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Abstract: For humankind to survive, access to sufficient and safe drinking water is fundamental. This
study explores the connection between rising domestic water consumption and planetary phenomena,
such as rapid population growth, climate change, and pandemics. To achieve the study’s objectives,
it provides a thorough forecast of water use, considering probable global scenarios for the years
2030 and 2050. The modeling approach is adapted from a consistent case study taken from the body
of scientific literature on water supply hydraulics. The study’s results highlight the necessity for
proactive and flexible management strategies for water resources. Notably, it observes significant
alterations in water supply management to adjust water allocation due to the unanticipated and
ongoing increase in consumer demand. The forecasted scenarios indicate potential difficulties that
may arise in meeting rising domestic water demand amid planetary phenomena. The presented
results offer valuable insights to policymakers and water supply authorities, enabling them to
effectively address the rising domestic water demand while considering potential adverse conditions,
ensuring a sustainable water supply for future generations.

Keywords: demand patterns; consumption curves; pressure management; water meter error;
COVID-19

1. Introduction

Access to potable water and a healthy environment is an inherent right of human
beings. Despite experiencing a declining growth rate and falling fertility, the world’s
populace continues to increase [1], leading to higher demands on water supply systems.
In 2012, the United Nations [2] estimated that the global population would reach a value
that could stabilize around 9 billion inhabitants by the year 2050. UN WATER [3] reported
that the population is growing at a rate of 80 million people per year and is projected to
reach 9.1 billion people by 2050. It further warns that population growth, urbanization,
industrialization, increasing consumption, and production will result in an ever-growing
demand for water.

The increase in the world’s population also escalates the need for water among people,
necessitating the adoption of sophisticated methods to extract, transport, and ensure the
safety of water for consumption. According to UN-WATER [4], demographic and economic
growth will lead to a 55% increase in water demand between the period 2017 and 2040.

Another phenomenon impacting the planet is climate change, manifested as increased
variability in the water cycle, leading to extreme weather events, heightened uncertainty
in water availability, and endangering ecological balance [5]. It restricts biodiversity
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and hampers humans’ ability to enjoy their rights to uncontaminated water and a clean
environment worldwide.

Ensuring urban water security is paramount for achieving resilience in future smart
cities, especially under the impact of climate change and socio-economic factors, which
even jeopardize the sustainability of water resources [6].

The challenge of meeting future water demand due to increased water stress will
require increasingly difficult decisions regarding the allocation of natural water sources
among competing water consumption groups [5].

To create a sustainable future, the “status quo” must change, and the requirements
of water conservation measures need to be examined via a lens capable of addressing
the stress caused by a system of increasing and ever-more-critical change, where around
800 million people currently lack access to vital basic services [7]. UN-WATER [8] indicates
that in dealing with the present and future water challenges, it is essential to employ
inventive and transformative concepts, adopting a “beyond business as usual” approach.

Based on the foundation of the aforementioned recommendations and the proposed
approach of employing innovative and transformative concepts [3–8], this study focuses
on considering planetary impact phenomena, such as population growth, climate change,
and pandemics, which have the greatest influence on the increase in residential water
consumption, primarily. The study aims to assess the impact of these factors on the
functionality of water distribution networks. An estimation of water consumption increases
was developed by combining potential demand scenarios for the years 2030 and 2050.

In order to assess the effect of changing demands, a study was carried out on a
well-known network model (Anytown, Walski et al. [9]). This model was used to study
the water supply system, exploring the variation in the consumption factor (FQ). This
investigation applied a combination of fundamental scenarios, encompassing potential
future operating and functional conditions of the network, including population growth,
climate change, pandemics, wildfires, and variations in hourly demand (peak demand).
Among the findings, notable increases in energy requirements to meet the projected future
domestic water demands are evident.

2. Methodology

Simulations, categorized into seven combinations and two scenarios (2030 and 2050),
explore various factors influencing water demand, including fundamental combinations
for increasing the water consumption factor (FQ). These factors encompass peak consump-
tion [3], variations in hourly demand, impacts of climate change [4], and potential increases
in demand due to the effects of pandemics (estimated at 10% for a scenario similar to the
COVID-19 (SARS-CoV-2) event and 40% for a hypothetical future pandemic caused by the
patented SARS-CoV-3 [10], which is assumed to result in up to four times higher water
consumption, deemed improbable at this moment). This assessment also aligns with the
value indicated by Alda-Vidal et al. [11]. Additionally, simulations consider population
expansion and fire events that can be mitigated via the same network.

Corroborating evidence from various studies, such as the 8.08–16.41% increase in
hot water demand in the residential sector due to COVID-19 [12], a 17% rise in hourly
water usage during lockdown [13], an average water consumption increase ranging from
8.5% to 13.2%, with a 19.8% absolute rise in consumed water [14], and a projected hypo-
thetical increase of 40%, and the unprecedented challenges brought to public drinking
water systems [15], provides additional insight into these scenarios. Acknowledging the
diverse literature on this subject, encompassing studies with contrary results and vary-
ing durations of analysis is crucial for a comprehensive understanding of the projected
increase [16]. Further exploration into specific regional impacts, including the 8.5% overall
water demand increase in Salt Lake County in 2020 [17], disruptions in California’s urban
water consumption during stay-at-home orders [18], and changes in water consumption
patterns in northern Germany [19], underscores the nuanced effects of the pandemic on
water utilities. The comprehensive discussion on five Apulian towns [20] and the broader
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impact on U.S. utilities [21] emphasizes the necessity for adaptive measures and careful con-
sideration of potential negative consequences in future infrastructure planning, providing
valuable insights to guide future preparedness, regulation, resilience, and communication
strategies [15,22].

2.1. Description of the Combinations and Scenarios

The examination thoroughly investigated the most significant factors and their impact
on water consumption within each of the seven combinations (A to G) and two scenarios
(2030 and 2050). Modeling realistic future water consumption patterns involved considering
historical trends, demographic patterns, climate projections, and other relevant elements.
The modeling methodology allowed for the evaluation of potential issues brought on by
rising water demand as well as the exploration of strategies for managing the water supply
sustainably under different conditions.

By describing and evaluating these diverse scenarios, this study provides valuable
insights into the complex interactions between population growth, climatic changes, pan-
demic impacts, and other variables affecting water demand [23]. The results highlight the
significance of developing flexible strategies to meet the difficulties of increasing water
demand and maintaining the resilience of water delivery systems in urban areas.

