Gauge Coverage: Traditional rain gauge networks in arid regions of-
ten suffer from inadequate spatial distribution, resulting in limited data coverage
and gaps.
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(B) Data Gaps: Furthermore, existing rain gauge data may contain gaps due to various
factors, further complicating data analysis and interpretation.

To address these challenges, our study proposes and evaluates alternative methodologies:

• Geostatistical Interpolation: Leveraging geostatistical interpolation techniques, we
aim to extrapolate rainfall estimates for ungauged locations, thereby enhancing the
overall understanding of rainfall distribution patterns.

• Utilizing Satellite Precipitation Data: Additionally, we explore the utilization of satel-
lite precipitation data as a supplementary source. While not as precise as conventional
rain gauges, satellite data offers broader spatial coverage and has the potential to fill
data gaps, thereby complementing traditional approaches.

The current study area (KSA) lacks consensus in the literature regarding a recom-
mended SPD for estimating daily precipitation depth to fill terrestrial gauge data gaps. The
best-performing satellite varies from one season to another and from one area to another, in
the same study and from one study to another, based on the use of terrestrial rain gauges
for assessment [36,37]. The coverage of available terrestrial rain gauge records guided the
selection of six SPDs for adequacy assessment over the study area. The Root Mean Square
Error (RMSE) between the gauge measurements and the satellite precipitation estimates
was selected as a statistical measure to compare SPDs.

Geospatial interpolation is the prediction of missing values at a given location by
relying on measured values at other locations [38]. Geospatial interpolation techniques are
broadly applied to improve the spatial resolution of data by filling data gaps and capturing
the variance of data with distance. These techniques are employed across various fields
such as geosciences, water management, and environmental sciences [39,40]. Nevertheless,
the precision of these methods is affected by factors such as the available gauge density,
separation distances, and gauge arrangement [41,42]. The geospatial interpolation tech-
niques can be classified into pycnophylactic (mass preserving) interpolation, deterministic,
and geostatistical techniques. Pycnophylactic interpolation was initially developed for the
geographical distribution of census enumerations under non-negativity conditions [43].
The deterministic and geostatistical techniques are the most commonly used in predict-
ing rainfall spatial distribution studies [44–50]. The deterministic technique relies on the
geometric properties of the measured value locations. On the other hand, geostatistical
techniques consider both the geometric properties of measured value locations and the
correlation/variance between measured values [51]. Table A2 provides a summary of some
previous studies related to the assessment of interpolation techniques’ adequacy versus
conventional rain gauge records. The majority of the studies use the Root Mean Square
Error (RMSE) as an error evaluation criterion to compare different tested interpolation
techniques. The error is calculated using the leave-one-out resampling method, which is
known as cross-validation [52]. Most of the previous studies’ findings suggest that the
geostatistical approach yields more precise outcomes compared to deterministic meth-
ods [44–50]. Cokriging is a type of geostatistical technique that incorporates altitude as
an additional variable with precipitation depth in the interpolation process. However,
it does not consistently yield more accurate results than Kriging, which solely considers
precipitation depth. Based on the results of previous studies, this study will focus more
on geostatistical methods than deterministic approaches. The adequacy of each interpo-
lation technique will be evaluated based on the cross-validation RMSE versus terrestrial
gauge values.

Watershed discharge calculation is a critical task in hydraulic structure design for
flood mitigation measures. The determination of the design discharge relies on the chosen
design return period as per the design constraints and criteria. This can be calculated using
rainfall-runoff models based on the design storm, or by employing frequency analysis
of stream flow recorded from gauges. Unlike the scarcity of gauged stream data, rain-
fall records represent the most available meteorological variable and are most commonly
utilized in watershed flow calculations [53]. Several probability functions, whether two-
parameter or three-parameter distributions, are employed in the frequency analysis of
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rainfall data [54–56]. The most commonly used three-parameter distributions are General-
ized Extreme Value (GEV), Pearson type-3 (P-III), Log Normal 3 parameters (LN3), and
Log Pearson type-3 (LP-III). The two-parameter distributions are Gumbel, which is known
as Extreme Value Type I (EV1), Gamma, Exponential (EXPN), Weibull, Lognormal (LN2),
and Generalized Pareto (GPAR) [53,57,58]. The Bayesian Information Criterion (BIC) and
Akaike Information Criterion (AIC) are utilized solely to select the best data-fitted prob-
ability distribution. The probability distribution with the minimum AIC and BIC values
provides a better fit for the data [59–64]. The current study area will be divided into square
grids (4.47 × 4.47 km) to provide area of 20 km2 for each grid point. The 20 km2 grid size
satisfies the recommended minimum densities of rainfall stations for urban areas as per the
WMO recommendations [65]. Frequency analysis for the maximum daily precipitation will
be performed for each pixel to achieve the corresponding values for each return period.
Finally, isohyetal maps for different return periods across the study area will be provided.

The subsequent sections of this paper are structured as follows. Section 2 provides
a comprehensive overview of the methodologies employed in this study. This section
delineates the study area, outlines the ground rain gauges utilized, and presents the
available data records. Additionally, it furnishes detailed information regarding the selected
Satellite Precipitation Datasets (SPDs) and geospatial datasets utilized to address data
gaps. In Section 3, a clear delineation is provided for the ranking criterion utilized to
assess the optimal dataset for mitigating data gaps within the ground rain gauge stations.
Furthermore, this section presents the results derived from the datasets generated after
filling the identified data gaps, encompassing both maximum daily and total annual rainfall
depths. Section 4 serves to present the findings of the study in detail, accompanied by
an in-depth discussion of the challenges encountered, inherent limitations, and potential
avenues for future research and development in this field.

2. Materials and Methods
2.1. Study Area

This research covers 75% of the Kingdom of Saudi Arabia (KSA), excluding the Empty
Quarter due to the lack of available rain gauges. KSA is located between (16.4◦:32.1◦ N and
34.6◦:55.6◦ E) as shown in Figure 1. KSA is divided into 13 provinces: (1) Al-Riyadh, (2) Holy
Makkah, (3) Al-Madinah, (4) Al-Qaseem, (5) Eastern Region, (6) Asir, (7) Tabuk, (8) Hail,
(9) Northern Borders, (10) Jazan, (11) Najran, (12) Al Baha, and (13) Al-Jouf, as shown in
Figure 2A. This vast region spans approximately 2,150,000 square kilometers, constituting
approximately 80% of the Arabian Peninsula’s land [66–68]. KSA has approximately
2800 km of coastline along the Red Sea and the Arabian Gulf, with both bodies of water
serving as the main suppliers of water vapor for the country [69]. The Kingdom of Saudi
Arabia is characterized by noticeable topographical diversity. It is classified into five distinct
components: (I) relatively flat coastal plains at the Red Sea and Arabian Gulf shorelines;
(II) Najd and Northern Plateaus extending over the majority of the central and northern
regions of the kingdom; (III) Empty Quarter Desert in the southern part of the kingdom,
which is known as the Rub’ al Khali and is considered the world’s largest sand desert,
covered by immense, undulating sand-dunes with heights reaching 250 m [70]; (IV) the
Tuwayq Mountains, situated within the central region of the Najd Plateau, which extend
for 800 km from the border of the Rub’ al Khali in the south to the border of Al-Qasim
in the north, attaining heights of up to 600 m [71]; (V) the Asir mountains, which are
located in the southwestern part of KSA, characterized by steep slopes and containing the
highest elevation in the country at the Al-Sawda peak where the altitude reaches about
3000 m above mean sea level [36]. The Kingdom of Saudi Arabia suffers from a shortage of
freshwater sources and is considered the largest country in the world without any rivers. It
primarily relies on rainfall and groundwater, as well as desalination of seawater, to meet
the increasing demand for water due to population growth. Most of the rainfall in the
kingdom falls in the winter season, especially between October and April [72]. Several
climatic classifications describing rainfall scarcity in KSA can be found in the literature:



Water 2024, 16, 925 6 of 43

desert, hyper-arid and arid [73], arid [74], and extremely dry [75]. Variability in KSA’s
topography contributes to climatic and rainfall pattern diversity over the kingdom in terms
of location, time, and intensity. The southeastern part of Saudi Arabia, which includes
the Asir Mountains, is characterized by severe spatial changes in rainfall patterns due to
the topographical complexity that generates orographic precipitation conditions [76,77].
It receives the highest rainfall depth in KSA with an average annual precipitation of up
to 500 mm [73]. Figure 2B illustrates the spatial distribution of average annual rainfall
depth over the period 1960 to 2018. The average value at each gauge is computed based
on available records, and the spatial distribution is generated using the Inverse Distance
Deterministic interpolation technique, between the points average values [78].
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2.2. Rain Gauges

The most accurate and reliable source of rainfall data is terrestrial rain gauges. There-
fore, assessing any proposed method or data source of precipitation depends on error
assessment through comparison with ground measurements. In the current study, 323 rain
gauge records were acquired from different authorities in KSA. These collected rain gauges
are classified based on data type and recording methodology into four types: (A) Automatic
recording of precipitation and other meteorological parameters, (B) Automatic recording
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of precipitation only, (C) Manually recorded precipitation data, and (D) Irregular manual
rainfall recording times [79], as shown in Figure 3A. Due to the absence of information
regarding the recording time for the 20 rain gauges of type D, they were omitted from the
dataset, resulting in 303 stations being utilized for this study. The impact of KSA’s diverse
topography, ranging from zero-altitude coastal plains to mountains with elevations up to
3000 m, was considered in the analysis of rain gauge data. Accordingly, the elevation of
each rain gauge is considered a secondary parameter in the geostatistical Co-Kriging analy-
sis. Figure 3B shows the variation in elevation of the rain gauges used. KSA is divided into
nine hydrological zones [74]. The hydrological zones, along with the number of rain gauges
contained within each, are shown in Figure 3C. The highlighted region, encompassing
Zone VII and segments of Zones II and IV as depicted in Figure 3C, lacks any rain gauges.
This region has been labeled as the “Empty Quarter” because it nearly encompasses its
geographic boundaries. It has been excluded from the study area due to the absence of
ground data available for satellite data assessment or conducting geostatistical analysis.
Figure 3D shows the extent of the current study area.
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2.3. Satellite Data

Seven satellite precipitation datasets (sources shown in Table 1) were downloaded and
used in the current study:

CHIRPS V2.0 depends on the infrared radiation emitted by Cold Clouds in the upper
atmosphere for specific Duration (CCD) rainfall estimations [80,81]. The TMPA 3B42
V7 algorithm and interpolated gauge products are utilized to fine-tune the CCD rainfall
estimates [82–85]. CHIRPS is an almost-worldwide 0.05

◦
spatial resolution dataset that

spans the region between 50
◦

north and 50
◦

degrees south [24]. The University of California
at Santa Barbara (UCSB) provides CHIRPS precipitation data in monthly, decadal, pentadal,
and daily intervals, spanning the period from 1981 to the near present [86].

