Characteristics and Influence Rules of Roadside Ponding along the Qinghai–Tibet Highway
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data Source
3. Results
3.1. Distribution Characteristics of Surface Water
3.2. Analysis of Typical Lakes and Ponds
3.3. Impact of Roadside Ponding on Subgrade Diseases
3.3.1. Statistics of Subgrade Diseases along the Qinghai–Tibet Highway
3.3.2. Subgrade Disease Severity Analysis
4. Discussion
4.1. The Influence of Ground Mean Annual Temperature
4.2. The Influence of Ice Content
4.3. The Influence of Highway Construction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, X.W.; Gao, P.; Li, Z.W. Morphological characteristics and changes of two meandering rivers in the Qinghai-Tibet Plateau, China. Geomorphology 2021, 379, 107626. [Google Scholar] [CrossRef]
- Pan, Y.X.; Sun, Z.Y.; Pan, Z.; Zhang, S.X.; Li, X.; Ma, R. Influence of permafrost and hydrogeology on seasonal and spatial variations in water chemistry of an alpine river in the north-eastern Qinghai-Tibet Plateau, China. Sci. Total Environ. 2022, 834, 155227. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Wu, B.S.; Wang, G.Q.; Wang, G. Spatial Distributions of At-Many-Stations Hydraulic Geometry for Mountain Rivers Originated from the Qinghai-Tibet Plateau. Water Resour. Res. 2021, 57, e2020WR029090. [Google Scholar] [CrossRef]
- Wan, W.; Xiao, P.F.; Feng, X.Z.; Li, H.; Ma, R.H.; Duan, H.T.; Zhao, L.M. Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data. Chin. Sci. Bull. 2014, 59, 1021–1035. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.M.; Tian, B.S.; Li, Z. Extraction of Glacial Lake Outlines in Tibet Plateau Using Landsat 8 Imagery and Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4002–4009. [Google Scholar] [CrossRef]
- Chen, X.; Wang, G.L.; Wang, F.Q. Classification of Stable Isotopes and Identification of Water Replenishment in the Naqu River Basin, Qinghai-Tibet Plateau. Water 2019, 11, 46. [Google Scholar] [CrossRef]
- Liu, W.X.; Zhang, H.; Liu, Y.; Lu, H.J.; Guo, C.S.; Xu, J. Occurrence, distribution, and ecological risk of psychoactive substances in typical lakes and rivers in Qinghai-Tibet Plateau. Ecotoxicol. Environ. Saf. 2022, 242, 113928. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Xiao, X.M.; Zou, Z.H.; Dong, J.W.; Qin, Y.W. Gainers and losers of surface and terrestrial water resources in China during 1989–2016. Nat. Commun. 2020, 11, 3471. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.L.; Fang, J.Y.; Zhao, X.; Zhao, S.Q.; Shen, H.H.; Hu, H.F.; Tang, Z.Y.; Wang, Z.H.; Guo, Q.H. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Yao, T.D.; Piao, S.L.; Bolch, T.; Xie, H.G. Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys. Res. Lett. 2017, 44, 252–260. [Google Scholar] [CrossRef]
- Wu, R.Z.; Liu, G.X.; Zhang, R.; Wang, X.W.; Li, Y.; Zhang, B.; Cai, J.L.; Xiang, W. A deep learning method for mapping glacial lakes from the combined use of synthetic-aperture radar and optical satellite images. Remote Sens. 2020, 12, 4020. [Google Scholar] [CrossRef]
- Hou, Z.J.; Mao, X.S.; Ma, G. Testing and Analysis of Strength Performance of Qinghai Tibet Highway Roadbed. Roadbed Eng. 2007, 1, 55–56. [Google Scholar]