2.1.1. Peak Water Consumption

Peak water consumption represents the highest level of water usage observed in a
water supply system during a specific period, typically during periods of high demand.
To estimate peak water consumption, historical data on water usage patterns and peak
demand events were analyzed, considering factors such as seasonal variations, climatic
conditions, and specific consumption patterns [23,24]. The UN WATER [3] report and
relevant studies on peak water demand were utilized as a foundation for estimating future
peak consumption. Understanding the factors that influence water consumption and
providing technical evidence of individual use for enhanced water demand projection
would assist developing, emerging, and low-income countries in securing a sustainable
urban water supply [25].

The estimation of peak water consumption (Qpeak) is typically performed using
Equation (1):

Qpeak = Qavg × Pp (1)

where Qpeak represents the peak water consumption (in liters per second); this quantity is
also known as the Maximum Hourly Flow in the criteria for design or specifications of
some countries [26]. Qavg denotes the average water consumption during non-peak periods
(in liters per second). Pp signifies the peak demand factor, which is a dimensionless ratio
indicating the multiplier applied to the average consumption to account for peak periods.

The peak demand factor (Pp) is derived from the local regulations in each country and
is the result of rigorous analysis of historical data. Additionally, it mentions that the Pp
value may change depending on various factors, such as the time of day, day of the week,
weather, and specific events that increase water usage [27].

2.1.2. Water Consumption Due to Climate Change—Qcc

Climate models and predictions were utilized to anticipate future changes in tem-
perature and precipitation patterns, evaluating the effects of climate change on water use.
Following that, these modifications were used to forecast potential changes in water de-
mand [28], considering factors such as accelerated evaporation rates, altered vegetation
patterns, and expected alterations in seasonal water supply. This research was influenced
by the UN WATER [4] report and other climate change effect assessments.

The expected rise in global temperature is a key factor in estimating future water use.
The average world temperature is predicted to increase by 1.5 degrees Celsius over pre-
industrial levels between 2030 and 2035, mostly as a result of human activity, according to
the Intergovernmental Panel on Climate Change (IPCC) of the United Nations (UNDP) [6].
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Additionally, the five years from 2016 to 2020 have been recorded as the hottest since at
least 1850, demonstrating the continuous high rate of warming [6]. At the current pace of
warming, the world could surpass the critical 1.5 ◦C threshold even before 2050, possibly
as early as the 2030s. Experts on Climate Change, following the Paris Climate Summit,
have warned that by 2050, the planet could be experiencing a two-degree Celsius increase
in temperature [29,30].

The alarming predictions underscore the urgent need to estimate water consumption,
considering the cumulative impact of global temperature rise. By incorporating the temper-
ature increase into the equation predicting water use via integrals, we can better anticipate
the growing demand for water due to climate change [31]. This approach empowers
decision-makers and water authorities to devise more effective and adaptable strategies
for sustainable water resource management, ensuring a continuous and sustainable water
supply in light of the escalating effects of climate change.

The water consumption equation can employ Equation (2) to describe the cumulative
impact of temperature changes over time in order to account for the anticipated rise in
global temperature. Let t be the number of years from the current year, and let T(t) be the
function reflecting the global temperature at that time.

Qcc(y) = Q(0)
(

1 +
∆t
100

)(
1 +

∫ t

0
T(y) dy

)
(2)

where Qcc(y) represents the projected water consumption at time y years from the current
year. Q(0) is the current water consumption. ∆t is the desired percentage increase in water
consumption at time t (per year). T(y) is the function representing the global temperature
at time s years from the current year.

∫ t
0 T(y) dy is the integral of the global temperature

function from 0 to t, representing the cumulative temperature change over time. See
Appendix A.

2.1.3. Water Consumption Due to SarsCoV; Qcov10 and Qcov40 Increase

The COVID-19 epidemic had a noticeable effect on how people behaved and how
much water they used. Data on variations in water demand during lockdowns, cleanliness
habits, and increased household activities were taken into consideration to support the
10% rise in water consumption during the pandemic. This estimate was supported by
comparisons of pre- and post-pandemic water usage patterns from dependable sources
like Alda-Vidal et al. [11], Kim et al. [12], Jia et al. [13], Kasak [14], Sowdy and Hansen [17],
Lüdtke et al. [19], Kalbusch et al. [32], Nemati and Tran [33], Gholami et al. [34], Buurman
et al. [35], and Birisci and Ramazan [36]. The estimation of a hypothetical future outbreak,
triggered by the already patented SARS-CoV-3 virus [10], allows for the current simulation
with the projection of this higher estimate of 40% per pandemic [11], even though it may
currently be deemed improbable. See Figure 1.