PERSIANN datasets were developed by the Center for Hydrometeorology and Remote
Sensing at the University of California, Irvine, utilizing Gridded Satellite (GridSat-B1) IR
data [87]. The precipitation dataset is generated by utilizing Artificial Neural Networks to
treat remotely-sensed satellite data [88]. PERSIANN spans the region between 60

◦
north

and 60
◦

south [89]. Three PERSIANN datasets are utilized in the current study.

• PERSIANN dataset which is available in hourly, 3-hourly, 6-hourly, daily, monthly,
and annual temporal resolution from March 2000 to the near present with 0.25

◦ × 0.25
◦

spatial distribution.
• PERSIANN-CDR dataset which is available in daily, monthly, and annual temporal

resolution from January 1983 to the near present with 0.25
◦ × 0.25

◦
spatial distribution.

• PERSIANN-CCS dataset which is available in hourly, 3-hourly, 6-hourly, daily, monthly,
and annual temporal resolution from January 2003 to the present with 0.04

◦ × 0.04
◦

spatial distribution.

CMORPH provides bias-corrected precipitation estimates by utilizing the Climate Pre-
diction Center (CPC) Morphing Technique to treat Passive Microwave (PMW) precipitation
data [80]. The precipitation datasets are available in (30-min/8 km), (hourly/0.25

◦
), and

(daily/0.25
◦
) spatiotemporal resolutions. The daily precipitation data used in the current

study extends from 60
◦

north to 60
◦

south with a time coverage starting from Jan-1998 to
the near present.

TMPA 3B42 is a collaborative mission between NASA and the Japan Aerospace Ex-
ploration Agency (JAXA), to study tropical and subtropical precipitation. The TRMM
Multi-satellite Precipitation Analysis algorithm (TMPA) is utilized in the processing of the
low-orbit five-sensor satellite data [85], to provide precipitation datasets. Two versions of
TMPA datasets are available: 3B43 and 3B42, for daily and sub-daily (3-h) temporal resolu-
tion, respectively. Both datasets are available in 0.25

◦
spatial resolution and span the region

between 50
◦

north and 50
◦

degrees south [28]. TMPA 3B42 is available in two versions: V6
and V7. V7 has a significant improvement in accuracy over V6 [29–33]. Accordingly, TMPA
3B42 V7 was selected for the current study. The TMPA 3B42 V7 dataset has a time coverage
from January 1998 to January 2020.

GPM IMERG is a part of the collaborative NASA-JAXA Global Precipitation Measure-
ment (GPM) mission. It employs an international network of satellites to provide world-
wide precipitation and snowfall observations [90]. GPM IMERG exhibits greater sensitivity
compared to TRMM in detecting light rain with an intensity of less than 0.5 mm/h [91].
The GPM algorithms utilize a sophisticated Dual-frequency Precipitation Radar (DPR)
and a multi-channel GPM Microwave Imager (GMI) integrated into a Core Observatory
Satellite. This satellite serves as a benchmark for standardizing various operational satellite
measurements [92]. GPM IMERG V7 has a global coverage span from 90

◦
north to 90

◦
south

with 0.1
◦

degree spatial resolution. It has several temporal resolutions (30 min, 3 h, daily,
7 days, and monthly) [93]. Each dataset has three runs classified based on product latency:
A- (Early Run, 4-h latency), B- (Late Run, 14-h latency), and C- (Final Run, 3.5-month
latency). The GPM IMERG V7 Final Run precipitation dataset is available from 1 June 2000
to the near present. Figure 4 shows the temporal coverage and resolution of each SPD.
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2.4. Interpolation of Ground Station Data

Spatial interpolation methods utilize scattered measured points to build a surface of
the studied variable that covers the study area. Spatial interpolation techniques are classi-
fied into two major approaches: (A) geostatistical and (B) deterministic approaches [94].
The deterministic approach handles measured data through a conventional interpolation
approach to produce a parametric function used to obtain the missing values. Contrarily,
the geostatistical approach deals with the problem of missing spatial data from the proba-
bilistic perspective [95]. The details of deterministic and geostatistical techniques are given
in Appendix B.

Geostatistical interpolation techniques, like deterministic interpolation techniques, are method-
ologies to obtain inferences about spatially varied parameters. The core difference between the
two techniques is that the geostatistical technique considers the spatial variability of the studied
parameters [96,97]. The semivariogram has a pivotal role in geostatistical interpolation since it
provides a link between spatial description and spatial prediction. In all geostatistical interpolation
techniques, the semivariogram provides a measure of dissimilarity (variability) between the investi-
gated variables’ measured data in both space and direction [98]. It is calculated as one-half of the
average squared difference between the values of all possible pairs of data N(h) separated by a lag
vector (h), as given in Equation (1) and shown in Figure 5. Several theoretical semivariograms
are fitted to observed measurements to provide a mathematical presentation of the variance. In
the current study, seven theoretical variogram models are selected for evaluation, namely Circular,
Spherical, Exponential, Gaussian, K-Bessel, J-Bessel, and Stable, as shown in Equations (2) through
(8), respectively, in Table 2 [52].

γ(h) =
1

2N(h)

N(h)

∑
i=1

(Z(ui)− Z(ui + h))2 (1)

where:

Z(ui) and Z(ui + h) are the measured values at locations (ui) and (ui + h), respectively.



Water 2024, 16, 925 10 of 43Water 2024, 16, x FOR PEER REVIEW 11 of 43 
 

 

 
Figure 5. Main parameters of typical semivariograms. 

Where:  𝛾(ℎ): Semivariance at distance h 
The range (𝑎) is the distance between two measured values that, when exceeded, the semivariogram 
is flattened and the two points are no longer correlated. 
The nugget (𝐶) is the value of variance in a very short distance.  
The sill is the maximum variance located at a distance ≥ 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 (𝑎). 
The partial sill (𝐶) is the difference between the sill and the nugget values. 

Table 2. Semivariogram models. 

Model Equation 

Circular 𝛾(ℎ) = ⎩⎨
⎧𝐶 ቐ2𝜋 𝑠𝑖𝑛ିଵ ൬ℎ𝑎൰ + 2ℎ𝜋𝑎 ඨ1 − ℎଶ𝑎ଶቑ  𝐶                                                          

𝑓𝑜𝑟 ℎ ≤ 𝑎 

(2) 𝑓𝑜𝑟 ℎ > 𝑎 

Spherical 𝛾(ℎ) = ቐ𝐶 ቊ32 ൬ℎ𝑎൰ − 12 ൬ℎ𝑎൰ଷቋ𝐶                                   
𝑓𝑜𝑟 ℎ ≤ 𝑎 

(3) 𝑓𝑜𝑟 ℎ > 𝑎 

Exponential 𝛾(ℎ) = 𝐶 ൜1 − 𝑒𝑥𝑝 ൬−3 ℎ𝑎൰ൠ 𝑓𝑜𝑟 𝑎𝑙𝑙 (ℎ) 𝑣𝑎𝑙𝑢𝑒𝑠 (4) 

Gaussian 𝛾(ℎ) = 𝐶 ቊ1 − 𝑒𝑥𝑝 ቆ− ൬ℎ𝑎൰ଶቇቋ 𝑓𝑜𝑟 𝑎𝑙𝑙 (ℎ) 𝑣𝑎𝑙𝑢𝑒𝑠 (5) 

K-Bessel 𝛾(ℎ) = 𝐶 ⎩⎪⎨
⎪⎧1 − ൬𝛺ఏೖ. ℎ𝑎 ൰ఏೖ

2ఏೖషభ 𝛤(𝜃) 𝐾ఏೖ ቆ𝛺ఏೖ. ℎ𝑎 ቇ⎭⎪⎬
⎪⎫

 𝑓𝑜𝑟 𝑎𝑙𝑙 (ℎ) 𝑣𝑎𝑙𝑢𝑒𝑠 (6) 

J-Bessel 𝛾(ℎ) = 𝐶 ⎩⎪⎨
⎪⎧1 − 2ఏ𝛤(𝜃ௗ + 1)൬𝛺ఏ. ℎ𝑎 ൰ఏ 𝐽ఏ ቆ𝛺ఏ. ℎ𝑎 ቇ⎭⎪⎬

⎪⎫
 𝑓𝑜𝑟 𝑎𝑙𝑙 (ℎ) 𝑣𝑎𝑙𝑢𝑒𝑠 (7) 

Stable 𝛾(ℎ) = 𝐶 ቊ1 − 𝑒𝑥𝑝 ቆ−3 ൬ℎ𝑎൰ఈቇቋ 𝑓𝑜𝑟 𝑎𝑙𝑙 (ℎ) 𝑣𝑎𝑙𝑢𝑒𝑠 (8) 

  

Figure 5. Main parameters of typical semivariograms.