- Cui, X.Z.; Li, X.Y.; Du, Y.F.; Bao, Z.H.; Zhang, X.N.; Hao, J.W.; Hu, Y.Y. Macro-micro numerical analysis of granular materials considering principal stress rotation based on DEM simulation of dynamic hollow cylinder test. Constr. Build. Mater. 2024, 412, 134818. [Google Scholar] [CrossRef]
- Mao, X.S.; Ling, S.D.; Zhang, Z.B. Analysis of the influence of roadside waterlogging on the strength of Qinghai Tibet Highway subgrade. J. Wuhan Univ. Technol. Transp. Sci. Eng. Ed. 2013, 37, 456–459. [Google Scholar]
- Wang, N.; Meng, Q.M.; Yang, J.F. The Numerical Analysis of Roadside Water Effects on Qinghai-Tibet Highway Sub-Grade Longitudinal Cracks. Appl. Mech. Mater. 2014, 505, 168–173. [Google Scholar] [CrossRef]
- Jiang, L.K. Numerical Study on the Influence of Surface Water on the Temperature of a Permafrost Foundation in a Certain Year. Master’s Thesis, Lanzhou Jiaotong University, Lanzhou, China, 2023. [Google Scholar] [CrossRef]
- Zhou, L.J. Numerical analysis of the influence of roadside waterlogging on the temperature field of roadbed in permafrost areas. North. Transp. 2015, 8, 43–46. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van, B.L.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.M.; Wei, M.D.; Hu, Y.K. Current situation and future estimation of water resource pressure in the “Asian Water Tower” basin under the background of temperature rise. Glacier Permafr. 2023, 1, 12. Available online: http://kns.cnki.net/kcms/detail/62.1072.P.20230322.2315.008.html (accessed on 16 February 2023).
- Xu, X.D.; Dong, L.L.; Zhao, Y.; Wang, Y.J. Effect of the Asian Water Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation. Chin. Sci. Bull. 2019, 64, 2830–2841. [Google Scholar] [CrossRef]
- Connor, R. The United Nations World Water Development Report 2015: Water for a Sustainable World; UNESCO Publishing: Paris, France, 2015. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Qiao, B.J.; Zhu, L.P.; Yang, R.M. Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau. Remote Sens. Environ. 2019, 222, 232–243. [Google Scholar] [CrossRef]
- Li, Y.K.; Liao, J.J.; Guo, H.D.; Liu, Z.W.; Shen, G.Z. Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972–2010. PLoS ONE 2014, 9, e111890. [Google Scholar] [CrossRef]
- Luo, X.; Hu, Z.W.; Liu, L. Investigating the seasonal dynamics of surface water over the Qinghai–Tibet Plateau using Sentinel-1 imagery and a novel gated multiscale ConvNet. Int. J. Digit. Earth 2023, 16, 1372–1394. [Google Scholar] [CrossRef]
- Guan, Y.L. Study on the Change of Global Climate Landscape Pattern and Its Impact on Surface Water Resources in Tibetan Plateau. Ph.D. Thesis, North China Electric Power University, Beijing, China, 2021. [Google Scholar] [CrossRef]
- Ran, Q.W.; Aires, F.; Ciais, P.; Qiu, C.J.; Hu, R.H.; Fu, Z.; Xue, K.; Wang, Y.F. The Status and Influencing Factors of Surface Water Dynamics on the Qinghai-Tibet Plateau During 2000–2020. IEEE Trans. Geosci. Remote Sens. 2022, 61, 4200114. [Google Scholar] [CrossRef]