The water demand projections, estimating the most significant lower and upper
average percentages, are considered for this study at 10% and 40%, respectively, based on
previous studies and hypothetical considerations [11–14,17,19,20,32–37].
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Figure 1. Graphical analysis of COVID-19′s impact on water demand: probability plot and run 
chart of daily maximum percentage increase [11–14,17,19,32–36] (a) run chart of % increase in de-
mand for water due to COVID-19; the figure displays a run chart illustrating the distribution of 
percentage increases in water demand attributed to COVID-19. Key findings include the number 
of runs about the median: 3. Expected number of runs: 6.45455. Longest run about the median: 6. 
Approximate pvalue for clustering: 0.01334. Approximate p-value for mixtures: 0.98666. Number 
of runs up or down: 8. Expected number of runs: 7. Longest run up or down: 2. Approximate p-
value for trends: 0.78303. Approximate pvalue for oscillation: 0.21697. Interpretation: The number of 
runs around the median is less than the expected number, indicating some degree of clustering. 
The number of runs up or down is greater than expected, suggesting some trend or variability in 
the data series. The longest run around the median and up or down is 6 and 2, respectively. p-
values indicate significant evidence of clustering (p = 0.01334) and no significant evidence of oscil-
lation (p = 0.21697). The (a) suggests significant patterns in the distribution of percentage increases 
in water demand due to COVID19, with some clustering and trends in the data. (b) Probability 
plot of % increase in daily maximum water demand due to COVID-19; the figure depicts a proba-
bility distribution of percentage increases in daily maximum water demand attributed to COVID-
19. Based on 11 observations, the plot reveals a mean of 16.71% and a standard deviation of 8.707. 
The Anderson–Darling test statistic (AD) is 0.862, with an associated p-value of 0.018. These find-
ings suggest a departure from normal distribution, as the pvalue falls below the commonly used 
significance threshold of 0.05. The deviation from the normal model is supported by the relatively 
high AD statistic. The (b) indicates that percentage increases in daily maximum water demand 
due to COVID-19 do not conform to a normal distribution. The Lower Bound and Upper Bound 
lines represent both limits of the 95% confidence interval for the normal distribution fitted to the 
data of the % increase due to COVID-19. These bounds illustrate the expected variability around 
the best-fit line and provide a measure of the certainty of parameter estimation for the normal dis-
tribution. A wider confidence interval indicates greater uncertainty in estimating the distribution 
parameters. 
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Figure 1. Graphical analysis of COVID-19′s impact on water demand: probability plot and run chart
of daily maximum percentage increase [11–14,17,19,32–36] (a) run chart of % increase in demand for
water due to COVID-19; the figure displays a run chart illustrating the distribution of percentage
increases in water demand attributed to COVID-19. Key findings include the number of runs about
the median: 3. Expected number of runs: 6.45455. Longest run about the median: 6. Approximate
p value for clustering: 0.01334. Approximate p-value for mixtures: 0.98666. Number of runs up or
down: 8. Expected number of runs: 7. Longest run up or down: 2. Approximate p-value for trends:
0.78303. Approximate p value for oscillation: 0.21697. Interpretation: The number of runs around the
median is less than the expected number, indicating some degree of clustering. The number of runs up
or down is greater than expected, suggesting some trend or variability in the data series. The longest
run around the median and up or down is 6 and 2, respectively. p-values indicate significant evidence
of clustering (p = 0.01334) and no significant evidence of oscillation (p = 0.21697). The (a) suggests
significant patterns in the distribution of percentage increases in water demand due to COVID19,
with some clustering and trends in the data. (b) Probability plot of % increase in daily maximum
water demand due to COVID-19; the figure depicts a probability distribution of percentage increases
in daily maximum water demand attributed to COVID-19. Based on 11 observations, the plot reveals
a mean of 16.71% and a standard deviation of 8.707. The Anderson–Darling test statistic (AD) is 0.862,
with an associated p-value of 0.018. These findings suggest a departure from normal distribution,
as the p value falls below the commonly used significance threshold of 0.05. The deviation from the
normal model is supported by the relatively high AD statistic. The (b) indicates that percentage
increases in daily maximum water demand due to COVID-19 do not conform to a normal distribution.
The Lower Bound and Upper Bound lines represent both limits of the 95% confidence interval for the
normal distribution fitted to the data of the % increase due to COVID-19. These bounds illustrate
the expected variability around the best-fit line and provide a measure of the certainty of parameter
estimation for the normal distribution. A wider confidence interval indicates greater uncertainty in
estimating the distribution parameters.

2.1.4. Water Consumption Due to Population Growth—QPG

To estimate the increase in water consumption due to population growth in urban
networks, Equation (3) can be used.

QPG(y) =
∫ t′

t0

P′(y) dy·
∫ t′

t1

C′(y) dy (3)

where QPG(y) represents the projected water consumption at time (y) due to population
growth, P′(y) is the projected global population at time (t), t0 is the baseline year, C′(y) is
the per capita water consumption rate at time t′, and t1 is the present time (baseline) when
the population and per capita water consumption rates are known. t′ is the future year in
which the water consumption is projected. See Appendix B.
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Reliable sources like the World Population Prospects 2022 report from the United
Nations [38] provide population increase forecasts. The projection of future water con-
sumption heavily relies on estimates of the size of the world’s population and its yearly
growth rate for the period 1950–2022, as well as the medium scenario and 95% prediction
intervals for the years 2022–2050.

The World Water Development Report [22] and The World Population Prospects
2022: Summary of Results [38] were studied to validate the estimated increases in water
consumption due to population growth for both the years 2030 and 2050. See Table 1.

Table 1. Values of the increase in consumption factor FQ.

Variable Description 2030 2050

Qpeak PeakConsumption 1.330 1.5500
Qcc Climate Change Consumption-CC 0.310 0.7890

Qcov10 COVID-19 Consumption; 10% Increase 0.100 0.1000
Qcov40 Cov40 Consumption; 40% Increase 0.400 0.4000
QPG Population Growth Consumption-CP 0.132 0.3158
QF Fire Consumption. N13, Ke = 9 Qe Qe

Note: Industrial demand is not included in this analysis.

2.1.5. Water Consumption Due to Fire—QF

The estimation of water consumption related to fire incidents was based on assess-
ments of the fire hazard, which took into account variables such as fire frequency, severity,
and the potential area affected. Hydraulic analyses were used to determine the emitter
coefficient (QF) for fire hydrant activations, considering the water flow required to combat
different types of fires and the distance covered by water jets. The selected emitter coeffi-
cient of 9 and emitter exponent of 0.5 were determined via investigations and previous fire
flow analysis models [27,39,40]. The node location (N13) considered in this analysis was
selected as a representative scenario studied in Cunha and Sousa [41] and other relevant
research on fire protection in water supply systems.

The summary of the variables considered and the combinations applied for this study
is presented in Tables 1 and 2.

Table 2. Combination of water consumption for key global phenomena.