Where:
γ(h): Semivariance at distance h
The range (a) is the distance between two measured values that, when exceeded, the semivariogram
is flattened and the two points are no longer correlated.
The nugget (Co) is the value of variance in a very short distance.
The sill is the maximum variance located at a distance ≥ the range (a).
The partial sill (C) is the difference between the sill and the nugget values.

Table 2. Semivariogram models.

Model Equation

Circular γ(h) =


C
{

2
π sin

−1
(

h
a

)
+ 2h

πa

√
1 − h2

a2

}
C

f or h ≤ a
(2)

f or h > a

Spherical γ(h) =


C
{

3
2

(
h
a

)
− 1

2

(
h
a

)3
}

C

f or h ≤ a
(3)

f or h > a

Exponential γ(h) = C
{

1 − exp
(
−3 h

a

)}
f or all (h) values (4)

Gaussian γ(h) = C
{

1 − exp
(
−
(

h
a

)2
)}

f or all (h) values (5)

K-Bessel γ(h) = C

1 −

(
Ωθk

.h

a

)θk

2θ
k−1 Γ(θk)

Kθk

(
Ωθk .h

a

) f or all (h) values (6)

J-Bessel γ(h) = C

1 − 2θd Γ(θd+1)(
Ωθd

.h

a

)θd
Jθd

(
Ωθd .h

a

) f or all (h) values (7)

Stable γ(h) = C
{

1 − exp
(
−3
(

h
a

)α)}
f or all (h) values (8)

Where:
Ωθk is a value found numerically so γ(a) = 0.95C, for any θk,
Γ(θk) and Γ(θd + 1) are the gamma functions (Γ(y) =

∫ α
0

x
y exp(−x)dx),
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Kθk is the modified Bessel function of the second kind of order θk [99]
Ωθd is a value found numerically so γ(a) = C, for any θk,
Jθd is the J-Bessel function [99].
α is a stability parameter ranging from 0 to 2.

In the current study, due to the nature of total annual and maximum daily rain-
fall where continuity is assured at small distances, all semivariogram nugget values
were set to zero. This assumption also implies that the effect of measurement error is
negligible [100,101]. After obtaining the theoretical semivariogram parameters, geostatis-
tical techniques can be used to estimate the missing values. Equation (9) illustrates the
general concept of geostatistical spatial estimation of a missing variable at the location (uo).

Ẑ(uo) = ∑n
i=1 λiZ(ui) (9)

where:

Ẑ(uo): the estimate of the variable of interest at the location (uo).
Z(ui) : the measured value of the variable of interest at the location (ui).
λi : the weight of Z(ui).

As concluded in the literature, the geostatistical approach yields more precise out-
comes compared to deterministic methods. Accordingly, forty-two geostatistical model
alternatives were generated using different Kriging and Cokriging models alongside nine
semivariogram models, in addition to the Empirical Bayesian Kriging as given in Table 3.
The number of available terrestrial gauge records varies significantly from year to year, as
given in Figure 6.

Table 3. Matrix of geostatistical method application codes employed in the present study.

Semivariogram Model

Circular Spherical Exponential Gaussian K-Bessel J-Bessel Stable

G
eo

st
at

is
ti

ca
lm

od
el

Ordinary Kriging OK-CI OK-SP OK-EX OK-GA OK-KB OK-JB OK-ST

Simple Kriging SK-CI SK-SP SK-EX SK-GA SK-KB SK-JB SK-ST

Universal Kriging UK-CI UK-SP UK-EX UK-GA UK-KB UK-JB UK-ST

Ordinary Cokriging OCK-CI OCK-SP OCK-EX OCK-GA OCK-KB OCK-JB OCK-ST

Simple Cokriging SCK-CI SCK-SP SCK-EX SCK-GA SCK-KB SCK-JB SCK-ST

Universal Cokriging UCK-CI UCK-SP UCK-EX UCK-GA UCK-KB UCK-JB UCK-ST

Empirical Bayesian Kriging EBK
Water 2024, 16, x FOR PEER REVIEW 13 of 43 
 

 

 
Figure 6. Variation in the number of available rainfall gauge records across KSA from 1960 to 2018. 

No specific thresholds were identified in the literature regarding the minimum 
required spatial density of rain gauges for the appropriate application of geostatistical 
techniques. Based on the quartile analysis of the number of terrestrial rain gauges 
available from 1960 to 2018, years with rain gauge records of less than 62 records per year 
were excluded from the geostatistical analysis. For the current study, the geostatistical 
analysis was conducted from 1967 to 2014, with a minimum 123 rain gauge records per 
year. Figure 7 shows the distribution of terrestrial gauges for an excluded year (1965, with 
50 gauges) and the year with the lowest density of rain gauges among those considered 
(1967, with 123 gauges). 

 
Figure 7. Rain gauge spatial distribution across KSA in 1965 (50 gauges) and 1967 (123 gauges). 

Figure 8 summarizes the procedure followed in the current study, starting from data 
collection and ending with the generation of isohyetal maps of maximum daily precipita-
tion for the various return periods. 

Figure 6. Variation in the number of available rainfall gauge records across KSA from 1960 to 2018.



Water 2024, 16, 925 12 of 43

No specific thresholds were identified in the literature regarding the minimum re-
quired spatial density of rain gauges for the appropriate application of geostatistical tech-
niques. Based on the quartile analysis of the number of terrestrial rain gauges available
from 1960 to 2018, years with rain gauge records of less than 62 records per year were
excluded from the geostatistical analysis. For the current study, the geostatistical analysis
was conducted from 1967 to 2014, with a minimum 123 rain gauge records per year. Figure 7
shows the distribution of terrestrial gauges for an excluded year (1965, with 50 gauges)
and the year with the lowest density of rain gauges among those considered (1967, with
123 gauges).
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Figure 8 summarizes the procedure followed in the current study, starting from data
collection and ending with the generation of isohyetal maps of maximum daily precipitation
for the various return periods.
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3. Results and Discussion

The geostatistical analysis is applied annually from 1967 to 2014 with a minimum of
123 gauges records per year. Cross-validation [100,102,103] is applied to each measured
value within the study area, where each data point is removed, one at a time, and a
predicted value at the removed point location is estimated using the remaining measured
points with the geostatistical technique under assessment. The cross-validation Root Mean
Square Error (RMSE) is computed as given in Equation (10). In the current study, the cross-
validations RMSE is utilized as a selection tool to pick the most appropriate geostatistical
technique among the 43 techniques proposed. Figure 9 illustrates the variation of the
cross-validation RMSE with geostatistical techniques for total precipitation over the study
area in 1999 as an example. The lowest cross-validation RMSE value was achieved while
using Universal Cokriging with a J-Bessel semi-variogram (UCK-JB). Similarly, OCK-CI
is selected for maximum daily precipitation in 1999 as shown in Figure 10. UCK-JB and
OCK-CI are utilized to generate the spatial distribution of total annual precipitation and
maximum daily precipitation, respectively, in 1999.

Cross validation RMSE =

√
∑n

i=1
(
Ẑ(ui)− Z(ui)

)2

n
(10)
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Figure 11 shows the spatial distribution of total annual and maximum daily precip-
itation depth in 1999 using the selected OCK-CI and UCK-JB geostatistical techniques,
respectively. Due to the randomness of missing rainfall data and the variability in precipita-
tion depth from one year to another, no specific approach can be considered as a generally
recommended geostatistical technique for the study area. The analysis conducted for the
1999 dataset is replicated across other precipitation datasets spanning from 1967 to 2014 to
discern the optimal geostatistical techniques with the least root mean square error (RMSE).
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Figure 11. Spatial distribution of the total annual and maximum daily precipitation in 1999 using
geostatistical techniques (UCK-JB and OCK-CI, respectively).

Table 4 presents the superior geostatistical techniques for both total annual and max-
imum daily precipitation depths observed from 1967 to 2014, determined based on the
lowest cross-validation RMSE. Notably, it is observed that the geostatistical technique
yielding the lowest RMSE for the total annual precipitation dataset generally differs from
that for the maximum daily precipitation dataset. This variation is attributed to differ-
ences in the variograms employed for each dataset, stemming from disparities in their
respective variances.

Furthermore, the Supplementary Materials include isohyetal maps depicting the
spatial distributions of total annual and maximum daily precipitation depth across the
study area from 1967 to 2014, utilizing the identified best geostatistical techniques. These
Supplementary Materials are anticipated to provide valuable resources for researchers and
engineers, allowing direct utilization of these maps without the necessity of re-conducting
the data gap analysis.

The subsequent phase involves evaluating the utilization of various satellite rainfall
datasets to address data gaps and comparing them with the previously discussed geostatis-
tical techniques. To accomplish this objective, it is imperative to ensure consistency in the
timing of the daily rainfall measurements, in terms of both commencement and termination,
between the ground-based data and the satellite data. This alignment is crucial to enable a
fair and accurate comparison with the available ground rainfall data.
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Table 4. Selected geostatistical methods for maximum and total annual precipitation depth.