- Hu, L.; Wang, Q.; Shan, Y.T. The water environment characteristics of typical highway areas in the Qinghai Tibet Plateau region. Soil Water Conserv. Bull. 2017, 37, 286–291. [Google Scholar] [CrossRef]
- Shun, B.L.; Qing, S.; Bao, Y.H. The spatiotemporal changes and influencing factors of surface water area in Inner Mongolia from 2009 to 2018. Soil Water Conserv. Bull. 2021, 41, 312–319. [Google Scholar] [CrossRef]
- Cao, S.K.; Cao, G.C.; Wang, Z.G.; Hou, Y.F.; Wang, Y.C.; Kang, L.G. Isotopic hydrological links among precipitation, river water and groundwater in an alpine mountain basin, NE Qinghai-Tibet Plateau in warm seasons. Environ. Earth Sci. 2022, 81, 366. [Google Scholar] [CrossRef]
- Zhou, S.R.; Xin, Z.B. Spatial and temporal changes of water resources in the Qinghai Tibet Plateau over the past 20 years. J. Yangtze River Acad. Sci. 2022, 39, 31–39. [Google Scholar] [CrossRef]
- Yang, J.F. Research on the Influence of Hydrothermal Changes on Longitudinal Cracks in Roadbeds of Qinghai Tibet Highway. Ph.D. Thesis, Chang’an University, Xi’an, China, 2014. [Google Scholar]
- Zhao, W.T.; Cheng, Y.Z.; Jian, J.S.; Jiao, J.Y.; Cheng, C.W.; Li, J.J.; Chen, T.D. Water erosion changes on the Qinghai-Tibet Plateau and its response to climate variability and human activities during 1982–2015. Catena 2023, 229, 107207. [Google Scholar] [CrossRef]
- Jiao, S.H.; Wang, L.Y.; Liu, G.G. Prediction of Distribution Changes of Permafrost on the Qinghai Tibet Plateau under the Background of Global Warming. J. Peking Univ. (Nat. Sci. Ed.) 2016, 52, 249–256. [Google Scholar] [CrossRef]
- Zhou, B.; Wei, G.; Zhang, Y.Y. Thermal effects of Qinghai-Tibet highway on permafrost under different surface conditions. J. Glaciol. Geocryol. 2022, 44, 470–484. [Google Scholar]
Serial Number | Geomorphic Unit | Mileage | Number of Water Points | Total Area (m2) | Number Within 10 m | Average Area (m2) | Section Length (km) | Number of Water Points per Kilometer | Area per Kilometer (m2/km) |
---|---|---|---|---|---|---|---|---|---|
1 | Xidatan Fault Valley | K2866-K2877 | 16 | 1738 | 7 | 109 | 11 | 1.45 | 158 |
2 | Kunlun Mountains | K2877-K2920 | 83 | 112,217 | 32 | 1662 | 43 | 1.93 | 2610 |
3 | Chumar River Plain | K2920-K2982 | 137 | 221,393 | 36 | 1566 | 62 | 2.21 | 3571 |
4 | Hoh Xil Mountains | K2982-K3035 | 23 | 79,663 | 5 | 3371 | 53 | 0.43 | 1503 |
5 | Beiluhe Basin | K3035-K3056 | 23 | 139,924 | 1 | 6084 | 21 | 1.10 | 6663 |
6 | Fenghuo Mountains | K3056-K3082 | 7 | 17,512 | 0 | 2190 | 26 | 0.27 | 674 |
7 | Chiqu Valley | K3082-K3108 | 111 | 412,920 | 27 | 3720 | 26 | 4.27 | 15,882 |
8 | Wuli Basin | K3108-K3127 | 51 | 158,810 | 4 | 9663 | 19 | 2.68 | 8358 |
9 | Tuotuohe Basin | K3127-K3154 | 105 | 977,612 | 14 | 9311 | 27 | 3.89 | 36,208 |
10 | Kaixinling Mountains | K3154-K3165 | 23 | 280,270 | 9 | 7607 | 21 | 2.09 | 25,479 |
11 | Tongtianhe River Basin | K3165-K3190 | 39 | 104,422 | 2 | 2677 | 25 | 1.56 | 4177 |
12 | Buqu River Valley | K3190-K3260 | 84 | 501,766 | 6 | 5973 | 70 | 1.20 | 7168 |
13 | Wenquan Fault Basin | K3260-K3300 | 39 | 261,715 | 4 | 6711 | 40 | 0.98 | 6543 |
14 | Tanggula Mountains and Intermountain Basins | K3300-K3420 | 181 | 502,391 | 21 | 2776 | 120 | 1.51 | 4187 |