Combination
Identifier

Variable Combination
(Summation)

FQ Analysis FQ Analysis Pressure
Minimum Pressure Desirable

2030 2050 (m) (m)

G Qpeak 1.330 1.550 20 30
F Qpeak + Qcc 1.640 2.339 20 30
E Qpeak + Qcc + Qcov10 1.740 2.439 15 25
D Qpeak + Qcc + Qcov10 + QPG 1.872 2.755 15 20
C Qpeak + Qcc + Qcov40 + QPG 2.172 3.055 15 20
B Qpeak + Qcc + Qcov10 + QPG + QF 1.872 + QF 2.755 + QF 10 15
A Qpeak + Qcc + Qcov40 + QPG + QF 2.172 + QF 3.055 + QF 10 15

2.2. Case Study

This study investigates a water distribution system of a hypothetical community,
Anytown, U.S.A., similar to that described by Walski et al. [9]. The system draws water
from a nearby river, treats it at a central plant, and employs three parallel pumps to
distribute the water from the clearwell. Walski’s study revealed that the system was
initially developed in 1910, using old cast iron pipes with low Hazen-Williams C-factors.
After World War II, the town expanded toward the northwest and west, facing challenges
with a newly erected tank and the possibility of a new industrial park to the north. To meet
future demands until 2005, the city planned water distribution system upgrades.
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The study focused on selecting new pipes, pumps, and tanks while considering
existing pipes needing cleaning and lining to meet pressure requirements at the lowest
cost. The analysis used projected C-factors for 2005, and average daily water use and node
elevations for 1985 and 2005 were examined. The system had to maintain a minimum
pressure of 40 psi at all nodes during peak flow and at least 20 psi while meeting fire
flow requirements. Fire flow varied for different nodes, and the system had to meet these
demands while supplying peak day flows. The comprehensive analysis seeks to contribute
to sustainable water resource management and enhance urban water supply systems’
resilience to various demands and uncertainties [9].

By testing on the Anytown, USA network, this study analyzes the network’s behavior
for different flow rates, which are increased based on the possible combinations of con-
sumption patterns according to the proposed study scenarios. It aims to address water
distribution system challenges and provide insights for optimizing urban water supply
networks. The network’s complexity reflects real-world systems, making it a suitable
workbench. The study aims to enhance water resource management and the resilience of
urban water supply systems in the face of uncertainties.

The Anytown, USA network has been subject to investigation and analysis by Lansey
et al. [42], Xu and Goulter [43], and further examination by Cunha and Sousa [41], among
other researchers. This study also utilizes the same network to analyze and research water
distribution system challenges and optimize urban water supply networks.

In this case study, instead of the three identical pumps installed in parallel, which
initially suction water from the river to the central treatment plant (as proposed by Walski
et al. [9]), the network includes an injection tank at an elevation of 55 m. This tank supplies
15 nodes at an elevation of 0 m with a consumption rate of 43.89 L/s. The nodes are
connected by 33 hydraulic lines, forming 18 basic loops. Node 1 is considered to have no
consumption in the analysis. See Figure 2. The characteristics of the hydraulic lines in the
network are detailed in Table 3.
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Table 3. Characteristics of the hydraulic lines in the studied network.

ID Length
(m)

Diameter
(mm) ID Length

(m)
Diameter

(mm)

Pipe 1 3660 200 Pipe 17 2740 250

Pipe 2 3660 500 Pipe 18 1830 100

Pipe 3 3660 600 Pipe 19 1830 100

Pipe 4 2740 100 Pipe 20 1830 100

Pipe 5 1830 100 Pipe 21 1830 100

Pipe 6 1830 100 Pipe 22 1830 250

Pipe 7 1830 100 Pipe 23 1830 100

Pipe 8 1830 250 Pipe 24 1830 500

Pipe 9 1830 250 Pipe 25 1830 250

Pipe 10 1830 100 Pipe 26 1830 200

Pipe 11 1830 100 Pipe 27 2740 100

Pipe 12 1830 100 Pipe 28 1830 125

Pipe 13 1830 100 Pipe 29 1830 350

Pipe 14 1830 100 Pipe 30 1830 300

Pipe 15 1830 400 Pipe 31 1830 250

Pipe 16 1830 250 Pipe 32 3660 100

Pipe 33 3660 100
Notes: The hydraulic lines of the model are grouped into three types of length: lines 1 to 3, 32, and 33 have a
length of 3660 m; hydraulic lines number 4, 17, and 27 have a length of 2740 m; and hydraulic lines 5–16, 18–26,
28–31 have a length of 1830 m.

3. Results

When the network is just required to fulfill the flow demand to FQ = 1.0, the first
scenario (basic) takes place. An injection node head of 55 m is required to meet this demand.
Thus, by 2030, the minimal pressure (N6) is available at a height of 30.29 m, and by 2050,
the minimum pressure occurs at node N4 with a height of 21.25 m. Additionally, a total
flow of 658.33 L/s is required from the injection tank when the emitter is closed.

To determine the scenario with the most probable combination, the principle of Simu-
lated Annealing was employed. The Optimization Heuristic using the Simulated Annealing
technique, proposed by Kirkpatrick [44], Kirkpatrick et al. [45], Kirkpatrick [46], and later by
Černý [47], was chosen due to its demonstrated effectiveness in various situations, as sup-
ported by Van Laarhoven et al. [48], Millán-Páramo et al. [49], and Naidu et al. [50]. Figure 3
shows the flowchart corresponding to the Simulated Annealing Heuristic Optimization
algorithm used for this analysis.

The Simulated Annealing [45–47] algorithm initiates with a high initial temperature
T1 = 94, facilitating extensive exploration of the solution space. This temperature gradually
decreases with each iteration using a cooling factor of 0.85, enabling the algorithm to exploit
favorable local optimal solutions as it cools.

The cooling schedule can take a geometric or exponential form, with typical cooling
factors ranging from 0.80 to 0.99. A cooling factor of 0.85 was chosen to balance exploration
(due to the high initial temperature) and exploitation (emphasizing good solutions as the
temperature decreases).
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The Simulated Annealing implementation utilized a geometric cooling schedule with a
factor of 0.85 to strike a balance between exploration and exploitation. Other specifications
included a temperature change (L) of 1 at each iteration, a step size/radius of 1, and an
initial temperature (T1) of 94. Executing the algorithm with these parameters yielded the
subsequent iterative temperature schedule: 94.00, 79.90, 67.92, 57.73, 49.07, 41.71, 35.45,
very similar to the outcomes achieved by Cunha and Sousa [41]. This gradual temperature
decrease allows for extensive exploration of the solution landscape initially, transitioning to
focus on locally optimal scenarios based on the probabilities presented in the table below.
The high initial temperature facilitates thorough exploration, with subsequent declines
enabling the algorithm to converge on combinations with a higher likelihood of occurrence
out of the seven scenarios analyzed. The results of this adaptation are presented in Table 4.
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Table 4. Probabilities of occurrence for consumption scenarios.