Year Max. Daily Tot. Annual Year Max. Daily Tot. Annual

1967 UCK-JB UK-JB 1991 OK-JB OCK-KB
1968 UCK-CI SCK-SP 1992 OK-JB OCK-JB
1969 OCK-ST SCK-ST 1993 SCK-KB UCK-JB
1970 UK-JB OK-GA 1994 OK-JB OCK-SP
1971 SCK-ST OCK-CI 1995 OK-JB OCK-CI
1972 OK-JB OCK-CI 1996 OCK-KB OCK-EX
1973 OK-JB OCK-JB 1997 SCK-ST UCK-ST
1974 SCK-JB OK-JB 1998 OK-GA UCK-GA
1975 UCK-JB OCK-SP 1999 OCK-CI UCK-JB
1976 OCK-EX OCK-JB 2000 OK-EX OK-JB
1977 UK-JB OCK-JB 2001 OCK-ST OCK-KB
1978 UK-JB OCK-JB 2002 OCK-GA OCK-CI
1979 OCK-ST OCK-GA 2003 SCK-GA UK-JB
1980 OCK-JB OK-JB 2004 OCK-JB OK-CI
1981 OCK-ST OCK-CI 2005 OCK-JB UK-JB
1982 UCK-JB OK-JB 2006 OCK-KB OCK-EX
1983 OK-JB UCK-CI 2007 UK-ST OK-GA
1984 OCK-JB OCK-JB 2008 OCK-JB SCK-KB
1985 OCK-KB OK-GA 2009 UK-JB OCK-JB
1986 OCK-EX OCK-CI 2010 OCK-ST SCK-EX
1987 OCK-JB OK-JB 2011 SK-CI OK-JB
1988 OCK-CI UK-JB 2012 UCK-KB OCK-SP
1989 SCK-EX UCK-EX 2013 OCK-KB OCK-JB
1990 OCK-JB UCK-KB 2014 OCK-EX UCK-CI

As per the daily precipitation bulletin released by the KSA Ministry of Environment,
Water, and Agriculture, the recorded daily precipitation depth is the accumulated rainfall
depth from 9:00 a.m. to 9:00 a.m. of the next day (KSA local time). Satellite precipitation
datasets (SPDs) are reported in Coordinated Universal Time (UTC). KSA local time is 3.00 h
ahead of UTC, as shown in Figure 12A. The SPDs are reported at the starting time of the
rainfall accumulation interval. The accumulation interval differs according to the temporal
resolutions of the SPDs. In the current study, daily, 3 h, and 30 min SPDs were used, as
illustrated in Figure 12B. The SPDs with 3 h of temporal resolution are aggregated from
UTC 06:00 to UTC 03:00 of the following day to achieve daily records matching KSA gauges.
The 30 min datasets are aggregated from UTC 06:00 to UTC 05:30 of the following day.
Exact time matching between the SPDs data and daily rain gauge records could not be
achieved for datasets with daily temporal resolution (CHIRPS V2.0 and PERSIANN-CDR).

The common approach to evaluating the quality of fitting between the predicted
rainfall depth (whether from satellite data or geostatistical techniques) and the terrestrial
rain gauge observations is the RMSE (also called Root Mean Square Deviation) given by
Equation (11). In the current study, the RMSE has a millimeter dimension similar to the stud-
ied variable (precipitation). Each terrestrial gauge with measured values is compared to the
eight predicted precipitation depths—seven SPDs and the geostatistical method—for both
maximum and total annual precipitation. As an example, Figures 13 and 14 show the vari-
ation of the RMSE for rain gauge SA166 for the eight evaluated datasets. Figures 13 and 14
clarify the variation in the number of overlapped points used for RMSE calculation for each
dataset, using gauge SA166 as an example. Consequently, the RMSE cannot be utilized to
select the best-performing datasets for maximum daily and total yearly precipitation. In
this study, the Normalized Root Mean Square Error (NRMSE) is proposed as a replacement
for the RMSE to account for the variation in the number of overlapped readings. The
Normalized Root Mean Square Error (NRMSE) is the normalized form of the RMSE by the
mean value as given in Equation (12). NRMSE is used to replace the RMSE in comparing
the adequacy of different datasets.
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2

n

Y
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where:

Ŷi and Y are the predicted values and average value of the variableY respectively.
n/; is the number of records.
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Figure 13. Variation of RMSE for maximum daily data sources at gauge SA116 (terrestrial rain
gauge records on the horizontal axis and predicted data on the vertical axis in mm). The numbers
of overlapped annual records are 29, 39, 16, 13, 26, 16, 19, and 19 years of records for CHIRPS V2.0,
Geostatistical, GPM IMERG V7, PERSIANN-CCS, PERSIANN-CDR, PERSIANN, CMORPH, and
TMPA 3B42 V7, respectively.
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Figure 14. Variation of RMSE for total annual data sources at gauge SA116 (terrestrial rain gauge
records on the horizontal axis and predicted data on the vertical axis in mm). The numbers of
overlapped annual records are 29, 39, 16, 13, 26, 16, 19, and 19 years of records for CHIRPS V2.0,
Geostatistical, GPM IMERG V7, PERSIANN-CCS, PERSIANN-CDR, PERSIANN, CMORPH, and
TMPA 3B42 V7, respectively.

The derived Normalized Root Mean Square Error (NRMSE) metrics are calculated at
terrestrial rain gauge locations where measured data are accessible. As the distribution
of rain gauges across the study area is uneven, characterized by a concentration of gauge
stations in the southwestern region, a moderate density in the central area, and sparse
coverage in other regions (refer to Figure 4), it is anticipated that this nonuniform distribu-
tion will influence the computed NRMSE values. Employing Inverse Distance Weighting
(IDW) techniques, the spatial distribution of NRMSE values is generated to mitigate the
impact of rain gauge distribution irregularity on assessment accuracy. Figure 15 illustrates
the resultant spatial distribution of NRMSE values, while a summary of spatial analyses,
depicted through Box-Plot charts, is presented in Figure 16 for the case of maximum daily
precipitation. Analogously, NRMSE values corresponding to total annual precipitation,
along with their characteristics, are delineated in Figures 17 and 18, respectively. These
figures distinctly demonstrate the superior performance of geostatistical analysis over
satellite datasets based on NRMSE values.

The geostatistical approach yielded minimum mean NRMSE values of 0.69 and 0.80 for
maximum daily precipitation and total annual precipitation cases, respectively. Despite the
PERSIANN-CCS satellite dataset possessing the highest spatial resolution (4 km × 4 km)
among the tested precipitation satellite datasets, it exhibited the lowest performance in
both maximum and total annual precipitation estimation. Notably, the GPM IMERG
V7 dataset outperformed other satellite precipitation datasets in estimating total annual
precipitation, with an average spatial NRMSE value of 0.82, compared to 0.80 achieved by
the geostatistical technique. Conversely, for the estimation of maximum daily precipitation,
the PERSIANN-CDR dataset displayed the highest performance, with an average spatial
NRMSE value of 0.80, as opposed to 0.69 obtained by the geostatistical approach. It is
noteworthy that the optimal performance of the geostatistical technique is observed in the
southwestern (Asir and Makkah regions) and central (Al-Riyadh region) areas, coinciding
with the regions boasting the highest density of rain gauges.
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In light of the aforementioned findings, the geostatistical technique was implemented,
following the recommendations outlined in Table 4, to obtain the spatial distribution of
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maximum daily and total annual precipitation across the Kingdom of Saudi Arabia (KSA)
and to generate corresponding isohyetal contour maps for both cases on an annual basis
spanning the period from 1967 to 2014. Supplementary Materials contain these datasets
and maps. As a result of this spatial distribution analysis conducted on an annual basis,
the mean total annual and maximum daily precipitation depths are depicted in Figure 19.
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Figure 19. Mean total annual and maximum daily precipitation depths over the study area (based on
precipitation data from 1967 to 2014, and also Table 4 recommendations).

As an illustration of the utility of the generated maps, the geostatistical layers pro-
duced for Maximum Daily Precipitation Depth (MDPD) (presented in the Supplementary
Materials) can be utilized to furnish a gap-free MDPD time series at any gauge station.
Figure 20 exemplifies the filled gaps in the maximum daily rain gauge data for station A110.
Subsequently, the gap-free time series records can serve as inputs for frequency analysis to
obtain the MDPD corresponding to different return periods. Generating isohyetal maps for
MDPD for various return periods necessitates the application of geostatistical techniques
between frequency analysis outcomes at gauge locations. To minimize geostatistical in-
terpolation error, gridded precipitation data are generated with a spacing of 4470 m in
both east and north directions, providing a maximum served area of 20 square kilometers
for each grid point. The selection of the 20 square kilometer limit is based on the World
Meteorological Organization (WMO) recommendation of a minimum of one rain gauge
per every 20 square kilometers in urban areas [11]. Following the WMO limit, the study
area encompasses 71,790 grid points utilized in generating MDPD raster layers for different
return periods without any geostatistical interpolation and with a resolution of 20 square
kilometers per pixel.
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Figure 20. Filled precipitation data for station A110 as an example.

Several statistical probability distributions can be used in the frequency analysis [55].
In the process of generating raster layers for extreme values of Maximum Daily Precipitation
Depth (MDPD) corresponding to various return periods, a range of statistical probability
distributions is evaluated, including the Gamma, Normal, and Extreme values distribution
families, as elaborated in Table 5.

Table 5. Evaluated Statistical Distributions.

Family Distribution Equation Parameters (p)

Gamma

Exponential f (x) = 1
α exp

[
− x−γ

α

]
(13) α, γ

Gamma f (x) = 1
αβΓ(β)

xβ−1e−( x
α ) (14) α, β

Pearson Type (III) f (x) = 1
αβΓ(β)

(x − γ)β−1e−( x−γ
α ) (15) α, β, γ

Normal

Two Parameters Log-Normal f (x) = 1
xσ

√
2π

exp
[
− (ln(x)−µ)2

2σ2

]
(16) µ, σ

Three Parameters
Log-Normal f (x) = 1

(x−m)σ
√

2π
exp
[
− (ln(x−m)−µ)2

2σ2

]
(17) µ, σ, m

Extreme Value

Generalize Extreme
Value (GEV) f (x) = 1

α

[
1 − k

α (x − u)
] 1

k −1
exp
[
−
(

1 − k
α (x − u)

) 1
k
]

(18) α, k, u

Extreme Value Type I (EV1) f (x) = 1
α exp

[
− x−u

α − exp
(
− x−u

α

)]
(19) α, u

Weibull f (x) = c
α

( x
α

)c−1exp
[
−
( x

α

)c
]

(20) α, c

Each statistical distribution is characterized by a probability density function (PDF),
given by Equations (13) through (20). Parameters for each distribution are selected to
optimize the likelihood of observations, employing the Method of Maximum Likelihood
(MLK), as articulated in Equation (21). Subsequently, the Chi-square

(
χ2) test is employed

at a significance level of 5% to assess the adequacy of the tested distribution. Data is
partitioned into (k) classes, as specified by Equation (22), and the comparison between the
calculated

(
χ2

data
)

as given in Equation (23) and critical
(
χ2

critical
)

values, with (k − p − 1)
degrees of freedom, determines the acceptance or rejection of the PDF for predicting MDPD
across different return periods.