Serial Number | Mileage | Longitude | Latitude | Water Depth/cm | Area/m2 |
---|---|---|---|---|---|
1 | K2925 + 300 | 93°51′01 | 35°30′52 | 92 | 2365 |
2 | K2949 + 100 | 93°37′16 | 35°27′12 | 202 | 6224 |
3 | K2958 + 100 | 93°32′44 | 35°24′07 | 71 | 16,356 |
4 | K2959 + 600 | 93°31′46 | 35°23′47 | 39 | 3996 |
5 | K2961 + 500 | 93°30′28 | 35°23′17 | 81 | 15,703 |
6 | K2964 + 500 | 93°29′00 | 35°22′40 | 21 | 19,740 |
7 | K2968 + 100 | 93°26′40 | 35°21′57 | 17 | 5947 |
8 | K2972 + 200 | 93°23′51 | 35°21′27 | 25 | 4011 |
9 | K2979 + 100 | 93°20′00 | 35°19′57 | 201 | 1365 |
10 | K2994 + 000 | 93°11′51 | 35°16′06 | 55 | 1527 |
11 | K3041 + 000 | 92°57′16 | 34°57′26 | 72 | 25,433 |
12 | K3050 + 200 | 92°56′09 | 34°52′37 | 22 | 989 |
13 | K3052 + 900 | 92°56′57 | 34°51′17 | 27 | 1351 |
14 | K3056 + 500 | 92°55′47 | 34°49′01 | 63 | 2415 |
15 | K3057 + 500 | 92°55′59 | 34°49′19 | 94 | 852 |
16 | K3079 + 700 | 92°54′03 | 34°39′09 | 56 | 1274 |
17 | K3085 + 100 | 92°51′14 | 34°37′52 | 66 | 2448 |
18 | K3095 + 500 | 92°45′12 | 34°35′44 | 94 | 1504 |
19 | K3107 + 500 | 92°43′45 | 34°29′25 | 53 | 1790 |
20 | K3110 + 200 | 92°29′24 | 34°16′55 | 92 | 10,702 |
21 | K3128 + 000 | 92°32′09 | 34°18′21 | 32 | 11,420 |
22 | K3140 + 000 | 92°36′11 | 34°22′32 | 81 | 59,044 |
23 | K3145 + 000 | 92°43′42 | 34°27′57 | 173 | 8452 |
Ground Mean Annual Temperature/°C | Surface Water Source Points | Surface Water Source Area | Permafrost Distribution | |||
---|---|---|---|---|---|---|
Count | Proportion (%) | Area (104 m2) | Proportion (%) | Length (km) | Proportion (%) | |
GMAT < −1.5 | 205 | 22.21 | 33.04 | 9.24 | 112 | 20.6 |
−1.5 ≤ GMAT < −0.5 | 360 | 39.00 | 97.62 | 27.30 | 139 | 25.6 |
−0.5 ≤ GMAT < 0 | 187 | 20.26 | 163.07 | 45.61 | 149 | 27.5 |
Talik | 171 | 18.53 | 63.84 | 17.85 | 142 | 26.2 |
Type of Ice Content | Surface Water Source Points | Surface Water Source Area | Permafrost Distribution | |||
---|---|---|---|---|---|---|
Count | Proportion (%) | Area (104 m2) | Proportion | Length (km) | Proportion (%) | |
Ice-poor/Icy soil | 87 | 9.44 | 21.38 | 7.72 | 164 | 41.04 |
Ice-rich/Ice-saturated | 442 | 47.94 | 179.22 | 64.72 | 86 | 21.44 |
Ice layer with soil inclusions | 233 | 25.27 | 76.3 | 27.56 | 150 | 37.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, F.; Zhu, Y.; Liu, X.; Chen, J.; Mu, K.; Liu, Z. Characteristics and Influence Rules of Roadside Ponding along the Qinghai–Tibet Highway. Water 2024, 16, 954. https://doi.org/10.3390/w16070954
Cui F, Zhu Y, Liu X, Chen J, Mu K, Liu Z. Characteristics and Influence Rules of Roadside Ponding along the Qinghai–Tibet Highway. Water. 2024; 16(7):954. https://doi.org/10.3390/w16070954
Chicago/Turabian StyleCui, Fuqing, Yu Zhu, Xiaona Liu, Jianbing Chen, Ke Mu, and Zhiyun Liu. 2024. "Characteristics and Influence Rules of Roadside Ponding along the Qinghai–Tibet Highway" Water 16, no. 7: 954. https://doi.org/10.3390/w16070954
APA StyleCui, F., Zhu, Y., Liu, X., Chen, J., Mu, K., & Liu, Z. (2024). Characteristics and Influence Rules of Roadside Ponding along the Qinghai–Tibet Highway. Water, 16(7), 954. https://doi.org/10.3390/w16070954