Combination G F E D C B A Probable
FQ2030

(%)

Probable
FQ2050

(%)
Scenario 2030 1.330 1.640 1.740 1.872 2.172 1.895 2.196
Scenario 2050 1.550 2.339 2.439 2.755 3.055 2.770 3.070

1 94.00 1.00 1.00 1.00 1.00 1.00 1.00 136.53 162.13
2 79.90 3.35 3.35 3.35 3.35 3.35 3.35 144.84 178.88
3 67.92 5.35 5.35 5.35 5.35 5.35 5.35 151.90 193.11
4 57.73 7.05 7.05 7.05 7.05 7.05 7.05 157.90 205.22
5 49.07 8.49 8.49 8.49 8.49 8.49 8.49 163.00 215.51
6 41.71 9.72 9.72 9.72 9.72 9.72 9.72 167.33 224.25
7 35.45 10.76 10.76 10.76 10.76 10.76 10.76 171.02 231.69

Table 4 shows the probability distribution over the two scenarios (2030 and 2050) at
each temperature level. As the temperature decreases, the probability mass shifts toward the
optimal Scenario 1. At the highest initial temperature of 94, Scenario 1 has 94% probability,
with the remaining scenarios having 1% each.

As the temperature cools to 35.45, the probability of Scenario 1 increases to 162.13%
of the initial 94% value. The other scenarios now have a 10.76% probability each. This
represents exploitation and intensification around the optimal Scenario 1 solution.

The FQ Probable (Probable Q(flow) Factor) denotes percentages that signify the growth
multiples in probability versus the initial probabilities for each scenario. For the 2030
forecast, the 136.53% FQ Probable value for Scenario 1 represents a final likelihood of
128.34% after optimization. For the 2050 prediction, Scenario 1 has an FQ Probable of
162.13%; when applied to the original 94.00% probability, this results in a final likelihood of
152.40% for Scenario 1 after optimization. The highest FQ Probable percentages indicate
the algorithm successfully exploring the solution landscape and exploiting improved
combinations for the presented consumption model in both the 2030 and 2050 timeframes.

3.1. Discussion of Results

This study utilized the network model Anytown (Walski et al. [9]) to examine the
variation in the consumption factor (FQ). The investigation employed a combination of
fundamental scenarios, encompassing potential future operating and functional conditions
of the network. These scenarios included significant factors such as population growth,
climate change, pandemics, fires, and nuanced variations in hourly demand (peak demand).

The Simulated Annealing Heuristic Optimization algorithm, a pivotal element in
this assessment, primarily evaluates the likelihood of predefined scenarios, deciphering
their probability and ensuring an examination of their probable impact. This aligns with a
comprehensive understanding of the dynamics of water consumption within the evolving
environmental and demographic conditions in the hypothetical future.

The results obtained from this study show that when using a factor FQ = 1.0 in the
design combination, the basic scenario occurs when the network is solely tasked with
meeting the flow demand. To fulfill this demand, an injection node head of 55 m is required.
As a result, the minimum pressure N6 is available at 30.29 m. Additionally, the total flow
demanded from the injection tank (with no emitter open) is 658.33 L/s.

The analysis of the scenario G (i.e., FQ = 1.33) using the same water level elevation in
the injection tank (55 m), shows that by the year 2030, the minimum pressure will occur at
node N6 and will have a value of 13.10 m, and by the year 2050, the minimum pressure
will be −0.63 m. Additionally, the total flow demanded from the injection tank (with no
emitter open) is 875.55 L/s.

For the rest of the proposed combinations and scenarios, the pressures at the nodes are
negative, indicating that to meet the future demand considering the proposed combinations
here, the system requires a higher head load. See Table 5.
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Table 5. Results of scenarios for FQ with injection node head at 55 m.

FQ Analysis Minimum Calculated
Pressure
2030 (N6)

FQ Analysis Minimum Calculated
Pressure
2050 (N6)

Combination
Identifier 2030 2050

Basic 1.000 30.29 1.000 30.29
G 1.330 13.10 1.550 −0.63
F 1.640 −6.76 2.339 −64.21
E 1.740 −13.92 2.439 −73.83
D 1.872 −23.91 2.755 −106.41
C 2.172 −48.93 3.055 −140.47
B 1.872 + QF −22.47 2.755 + QF −101.80
A 2.172 + QF −46.45 3.055 + QF −134.68

For example, to fulfill the scenario in the year 2030 with Combination A, where
FQ = (2.172 + QF), an injection load of 128.76 m is necessary for node 13 of the emit-
ter to meet the desired load. This scenario allows the node to operate with a load of
15.00 m, enabling the emitter to contribute 34.86 L/s. Consequently, a total of 130.19 L/s
is delivered at node 13. Another result that satisfies Combination A for the year 2050,
i.e., FQ = (3.055 + Qe), requires an injection load of 211 m for node 13 of the emitter to
operate at the minimum load, which is a load of 10.33 m, activating the emitter with a flow
rate of 28.93 L/s, see Figure 4.
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In Table 6, the Minimum Injection Water Head values in meters, essential to achieve
both the desired flow rate and minimum pressure, are presented. Additionally, the Addi-
tional Energy Requirement is determined in Kilojoules (kJ) for both scenarios (2030 and
2050) across all seven combinations (denoted as A to G).

Table 6. Minimum Injection Water Head and Energy Requirement Analysis.

FQ Analysis Q (Total) Minimum Injection
Water Head

(m)

Additional Energy
Requirement (Year 2030)

(Kilojoules-kJ)

FQ Analysis Q (Total) Minimum Injection
Water Head

(m)

Additional Energy
Requirement (Year 2050)

(Kilojoules-kJ)
Combination

Identifier 2030 2030
(L/s) 2050 2050

(L/s)

Basic 1.000 658.33 55.00 0.00 1.000 658.33 55.00 0.00
G 1.330 875.55 56.90 16.32 1.550 1020.45 70.63 156.47
F 1.640 1079.70 76.76 230.48 2.339 1539.90 134.21 1196.58
E 1.740 1145.55 83.92 325.00 2.439 1605.75 143.83 1399.29
D 1.872 1232.40 93.91 470.42 2.755 1813.65 176.41 2160.12
C 2.172 1429.95 118.93 896.80 3.055 2011.20 210.47 3067.40
B 1.872 + QF 1261.18 103.78 603.51 2.755 + QF 1848.51 185.64 2369.01
A 2.172 + QF 1464.81 128.76 1059.92 3.055 + QF 2046.06 219.17 3295.20

Notes: Water density used for calculations: 1000 kg/m3, resulting in a specific weight of 9.81 N/m³ based on
gravitational acceleration (9.81 m/s2).