L(α1, α1, . . . . . . . . . αn) =
n

∏
i=1

f (xi : α1, α1, . . . . . . . . . αn) (21)

k = 10 + 1.33 ln(n) (22)
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where:

n is the number of observations, and equals 48 in the case of gap-filled data series.

χ2
data =

k

∑
i=1

(Oi − Ei)
2

Ei
(23)

where:

Oi is the number of observations in the class interval i.
Ei is the expected number of observations in the class interval (i) according to the tested PDF.

Furthermore, the Akaike Information Criterion (AIC) [104] serves as a criterion for
selection among accepted probability density functions subsequent to the Chi-square test.
AIC, being an asymptotically unbiased estimator, is calculated for the evaluated PDF model
according to Equation (24), leveraging the known value of the log-likelihood function.

AIC = −2L + 2p (24)

Figure 21 presents a raster map summarizing the PDF with the lowest AIC at each
grid point, thereby indicating the spatial distribution of the selected PDF. The dominance
of Gamma family distributions is evident, covering approximately 56% of the study area,
followed by Extreme value distributions with 34% coverage, and lastly, the Normal dis-
tribution family with 10% coverage. Isohyetal maps for maximum daily precipitation
across different return periods are computed and delineated in Figure 22, based on the
recommended PDF identified in Figure 21.
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4. Conclusions

This comprehensive study addresses the critical need for accurate and gap-free rainfall
data in arid regions, employing the Kingdom of Saudi Arabia (KSA) as a focal case study. It
covers 75% of the Kingdom of Saudi Arabia’s area and spans the period from 1967 to 2014.
The remaining 25% of the KSA’s area is omitted due to the lack of rain gauge coverage. The
research evaluated seven satellite precipitation datasets and 43 geostatistical interpolation
techniques to compensate for deficiencies in terrestrial rain gauge records.

Normalized Root Mean Square Error by the mean value of observation (NRMSE)
is employed as a ranking criterion for the evaluated datasets. Geostatistical techniques
demonstrated superior performance over satellite datasets, particularly achieving NRMSE
values of 0.69 and 0.80 for maximum daily and total annual records, respectively. Notably,
regions with higher gauge density exhibited the best performance.

Among satellite datasets, PERSIANN-CDR and GPM IMERG V7 demonstrated supe-
rior accuracy, with NRMSE values of 0.80 and 0.82 for maximum and total annual records,
respectively. Geostatistical techniques were further applied to generate spatial distributions
of maximum and total annual precipitation, revealing their efficacy in addressing data gaps.

Probability Density Functions (PDFs) from the Gamma, Extreme Value, and Normal
distribution families were assessed to fit the gap-filled datasets. These families exhibited
best fitting over 56%, 34%, and 10% of the study area gridded data, respectively. The se-
lected PDF at each grid point was then utilized to compute maximum daily precipitation for
various return periods, facilitating the creation of isohyetal raster maps for hydrological studies.

The rainfall dataset produced herein holds considerable value for professionals en-
gaged in water resource and flood hazard assessments within Saudi Arabia, owing to
several key advantages: (i) comprehensive coverage of the entire KSA region, excluding
the Empty Quarter; (ii) utilization of 48 years of ground rain gauge records spanning the
period from 1967 to 2014; (iii) mitigation of data gaps through integration of seven distinct
Satellite Precipitation Datasets (SPDs) alongside the geospatial dataset, which exhibited
the least error among its counterparts; (iv) inclusion of maximum daily and total annual
rainfall data, as well as extreme events corresponding to various return periods. Notably,
the latter dataset holds significant importance for informing decisions regarding flood
hazard assessment and protective measures.

While the focus of this study may appear geographically restricted to Saudi Arabia, its
significance transcends national borders. By providing a robust framework for addressing
data gaps through geospatial algorithms, this study serves as a guiding resource for
engineers and researchers involved in flood protection and water resource management
projects across KSA. The generated raster maps offer invaluable assistance in expediting
the process of filling rainfall data gaps and identifying suitable statistical distributions.
Moreover, the insights gleaned from this study hold relevance beyond the confines of
KSA, offering valuable methodologies applicable to similar studies globally. However,
it is imperative to acknowledge and address certain requirements and limitations when
applying this approach in other case studies:

Firstly, temporal consistency is crucial. The availability of ground rainfall data from
gauges covering the same time period and maintaining consistent data resolution (e.g.,
daily, monthly, annual) is essential for reliable analysis.

Secondly, the spatial distribution of ground gauges is pivotal. A sufficient quantity of
gauges dispersed across the area of interest, rather than clustered or aligned in a specific
direction, enhances the robustness of the interpolation process. Quality data from multiple
gauges enriches the accuracy of the results.

Thirdly, consideration of local environmental factors is paramount. Understanding
the influence of variables such as topography, prevailing winds, and proximity to large
bodies of water aids in selecting appropriate interpolation methods and facilitates the
interpretation of outcomes.

Lastly, it is important to acknowledge the potential impact of dynamic factors such
as climate change on rainfall patterns. Geostatistical interpolation assumes spatial rela-
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tionships between data gauges remain constant over time, which may not hold true in
scenarios of significant climatic variability.
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Appendix A

Table A1. Sample of satellite-borne datasets assessment studies.

Study Type
Location Datasets Gauges

Study Accuracy
Study
Period Main Findings

Combined study
Tapajos River
basin—Amazon

TRMM 3B42 118 RG.&23 FG.
Daily and Monthly

1998–2006 for rain
2000–2003 for Flow

The TRMM estimates closely align
with those obtained from the rain
gauge record when averaged over the
entire basin. The generated modeled
hydrographs demonstrated acceptable
accuracy, as evidenced by the
comparison with 23 flow gauges
within the basin [105].

Statistical study
Iran TRMM 3B42

Grid-1
Daily, Seasonal,
Annual

1998–2006

The TRMM 3B42 data showed a weak
correlation with daily records but
displayed improved accuracy when
assessing annual data. However, it
tended to underestimate the average
annual precipitation [106].

https://www.mdpi.com/article/10.3390/w16070925/s1
https://www.mdpi.com/article/10.3390/w16070925/s1
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Table A1. Cont.

Study Type
Location Datasets Gauges

Study Accuracy
Study
Period Main Findings

Combined study
Gilgel Abay
basin-Ethiopia

CMORPH, TMPA
3B42RT, TMPA
3B42, PERSIANN

4 RG.&1 FG.
Daily and Monthly 2006–2007

Datasets utilizing microwave data
(such as CMORPH and TMPA
3B42RT) consistently exhibit superior
streamflow modeling, displaying a
bias on the order of 53%. In contrast,
the PERSIANN dataset, which relies
on infrared data, demonstrates lower
performance with a bias of 83%.
Among these datasets, TMPA 3B42,
which integrates both satellite and
ground gauge data, exhibits the
lowest performance, showing a bias of
8% [107].

Statistical study
China PERSIANN-CDR Grid-2

daily 1983–2006

PERSIANN-CDR effectively captured
the spatial and temporal daily extreme
rainfall characteristics, especially in
the humid Manson region of eastern
China. However, its performance
notably diminished in arid and
mountainous terrains, such as the
Tibetan Plateau in the west and the
Taklamakan Desert in the
northwest [108].

Statistical study
9 watersheds all
over the world

10 Datasets
1052 RG.
Daily, Monthly,
Annual

2000–2013

The performance of satellite
precipitation datasets is highly
dependent on rainfall variability.
Many datasets underestimate
precipitation during wet seasons and
overestimate it during dry ones [109].

Statistical study
Iraq TRMM-3B42 4 RG.

Monthly 2000–2010

A high correlation was observed
between TMPA3B42 and ground
stations at the monthly temporal scale.
There was an overestimation of
TRMM rainfall estimates recorded in
most of the rainy months [110].

Statistical study
Iran

TMPA-3B42V7,
PERSIANN,
CMORPH

Grid-3
Daily and Monthly 2003–2008

TRMM TMPA 3B42 v7 demonstrates
superior performance compared to the
other two datasets across all the
examined regions in Iran [111].

Hydrological
Gandak Himalayan
River-China

TMPA 3B42 V7 5 FG.-Daily 2000–2010

The TRMM 3B42 dataset proves
effective in hydrological modeling for
rainfall intensities categorized as
moderate to heavy (ranging from 7.5
to 124.4 mm/day). However, its
performance is limited for both light
rainfall (less than 7.5 mm/day) and
extremely heavy rainfall (greater than
124.4 mm/day) intensities [112].
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Table A1. Cont.

Study Type
Location Datasets Gauges

Study Accuracy
Study
Period Main Findings

Statistical study
East India

IMERG V6, TRMM-
TMPA-3B42
V7,GSMap V6

Grid-4
Daily

June 2014 to
September 2014

Low correlation coefficients were
reported between daily data and all
datasets. IMERG and GSMap
demonstrated superior performance
compared to the TMPA dataset in
detecting light rain events. Significant
uncertainty is associated with all
satellite-based precipitation products
in regions characterized by
orographic-dominated
precipitation [113].

Statistical study
China CHIRPS Grid-5

Daily 1981–2014

CHIRPS exhibited superior
performance during high-intensity
rainfall events when contrasted with
low-intensity rainfall in arid regions.
Its accuracy is notably influenced by
the movement of the monsoon.
Additionally, CHIRPS datasets
demonstrated better performance in
the basins of southern China in
comparison to those in northwestern
and northern China [114].

Statistical study
KSA

GPM-IMERG (early,
late, final) runs

189 RG.
Daily

October 2015
to
April 2016

The IMERG early run demonstrated
satisfactory accuracy in the central,
eastern, and certain western regions of
KSA. However, notable fluctuations in
accuracy were observed in other areas.
Conversely, the final run exhibited
improved accuracy in the southern
and western regions but revealed
higher errors in the northern and
central parts [115].

Statistical study
China

TMPA-3B42V7,
CMORPH-CRT,
GPM-IMERG-
V05B,
GPM-IMERG-
V04A

542 RG.
Daily, Seasonal,
Annual

March 2014
to
February 2017

All datasets underestimated the depth
of rainfall over the mountainous
Tibetan Plateau and Xinjiang province,
except IMERG V04A. IMERG V05B
showed an improvement in rectifying
the underestimation observed in
IMERG V04A. IMERG demonstrated
superior capabilities in detecting
rainfall events compared to the other
datasets. There is potential for
enhancement in all datasets, especially
in arid regions and high-altitude
areas [116].

Statistical study
China

GPM IMERG (03,
04, 05)

Grid-6
Hourly and Daily

June 2014 to May
2015

The final runs of IMERG V04 and V05
showed significant improvements
compared to V03, except in the
mountainous regions of the Tibetan
Plateau and Xinjiang province [117].
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Table A1. Cont.

Study Type
Location Datasets Gauges

Study Accuracy
Study
Period Main Findings

Statistical study
KSA

PERSIANN-CDR,
PERSIANN,
TMPA-3B42,
CMORPH

29 RG.
Daily and Monthly 2003–2011

All satellites exhibited superior
performance during wet seasons
compared to dry ones.
Gauge-adjusted datasets
(PERSIANN-CDR and TRMM 3B42)
demonstrated a higher accuracy in
detecting rainfall occurrences
compared to the other unadjusted
datasets [36].

Combined study
Meki and Ketar
Basins-Ethiopia

CFSR, CHIRPS,
PERSIANN-CDR,
TMPA 3B42 V7

9 RG.&2 FG.
Daily and Monthly 1985–2004

The CHIRPS dataset outperformed the
other datasets in the statistical
assessment of rainfall depth, as well as
in the daily and monthly simulation of
streamflow. Conversely, the reanalysis
product CFSR exhibited the poorest
performance, characterized by the
highest mean error and relative biased
ratio [118].

Statistical study
Egypt

GSMap,
GPM-IMERG,
CHIRPS

29 RG.
Daily

March 2014 to May
2018

No consistent performance was
observed among the tested datasets.
CHIRPS exhibited the highest
accuracy in predicting rainfall
amounts [119]

Statistical study
China

TMPA-3B42,
GPM-IMERG

830 RG.
Daily 2000–2017

Both datasets captured the spatial
pattern of extreme events, with an
underestimation of extreme rainfall
rates. The IMERG dataset
demonstrated slightly better accuracy
compared to the TMPA. The
performance was notably superior in
humid areas, while it showed a
reduction in accuracy in arid and
mountainous regions [120].

Statistical study
Upper Ganga
River-India

TMPA 3B43 V7 Grid-5
Monthly 1998–2013

TMPA underestimated precipitation
amounts exceeding 400 mm and
overestimated precipitation within the
range of 100 to 370 mm. The
correlation coefficients were higher
during the post-monsoon and winter
seasons compared to the pre-monsoon
and monsoon seasons, with values of
0.65 and 0.57, respectively [121].

Statistical study
Mexico CMORPH-CRT 14 RG.

30 min and Daily 2000–2018

CMORPH-CRT exhibits a low to
moderate correlation with rain gauge
records, often associated with an
overestimation of rainfall depth.
Furthermore, CMORPH-CRT tends to
overstate the frequency of
precipitation events [122].
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Table A1. Cont.

Study Type
Location Datasets Gauges

Study Accuracy
Study
Period Main Findings

Statistical study
Zambezi
Basin-South Africa

CMORPH
66 RG.
Daily, Weekly,
Seasonal

1998–2013

The CMORPH dataset detects rainfall
occurrences with 60% accuracy. It
demonstrates higher precision during
wet seasons in contrast to dry periods.
Moreover, the predictive accuracy at a
weekly temporal scale surpasses that
of the daily scale [123].

Statistical study
Fincha & Neshe
Basins-Blue
Nile-Ethiopia

CHIRPS
6 RG.
Monthly, Seasonal,
Annual

1991–2015

CHIRPS tends to overestimate
precipitation in high-altitude regions
while underestimating it in
lower-altitude areas. Despite its coarse
temporal resolution, which exceeds
daily intervals, CHIRPS demonstrates
satisfactory performance in
satellite-based estimates of
rainfall [124].

Combined study
Eastern Nile
Basin-East Africa

TMPA-3B42V7 and
CHIRPS

35 RG.&3 FG
Daily and Monthly 1998–2007

Although both datasets exhibit similar
performance in terms of false alarm
ratio (FAR), the TMPA 3B42 V7
demonstrates a higher probability of
detection (POD) compared to CHIRPS.
Both datasets yield satisfactory
accuracy when simulating monthly
discharge at the Blue Nile flow
stations using the Hydro-Beam
distributed hydrological model [125].

Hyd. study
Volta River
basin-West Africa

17 Datasets 11 FG.-Daily 2003–2012

There is not a single precipitation
dataset that can be considered the
most effective for all hydrological
processes. However, when it comes to
evaluating daily streamflow, TAMSAT,
CHIRPS, and PERSIANN-CDR
exhibited the highest
performance [126].

Statistical study
Bali Island

GSMap, IMERG,
CHIRPS

27 RG.
Daily, Pentadal,
Monthly, Seasonal

2015–2017

The datasets offer imprecise
representations of the occurrence rates
of light and heavy rainfall, defined as
depths less than 1 mm per day and
greater than 50 mm per day,
respectively. Conversely, they tend to
overestimate the frequency of
moderate rainfall events, which range
from 5 to 10 mm per day. Among the
three datasets, IMERG demonstrated
superior performance [127].

Statistical study
Shuaishui River
Basin-China

GPM IMERG
V6,TMPA 3B42V7

13 RG.
Hourly, Daily,
Monthly

2009–2017

The accuracy in estimating monthly
precipitation was superior in both
datasets compared to other temporal
resolutions. The GPM dataset
outperformed the TRMM dataset in
estimating daily rainfall precipitation.
However, neither dataset was able to
satisfactorily estimate hourly
rainfall [128].
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Table A1. Cont.

Study Type
Location Datasets Gauges

Study Accuracy
Study
Period Main Findings

Statistical study
Brazilian Amazonia CHIRPS

45 RG.
Monthly and
Annual

1981–2017

The CHIRPS datasets yield
underestimated values for
precipitation depth during the rainiest
months. As a result, it was determined
that CHIRPS is insufficient for
accurately depicting rainfall trends in
the study area [129].

Statistical study
Nigeria

16 satellite
precipitation
estimates

11 RG.
Monthly 2000–2012

The precipitation estimates from
IMERG-Final-V6 and Multi-Source
Weighted-Ensemble Precipitation
(MSWEP) v.2.2 demonstrated superior
performance compared to other
methods, thus making them the
recommended choices for future
hydrological studies [130].

Combined study
Ganjiang River
Basin-China

TMPA 3B42,
PERSIANN,
CMORPH, CHIRPS

36 RG.&9 FG
Daily and Monthly

1998–2014 for rain
2000–2014 for flow

CMORPH demonstrates the highest
accuracy in capturing daily
precipitation, while TMPA 3B42
exhibits the best performance in
providing monthly precipitation data.
Both datasets outperform PERSIANN
and CHIRPS in capturing extreme
precipitation events. Additionally,
TMPA 3B42 yields the most accurate
hydrologic model, as evidenced by the
H17 streamflow results [131].

Combined study
West Rapti River
basin-Nepal

PERSIANN-CCS,
CHIRPS, IMERG

18 RG.&3 FG.
Daily and Monthly 1981–2015

All satellite data exhibited a
noteworthy false alarm ratio. Among
the satellite datasets, IMERG data
outperformed the others in accurately
estimating rainfall depth and
simulating stream discharge. On the
contrary, PERSIANN-CCS
demonstrated a notable tendency to
underestimate rainfall depth [132].

Statistical study
South Korea CMORPH

48 RG.
Hourly, Daily,
Monthly, Annual

1998–2015

CMORPH tends to underestimate
precipitation in South Korea, with the
extent of underestimation differing
across various regions. Coastal areas
show lower accuracy compared to
inland regions. Estimates for
precipitation during wet seasons are
generally more reliable than those for
dry seasons. Accuracy at
annual-to-daily resolution levels is
satisfactory, but adjustments may be
necessary at the hourly
resolution [133].
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Study Type
Location Datasets Gauges

Study Accuracy
Study
Period Main Findings

Statistical study
Thailand

TMPA 3B42V7,
CMORPH

91 RG.
Daily, Monthly,
Annual

1998–2012

TRMM and CMORPH exhibited
limited capability in capturing the
features of extreme events. Overall,
TRMM demonstrated superior
performance compared to CMORPH
in depicting precipitation patterns for
the north, northeast, east, and south
regions of Thailand. Both datasets
showed similar performance in central
Thailand [134].

Combined study
Beijiang, Huai, and
Liao River
basins-China

CHIRPS,
PERSIANN-CDR,
TMPA 3B42 V7

GRID-7 &3 FG.
Daily, Monthly,
Annual

2002–2015

The monthly precipitation estimates
outperformed the daily estimates
across all three datasets. TRMM 3B42
V7 demonstrated the highest accuracy,
followed by CHIRPS. When
simulating streamflow, these datasets
exhibited superior performance in
regions with higher humidity
compared to arid areas. Specifically,
TMPA 3B42 V7 exhibited the best
performance in humid regions, while
PERSIANN-CDR performed best in
arid regions [135].