The Minimum Injection Water Heads result in a minimum hydraulic head of 15 m
of water column (m) at the critical nodes. Specifically, for the Basic, G, F, E, D, and C
combinations, the critical node is identified as (N6). Conversely, for combinations B and A,
the critical node is (N13), where the simulated opening of an emitter occurs.

The Additional Energy Requirement (kJ) is calculated by taking the difference between
each Minimum Injection Water Head value (m) and the initial reference load height of 55 m.
This parameter provides insights into the energy needed to maintain the desired water
injection levels.

Finally, it can be inferred that water supply networks designed using conventional
technical methods exhibit resilience and functionality withstanding FQ increases up to 50%.
However, surpassing this threshold necessitates considerations for applying a higher load
to the flow at its head or within hydraulic lines, demanding more energy. Furthermore, the
analysis reveals specific energy increment requirements for different scenarios. For instance,
in Scenario 2030, Combination A, compared to the Basic Combination, there is a need for an
additional energy input of 1059 kJ. Similarly, in Scenario 2050, Combination A, compared
to the Basic Combination, the required energy increment amounts to 3295.20 kJ. Figure 4
shows the flow (L/s) results in the lines and Head (m) at the nodes for Combination A,
Scenario 2030, (FQ~2.172 + QF) with emitter flow at N13.

To attain the required pressure of 15.00 m, referred to as the minimum allowable
pressure at the emitter node (N13), a load of at least 128.76 m is required at the injection
tank (N1). Figure 5 shows the flow (L/s) results in the lines and pressure (m) at the nodes
for Combination A, Scenario 2030, (FQ~2.172 + QF) with emitter flow at N13.

For Scenario 2050, Combination A (3.055 + QF), the lowest pressure is observed at the
open emitter node (N13) with a value of 10.33 m. See Table 7 and Figure 6. In contrast, the
highest pressure is recorded at node 10, with a value of 128.11 m. A pressure reduction
valve should be installed at nodes with service pressures larger than those specified by
local regulations. These steps will aid in the optimization of the water distribution system
and the efficient supply of water to the network [51].
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Table 7. Results of Modeling for Scenario 2050, Combination A (3.055 + QF) with Emitter Flow at
Node N13: Demands, Pressures, Flow Rates, Pipe Velocities, and Unit Head Losses.

Combination A Year: 2050 Injection Height = 211

Qpeak + Qcc + Qcov40 + QPG + QF FQ analys: 3.055 + QF

Network Table-Links

Demand Pressure Flow Velocity Unit Headloss
Node ID L/s m Link ID L/s m/s m/Km

Junc 2 134.08 101.60 Pipe 2 811.34 4.13 29.89
Junc 3 134.08 38.77 Pipe 1 100.59 3.20 54.30
Junc 4 134.08 17.06 Pipe 3 1128.19 3.99 22.65
Junc 5 134.08 59.75 Pipe 4 −12.34 1.57 32.61
Junc 6 134.08 12.25 Pipe 5 −10.13 1.29 22.64
Junc 7 134.08 10.41 Pipe 6 −0.11 0.01 0.00
Junc 8 134.08 12.25 Pipe 7 −10.91 1.39 25.96
Junc 9 134.08 53.68 Pipe 8 −121.44 2.47 25.96

Junc 10 134.08 128.11 Pipe 9 123.96 2.53 26.96
Junc 11 134.08 12.63 Pipe 10 1.89 0.24 1.01
Junc 12 134.08 38.53 Pipe 11 −4.51 0.57 5.06
Junc 13 163.01 10.33 Pipe 12 −10.13 1.29 22.64
Junc 14 134.08 21.51 Pipe 13 8.84 1.13 17.58
Junc 15 134.08 83.10 Pipe 14 4.98 0.63 6.07
Junc 16 134.08 14.40 Pipe 15 −390.38 3.11 22.87
Resvr 1 −2040.13 211.00 Pipe 16 141.23 2.88 34.33

Pipe 17 133.32 2.72 30.85
P min= 10.33 Junc 13 Pipe 18 7.15 0.91 11.87
P max= 128.11 Junc 10 Pipe 19 −3.77 0.48 3.63

Pipe 20 0.51 0.07 0.04
Pipe 21 4.99 0.64 6.11
Pipe 22 −139.72 2.85 33.66
Pipe 23 8.42 1.07 16.07
Pipe 24 −730.26 3.72 24.60
Pipe 25 154.76 3.15 40.67
Pipe 26 109.09 3.47 63.10
Pipe 27 −10.85 1.38 25.72
Pipe 28 −14.14 1.15 14.15
Pipe 29 −284.29 2.95 24.36
Pipe 30 136.07 1.93 13.18
Pipe 31 152.89 3.11 39.77
Pipe 32 1.99 0.25 1.11
Pipe 33 −2.61 0.33 1.84

The projected increases in demand from the simulations, encompassing seven combi-
nations and two scenarios in this study, underscore the imperative of injecting more caudal
and energy into wastewater distribution networks to meet the imminent surge in global
demand and consumption. This aligns with the perspective put forth by Ramos et al. [52],
affirming that global water demand is anticipated to persist in its upward trajectory un-
til 2050, reaching 20 to 30% above current levels. This trajectory is chiefly attributed to
escalating demands from both industrial and domestic sectors. The findings accentuate
the critical need for strategic energy enhancements in water distribution networks, as well
as the conservation of water sources, to meet the escalating demands driven by various
factors, as explored in this study.
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3.1.1. Global Influences on Water Consumption Patterns

The discussion on planetary impact phenomena in this study centers on the confluence
of escalating domestic water consumption and broader global trends, encompassing rapid
population growth, climate change, and pandemics. Although the study does not explicitly
explore a specific “planetary theory”, it endeavors to establish correlations among globally
impactful factors and their repercussions on water demand.