Statistical study
Tibetan
plateau-China

TMPA-3B42V7,
CMORPH,
IMERGV05

87 RG.
Monthly and
Annual

2001–2016

At the monthly scale, all datasets
exhibited stronger correlations
compared to the annual scale. GPM
demonstrated superior performance
compared to TRMM and CMORPH.
However, all three datasets displayed
a tendency to underestimate annual
precipitation [136].

Statistical study
Punjab
province-Pakistan

PERSIANN-CCS,
PERSIANN-CDR
SM2RAIN-ASCAT
CHIRPS-2.0

26 RG.
Daily, Monthly,
Seasonal, Annual

2010–2018

All datasets exhibited superior
performance in the northern region of
Punjab Province in comparison to
other areas. The alignment of all
datasets with monthly gauge records
surpassed that with daily records.
CHIRPS-2.0 and SM2RAIN-ASCAT
demonstrated higher performance
across all seasons when compared to
PERSIANN-CCS and
PERSIANN-CDR [137].

Statistical study
KSA

CMORPH,
PERSIANN-CDR,
CHIRPS V2.0,
TMPA 3B42 V7,
GPM IMERG V6

324 RG.
Daily, Monthly,
Annual, Maximum
daily

1981–2014

The daily resolution exhibits the
lowest correlation, which sees a slight
improvement in total annual and
maximum daily evaluations. The
highest correlation is found within the
monthly temporal resolution records.
The maximum probability of detection
is achieved by GPM IMERG V6 and
PERSIANN-CDR, albeit with a high
false alarm ratio. In high-altitude
areas, all datasets demonstrate a lower
performance when compared to
intermediate altitudes ranging from
500 to 750 m [78].
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Where:
GRID-1: Synoptic gauge data of the Islamic Republic of Iran Meteorological Organization
(IRIMO)- Version 0902

(
0.25

◦ × 0.25
◦)

.
GRID-2: East Asia (EA) ground-based gridded daily precipitation dataset

(
0.5

◦ × 0.5
◦)

.
GRID-3: Iran Water Resources Management Co. (IWRM) daily rainfall grid 2003 to 2008.
GRID-4: India Meteorological Department (IMD) gridded monthly precipitation(
0.25

◦ × 0.25
◦)

[138].
GRID-5: Gridded

(
0.25

◦ × 0.25
◦)

daily precipitation based on 2480 rain gauges
across China.
GRID-6: 30,000 gauges utilized to generate hourly

(
0.1

◦ × 0.1
◦)

gridded data over Mainland
China—China Meteorological Data Service Center.
GRID-7: China Meteorological Data Service Center daily precipitation grid (http://data.
cma.cn/)

(
0.5

◦ × 0.5
◦)

.

Table A2. Sample of geospatial interpolation techniques assessment studies.

Location Interpolation
Techniques Study Period Gauges Used Error Assessment

Criteria Main Findings

Oahu-Hawaii OK-KED-LR-
IDW-TP 2005–2008 21 RMSE

The OK interpolation technique
demonstrated better performance
compared to all other tested
methods, while TP exhibited the
highest error [44].

Gojam-
Ethiopia.

UK-SK-OK-
GPI-LPI-RBF-
IDW

2000–2008 7 RMSE-ME

The OK interpolation technique
outperformed all other methods
tested, with GPI showing the
highest error [45].

Northeast of
Iran

OK-OCK-LR-
KED-SKLM-
IDW

1973–2008 32 RMSE-ME

Geostatistical interpolation
techniques outperformed
deterministic ones. OCK and
KED displayed the slimmest
prediction error from April to
October, while OK showed the
best performance during the
remaining months [46].

Aconcagua
River basin-
Chile

KED-OIM-TP 10 years 9 RMSE-ME

OIM exhibited better performance
than TP and KED. Despite KED
and TP having the same RMSE,
KED displayed better mean error
performance than TP [139].

Hamadan
Province-Iran

OK-OCK-RBF-
GPI-LPI-IDW 1982–2012 35 CC-MARE

OCK, with an exponential
variogram technique, exhibited
the best performance in
predicting precipitation spatial
distribution [47].

Zayandeh-Rud
River
basin-Iran.

OK-UK-TS-RS-
NN-IDW 1970–2014 18 MAE-RMSE

OK with Gaussian
semi-variogram was selected as
the appropriate technique for
precipitation spatial analysis [48].

Libya EBK-RBF-IDW-
GPI-KIB 1970–2010 63 MAPE

RBF and IDW demonstrated
similar accuracy, outperforming
all other tested methods [140].

http://data.cma.cn/
http://data.cma.cn/
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Table A2. Cont.

Location Interpolation
Techniques Study Period Gauges Used Error Assessment

Criteria Main Findings

Chongqing
Province
(China)

OK-KIB-DIB-
RBF-IDW-EBK 1991–2019 34 MSE-MAE-MAPE-

SMAPE-NSE

KIB achieved the highest
accuracy, while IDW
demonstrated the lowest accuracy
across all assessment indices [49].

Pakistan

SK-OK-UK-
GPI-LPI-EBK-
EBKRP-RBF-
IDW

1961–2020 82 RMSSE-ASE-
MSTE-RMSE-ME

EBKRP outperformed all other
techniques, with GPI showing the
lowest performance [50].

Rio Grande do
Sul, Brazil

OCK-OK-
UK_IDW 1960–2017 18 MSE-RMSE-MD

Rainfall maps generated by
Kriging techniques were
smoother than those produced by
IDW, and OCK showed the best
performance among other
Kriging techniques [141].

New Zealand COK-OK-KED-
IDW 1951–2012 294 RMSE-MAE

Generally, geostatistical methods
outperformed IDW, with COK
exhibiting the best performance
among all geostatistical
techniques [142].

Emilia-
Romagna
region-Italy

TP-IDW-TPS-
OK-OCK 2008–2018 ERA5-GRID NSE-KGE-B-CC

The OK method showcased the
best performance among the four
methods across three time scales
(annual, monthly, and annual
maximum daily
precipitation) [143].

South America OK-OCK-IDW 1983–2017 359 RMSE-SRMSE

OCK, utilizing a spherical
semi-variogram, emerged as the
optimal precipitation
interpolator [144].

Cumbria,
Northwest
England

OK-OCK-NNI Annual
Average 82 RMSE

CK outperformed NNI and OK,
achieving an overall
improvement of approximately
40% [145].

Where:
Geostatistical techniques: Ordinary Kriging (OK), Universal Kriging (UK), Simple Kriging
(SK), Cokriging (OCK), Kriging with External Drift (KED), Empirical Bayesian Kriging
(EBK), Kernel Interpolation with Barrier (KIB), Diffusion Interpolation with Barrier (DIB),
Empirical Bayesian Kriging Regression Prediction (EBKRP), and Simple Kriging with
Varying Local Mean (SKLM).
Deterministic techniques: Radial Basis Function (RBF), Global Polynomial Interpolation
(GPI), Local Polynomial Interpolation (LPI), Linear Regression (LR), Inverse Distance
Weighting (IDW), Thiessen Polygon (TP), Natural Neighbor Interpolation (NNI), Optimal
Interpolation Method (OIM), Natural Neighbor (NN), Regularized Spline (RS), Tension
Spline (TS), and Thin Plate Spline (TPS).
The accuracy and performance assessment criteria: Root Mean Squared Error (RMSE),
Standardized Root Mean Squared Error (SRMSE), Mean Error (ME), Mean Squared Error
(MSE), Mean Absolute Error (MAE), Root Mean Square Standardized Error (RMSSE),
Average Standard Error (ASE), Mean Standardized Error (MSTE), Mean Absolute Relative
Error (MARE), Modified Willmott’s Concordance Index (MD), Mean Absolute Percentage
Error (MAPE), Nash-Sutcliffe Efficiency (NSE), Kling-Gupta Efficiency (KGE), Bias (B), and
Correlation Coefficient (CC).
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Appendix B

Appendix B.1. Deterministic Interpolation Techniques

Deterministic techniques present the relationship between two points by a mathemati-
cal function similar to exact interpolation. The deterministic techniques do not incorporate
variance in the interpolation process [146]. Several methods fall under the deterministic
approach, such as: (A) Global Polynomial Interpolation (GPI), (B) Local Polynomial Inter-
polation (LPI), (C) Inverse Distance Weighting (IDW), and (D) Radial Basis Function (RBF).

Inverse distance weighting (IDW) relies on the assumption that the missing value at a
point is affected by nearby points rather than farther ones. The weight of each affecting point
is inversely proportional to the separating distance raised to power as shown in Equations
(A1) and (A2) [147]. By increasing the value of the power coefficient (P), the measured
point weight in estimating the missing values decreases more rapidly with distance, and
the influence of nearby points on the predicted value becomes very significant [52]. The
IDW is widely used due to its simplicity [148].

Zx =
N

∑
i=1

λiZi (A1)

λi =
d−P

xi

∑N
i=1 d−P

xi
(A2)

where:

Zx: the predicted unknown value at point (x).
λi: the weight value of the sampled point (i).
Zi: the value of the sampled point (i).
dxi: the distance between the sampled point (i) and the predicted point (x).
P: the power of decreasing weight with distance.

The Radial Basis Function (RBF) uses five Spline functions to fit the interpolated
surface through all measured values. RBF can predict values greater than the higher
measured value or below the lower measured one, unlike the IDW, which cannot surpass
these limits. Both IDW and RBF interpolation surfaces pass through each measured point.