The inclusion of these phenomena is underscored by their collective influence on
water consumption dynamics. Notably, the recent pandemic underscored unique scenarios
where peak water consumption coincided with heightened demand due to health-related
considerations. Probing into the future, specifically the years 2030 and 2050, the study
anticipates additional water demand stemming from climate change and potential fires.
The analysis also contemplates a hypothetical future pandemic caused by the patented
SARS-CoV-3 [10], projecting an increase in water consumption. While currently deemed
improbable, this aligns with the value indicated by Alda-Vidal et al. [11].

3.1.2. Water Efficiency Trends: Motivating Sustainable Reduction in Per-Capita Water Use

This study investigates the correlation between increasing domestic water consump-
tion and global phenomena, such as rapid population growth, climate change, and pan-
demics affecting distribution networks. It evaluates factors influencing water demand,
emphasizing the essential role of water efficiency measures in motivating sustainable reduc-
tions in per-capita water use. Recent trends, supported by extensive United States data [53],
reveal a consistent decline in per-capita water consumption attributed to advancements
in plumbing fixtures and stringent building codes [54]. Integrating these efficiency gains
into water demand projections provides a comprehensive perspective on evolving water
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usage dynamics, even with population growth. Driving forces encompass technological ad-
vancements, the escalating cost of water supply services (or sustainable water service fees),
effective environmental regulations, and heightened awareness of water conservation [55].

Richter et al. [56] highlight urban water conservation strategies, emphasizing specific,
effective measures. Evaluated cities successfully reduced water usage via a coordinated,
multi-strategy approach. Using the San Antonio Water System (SAWS) as a notable case,
serving 1.9 million with a dedicated water conservation team of over 20 members, SAWS
achieved a remarkable 26% per-capita water use reduction from 1994 to 2018, despite an 85%
increase in the service population. In 2018, SAWS reported conserving 4.9 billion liters of
water, implementing diverse interventions such as repairing water leaks for low-income cus-
tomers, transitioning to low-flow toilets, promoting water-conserving practices (e.g., grass
removal, irrigation system conversions), and executing public awareness initiatives, includ-
ing free consultations and personalized home water reports.

Findings underscore the pivotal role of efficient water management practices in achiev-
ing sustainable per-capita water use reductions.

3.1.3. Implications for Water Distribution Network Design

It is emphasized that network modeling, typically performed with the maximum
hourly factor for technical designs, is essential for understanding the complexity of water
consumption patterns. This approach extends beyond conventional considerations based on
average daily flows and, at best, maximum hourly flows. The present study demonstrates
the importance of exploring various combinations of factors, such as peak consumption
demands, hourly variations in demand, and global effects like pandemics, climate change,
and potential massive fires, among others, to gain a more comprehensive and future-
oriented insight into water demand.

Based on the current modeling and following these findings, it is deemed necessary to
conduct a thorough analysis of existing regulations for water distribution network design.
This analysis should underpin their evolution, ensuring they are not confined solely to
designs based on average daily flows plus fire or, at best, maximum hourly flows. All
relevant combinations must be considered in the design, construction, expansion, operation,
and maintenance of networks, thereby ensuring a more holistic and resilient approach in
future water supply planning.

In technical literature, the maximum water demand is commonly associated with the
peak hour. The peak coefficient is calculated by determining the volume of water needed
during the peak hour in relation to the average hourly flow demand volume. This is a
well-established fact in the field, as normative criteria for water distribution networks
serving human consumption typically adhere to sizing based on assumptions made in
conventional designs, specifically targeting the “maximum hour” and “maximum day
demand + fire” scenarios as indicated by Filion et al. [57].

Saldarriaga and Serna [58] highlight the complexity of the water distribution network
design problem, attributing it to the nonlinear relationship between flow and head loss,
along with discrete variables such as pipe diameters constrained by market availability.
They emphasize the nonlinear connection between the cost function of pipes and their
diameters. Their study demonstrates that an optimally cost-effective design aligns with
a network demonstrating high reliability during its initial operational phase. However,
network reliability gradually diminishes over time, reaching its lowest point during the
design period. The authors stress the importance of the Water Distribution Network. WDN
operators periodically evaluate network resilience to sustain service reliability [58].

Gonzalez and Saldarriaga [59] focus on optimizing Water Distribution Systems (WDS)
for efficient water supply, emphasizing the need for system characterization. They identify
key parameters influenced by population density changes via hydraulic gradient, pressure,
and specific power analyses. The results show proportional hydraulic gradient changes
with demand growth, stable pressure nodes for nearby locations, and consistent energy
expenditure relative to the percent difference.
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According to Filion et al. [57], low-pressure failures in low-demand months are linked
to demand fluctuations at high-use nodes. Anticipating annual damages in design helps
balance costs and damages. The study suggests a multi-objective design considering cost
efficiency and enhanced system capacity to address diverse demand patterns causing
hydraulic failures in water networks.

Based on the study findings, it is pertinent to recommend a review for updating exist-
ing regulations. Coordinated strategies involving national, regional, and local policymakers
are fundamental to mitigating the impact of global phenomena on water supply systems.
A comprehensive approach, integrating active physical network management, is necessary
to address the consequences of climate change, population growth, pandemics, and future
water management.

The findings of this study extend even further than those proposed by Balacco et al. [60].
Their analysis, focused on the behavior of peak flow factors derived from available time
series, asserts a greater uniformity in daily water consumption over the past fifty years.
They rationalize relatively low maximum coefficient values and emphasize the limited
representativeness of certain expressions found in the literature, often recommended
by technical manuals, indicating the potential for unnecessary oversizing of urban water
network supplies. It is worth noting that their analysis does not include extreme phenomena
that could lead to an increase in demand, which are increasingly possible, although their
occurrence is neither anticipated nor desired.

Coordinated strategies should be used by national, regional, and local policymak-
ers and planners to mitigate the effects of global phenomena on water supply systems.
Along with active physical network management, a comprehensive strategy is required
to address the consequences of climate change, population increase, pandemics, and
water management.

It is becoming more and more important to ensure that there is enough water for the
population, so steps must be taken from the design stage via operation and maintenance,
and now, more justifiably, rehabilitation and expansion phases, as appropriate in each case,
to ensure that this precious resource is conserved and distributed fairly to all users.