The global polynomial interpolation fits a mathematically derived surface to the entire
study area based on all observed data points [146,149], as shown in Figure A1A. GPI is
suitable for slowly varying parameters [52]. When the interpolation function is employed
for local neighborhoods of the study area, as shown in Figure A1B, it is known as Local
Polynomial Interpolation (LPI). LPI captures local variations that cannot be captured by
GPI. In both LPI and GPI, the interpolated surfaces do not pass through all measured point
values [52]. The order of the polynomial in both LPI and GPI starts from first-order to
higher ones [150].
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Appendix B.2. Geostatistical Interpolation Techniques

Kriging was initially proposed by Krige (1951) [151]. Kriging is classified into two
major classes, linear and non-linear. In the current study, simple and ordinary Kriging
from the linear Kriging class, and universal Kriging from the non-linear Kriging class,
are utilized to create the geostatistical interpolation. Equation (A3) illustrates the general
concept of geostatistical spatial estimation of a missing variable at the location (uo).

Ẑ(uo) =
n

∑
i=1

λiZ(ui) (A3)

where:

Ẑ(uo): the estimate of the variable of interest at the location (uo).
Z(ui) : the measured value of the variable of interest at the location (ui).
λi : the weight of Z(ui).

Two constraints govern the geostatistical interpolation: (I) the prediction estimator
should be unbiased, as shown in Equations (A4) and (A5), and (II) minimizing the estimator
variance, as given in Equation (A6) [96].

E
[
Ẑ(uo)− Z(uo)

]
= E

[
n

∑
i=1

λiZ(ui)− Z(uo)

]
=

n

∑
i=1

λiE[Z(ui)]− E[Z(uo)] =
n

∑
i=1

λim − m (A4)

n

∑
i=1

λi = 1 (A5)

V
[
Ẑ(uo)− Z(uo)

]
= V

[
Ẑ(uo)

]
− 2V

[
Ẑ(uo), Z(uo)

]
+ V[Z(uo)] =

n

∑
i=1

n

∑
j=1

λiλjγij − 2
n

∑
i=1

λiγio + C(00) (A6)

where:

m : the stationary mean of the random variable Z(u).
γij: the semi variance between points (i, j).
C(00) : the global variance of the study area.

Simple Kriging requires prior knowledge of the random variable SSZ(u) mean and
relies on stationarity for the study area [152]. The simple Kriging estimator

[ ˆZSK(uo)
]

at
location (uo) is determined by Equation (A7). Unbiasedness is established by considering
(A5). Minimization of the variance can be achieved by differentiating Equation (A6)
concerning (λ i) and setting the result to zero. This leads to a set of simultaneous equations,
which can be solved as shown in Equation (A8).

(
γij
)

represents the semivariance between
points (i, j) which can be directly obtained from the selected semivariogram. Simple
Kriging does not adapt to local trends due to the assumed stationarity of the mean across
the study area.

ˆZSK(uo)− m =
n

∑
i=1

λi[Z(ui)− m] (A7)


γ11 γ12 γ13
γ21 γ22 γ23
γ31 γ32 γ33

· · ·
γ1n
γ2n
γ23n

...
. . .

...
γn1 γn2 γn3 · · · γnn




λ1
λ2
λ3
...

λn

 =


γ01
γ02
γ03

...
γ0n

 (A8)

where:
ˆZSK(uo): the predicted value using simple Kriging at location (uo).

z(ui): the measured value at location (ui).
λi: the Kriging weight of the measured value at location (uo) where ∑ λi = 1.
n: the number of measured data locations.
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Ordinary Kriging accomplishes the removal of the mean from the simple Kriging
estimator

[ ˆZSK(uo)
]
. This mandates that the sum of Kriging weights is set to one. This

ordinary Kriging estimator is shown in Equation (A9) [152]. Lagrange multiplier [µ] is
added to Equation (A6) as shown in Equation (A10). Minimization of the variance can
be achieved by differentiating Equation (A10) with respect to (λ i) and setting the result
to zero. This leads to a set of simultaneous equations, which can be solved as shown in
Equation (A11). Similar to simple Kriging, the semivariance between points (i, j) can be
directly obtained from the selected semivariogram.

ˆZOK(uo) =
n

∑
i=1

λiZ(ui) (A9)

V
[
Ẑ(uo)− Z(uo)

]
=

n

∑
i=1

n

∑
j=1

λiλjγij − 2
n

∑
i=1

λiγio + C(00) + 2µ

(
n

∑
j=1

λi − 1

)
(A10)



γ11 γ12 γ13 · · · γ1n 1
γ21 γ22 γ23 · · · γ1n 1
γ31 γ32 γ33 · · · γ3n 1

...
...

...
. . .

... 1
γn1 γn2 γn1 . . . γnn 1
1 1 1 · · · 1 0





λ1
λ2
λ3
...

λn
µ


=



γ01
γ02

γ03
...

γ0n
1


(A11)

where:

µ : Lagrange multiplier

Universal Kriging is used to denote Kriging for parameters that exhibit a trend or
drift leading to nonstationary mean behavior [96,101,153,154]. The universal Kriging
estimator is a combination of the trend component and residual component. The search
neighborhood method, which imposes a domain limitation ensuring local stationarity of
the mean, is employed in the universal Kriging technique [101]. The random variable
(Z(u)) is a combination between trend component and residual component as shown in
Equations (A12) and (A13). The weights of the universal Kriging given in Equation (A14)
can be obtained by the Lagrange multiplier technique, which leads to the linear equations
given in Equation (A15).

Z(u) = m(u) + R(u) (A12)

m(u) = E{Z(u)} =
n

∑
i=0

ap fp(u) (A13)

ˆZUK(uo) =
n

∑
i=1

λiZ(ui) (A14)



γ11 γ12 γ13 · · · γ1n 1 f 1
1 f 2

1 · · · f L
1

γ21 γ22 γ23 · · · γ2n 1 f 1
2 f 2

2 · · · f L
2

γ31 γ32 γ33 · · · γ3n 1 f 1
3 f 1

3 · · · f L
3

...
...

...
. . .

...
...

...
...

. . .
...

γn1 γn2 γn3 . . . γnn 1 f 1
n f 2

n · · · f L
n

1 1 1 . . . 1 0 0 0 0 0
f 1
1 f 1

2 f 1
3 . . . f 1

n 0 0 0 0 0
f 2
1 f 2

2 f 2
3 . . . f 2

n 0 0 0 0 0
...

...
...

. . .
... 0 0 0 0 0

f L
1 f L

2 f L
3 . . . f 2

n 0 0 0 0 0





λ1
λ2
λ3
...

µo
µ1
µ2
µ3
...

µL



=



γ01
γ02
γ03

...
γ0n
f 0
1

f 0
2

f 0
3
...
f 0
L



(A15)

where:

m(u): the trend component of the random variable (Z(u)).
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R(u): the residual component of the random variable (Z(u)).
ap: Pth coefficient, (P = 1, 2, . . . , L ).
L: the number of functions used in the trend modeling.
fp: function of location coordinates function (Pth function).

Cokriging is a modified version of Kriging. It can handle more than one variable, as
opposed to just a single variable. Cokriging is proposed to enhance the predictive accuracy
of a primary variable by incorporating an assumed correlated secondary variable [155,156].
In the present study, the primary variable under consideration is the depth of rainfall, which
encompasses both the total annual and maximum daily values. This variable is assumed
to be correlated with the altitude of the rain gauge, which is regarded as the secondary
variable in the Cokriging interpolation. The predicted value using the Co-Kriging approach
with one secondary variable is given in Equation (A16) [155]. The development of different
Cokriging models (ordinary, simple, and universal) is similar to the development of Kriging
techniques based on the unbiasedness, as given in Equation (A17), and the minimization
of the variance of the estimated values, as given in Equation (A18). The mathematical
formulas of the Cokriging can be found at [95,101,146,157,158].

Ẑ(uo) =
n

∑
i=1

λi.Z(ui) +
m

∑
j=1

β jQ
(
ϑj
)

(A16)

E
[
Ẑ(uo)− Z(uo)

]
=

[
n

∑
i=1

λi.Z(ui) +
m

∑
j=1

β jQ
(
ϑj
)
− Z(uo)

]
(A17)

E
[
Ẑ(uo)− Z(uo)

]2
=

[
n
∑

i=1

n
∑

j=1
λi.λj.Cov

{
Z(ui)Z

(
uj
)}

+
m
∑

i=1

m
∑

j=1
βi.β j.Cov

{
Q(ϑi)Q

(
ϑj
)}

+2.
n
∑

i=1

m
∑

j=1
λi.β j.Cov

{
Z(ui)Q

(
ϑj
)}

− 2
n
∑

i=1
λi.Cov{Z(ui)Z(uo)} − 2

m
∑

j=1
β j.Cov

{
Q
(
ϑj
)
Z(uo)

}
+Cov{Z(uo)Z(uo)}]

(A18)

where:

(Z(u 1) , Z(u 2) , Z(u 3) , . . . . . . , Z(u n)): theprimaryvariablevaluesat (ui) nearbylocations.
(Q(ϑ1), Q(ϑ2), Q(ϑ3), . . . . . . , Q(ϑm)): thesecondaryvariablevaluesat

(
ϑj
)

nearby locations.
(λ1, λ2, λ3, . . . . . . . . . . . . . . . . . . . . . . . . , λn,): theCokrigingweights f ortheprimaryvariable (Z).
(β1, β2, β3, . . . . . . . . . . . . . . . . . . . . . . . . , λm,): theCokrigingweights f orthesecondaryvariable (Q).

Empirical Bayesian Kriging (EBK) has been formulated to address the limitations of
conventional geostatistical interpolation techniques [159]. These limitations are induced
by the errors in semivariogram estimation [160]. The limitations are addressed by using
automatically generated consequent semivariograms. Bayes’ rule is utilized to evaluate
the accuracy of the semivariogram to generate the observed data. The literature lacks a
detailed description of Empirical Bayesian Kriging (EBK). The majority of the available
documents emphasize the utilization of the associated computer packages [52,161].
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