3.1.4. Water Infrastructure Optimization

In the pursuit of optimizing water infrastructure, a thorough evaluation of the existing
pipe network is recommended. This involves identifying pipes that require cleaning and lin-
ing via a detailed inspection of structural integrity, corrosion levels, and pressure-affecting
deposits [61]. Determining desired pressure levels at various network points is fundamen-
tal for efficient water supply, and hydraulic modeling software should be employed to
optimize the system layout, enhancing pressure distribution [62]. A cost analysis should
be performed, encompassing expenses related to new installations, cleaning and lining
of existing pipes, and material choices for durability and corrosion resistance [63]. The
utilization of optimization algorithms aims to find a recommended cost-effective balance
between new components and maintenance requirements for existing pipes [64]. Environ-
mental impact considerations should prioritize sustainable options in material selection and
construction practices [65]. Ensuring compliance with relevant regulations and standards
is recommended in the selection of components and maintenance activities. Addition-
ally, a comprehensive risk assessment is recommended to cover long-term maintenance
needs, demand uncertainties, and the lifespan of diverse materials, particularly considering
unconventional yet potentially impactful demands on the network.

3.2. Limitations

The recommended models and approaches may have inherent limitations and may
not be appropriate for all real-world settings. The study focuses on specific factors and may
not cover all of the potential implications on water use and distribution. These limitations
should be considered when interpreting the findings.
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Despite these limitations, this work is important because it sheds light on the issues of
water demand estimation and distribution planning. The findings contribute to a better
knowledge of the elements that influence water demand and supply, allowing for more
informed decision-making in the efficient management of water resources. This study, by
addressing the urgency of sustainable water management, provides a path to improve
water system resilience and helps the creation of effective plans for future water demand
projections and conservation measures.

4. Conclusions

Innovative and revolutionary ideas must be used in order to build a sustainable future
and handle the difficulties brought on by growing demand and significant changes in the
availability of water. This study focused on estimating increases in water consumption for
the years 2030 and 2050 while taking into account planetary impact events such population
expansion, climate change, and pandemics.

By creating a network model, it was possible to investigate how the water supply
system’s consumption factor (FQ) may change under several probable future scenarios.
The results showed that to fulfill the anticipated future home water demands, there would
be large increases in the energy needed. Moving beyond conventional management tech-
niques, adaptive approaches and continuous dynamics must be adopted to achieve water
conservation and sustainable water management.

In this study, a water consumption projection was analyzed, combining possible global
scenarios for the years 2030 and 2050 using the method of fundamental scenario combination.
The adapted simulated annealing algorithm was applied to the consumption projection.
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Appendix A. Mathematical Details of the Water Consumption Projection Model

The water consumption projection model, as explained in the main text, is formulated
using the closed Newton–Cotes integration equation with order n = 1. This mathematical
approach is designed to forecast future water consumption considering the initial con-
sumption, the targeted annual percentage increase, and the cumulative impact of global
temperature changes over time. See Equation (2).

The integral of the global temperature function from 2000 to t represents the cumu-
lative change in temperature over time. This equation captures the cumulative impact of
incremental changes in global temperature, accumulating the net change throughout the
modeled time period. The maximum value of the model is reached when t equals 2060.

The model employs a multiplicative structure, relating variables via multiplication
among the main terms, each influencing the result proportionally.

It involves mathematical functions of the dependent variables Q and T in terms of the
independent parameter time (t) in years and the projected global temperature variation.

The model also involves historical annual data on temperature change worldwide,
from the year 1880 and projected to 2060.

It originates from the analysis of temporal data on temperature variation and pro-
jections estimated by the authors Noll, [66]; National Geographic, [67]; and Vidal, [68].
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Additionally, the temporal derivatives in ∆T and the integral of T(y) impart an approximate
differential character. See Figure A1.
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Figure A1. The residuals (difference between observed and fitted values). In the Normal Probability
Plot of the Residuals, the red points represent the standardized residuals plotted against their
corresponding percentiles on the y-axis, while the blue line depicts the expected trend if the residuals
follow a normal distribution. Deviations of the red points from the blue line suggest departures
from normality in the residuals. Conversely, in the Residuals Versus Order of the Data, the red
dots represent the residuals plotted against the order of the data on the x-axis, while the blue line
simply connects these points, illustrating the trajectory of each residual (x, y), where x represents the
observation order and y represents the residual value.

The residual plot, Figure A1, shows the residuals (difference between observed and
fitted values) scattered randomly around the horizontal axis with no discernible pattern.
This suggests that the linear model fits the data reasonably well, with no systematic lack
of fit. The variability of the residuals seems fairly constant over the range of fitted values,
indicating that the assumption of equal variance is satisfied

Computation of the annual temperature integral (
∫

dT(y)) via 40-year (2020 to 2060)
cumulative sums to represent the cumulative effect was employed. The best-fitting model
with the highest R-squared value was determined via cubic regression analysis between
year-to-year variations in Q and predictors ∆T and

∫
dT(y).

The adjusted model minimizing autocorrelated residuals and maximizing predictive
R-squared was formulated; see Equation (A1).

dT
dy

=

(
−70.29 + 0.06792·y − 0.000015·y2)

βi
(A1)
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Rewriting the equation in integrated form yields Equation (A2), applicable for t1 = 2000
and t2 = 2060.

∫ t2

t1

dT =
∫ 2060

2000

((
−70.29 + 0.06792·y − 0.000015·y2)

βi

)
dy (A2)

In the modeling process, the constant of integration (C) is determined by optimizing
the model parameters to best fit the available year-versus-temperature increment data. This
optimization process incorporates C as an integral part of refining the model, aiming to
find its optimal value and improve alignment with observed data. Specifically, for this
model, the resulting C value is 48,431. See Equation (A3) and Figure A2.

T(y) =
[
−70.29 · y

βi
+

0.06792 ·y2

2 βi
− 0.000015·y3

3 βi
+ C

]2060

2000

T(y) =
[
−70.29 · y

βi
+

0.06792 ·y2

2 βi
− 0.000015·y3

3 βi
+ 48, 431

]2060

2000
(A3)
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Figure A2. The fitted line plot, regression ∆T.

The fitted line plot (Figure A2) depicts the estimated linear regression line overlaid on
a scatter plot of the observed data. The line bisects the data point cluster, confirming that
the linear model successfully captures the predominant trend within the data. The evenly
dispersed residuals, as evidenced by the uniform spread of points above and below the
line, reaffirm that the linear model provides an adequate fit without any major systematic
discrepancies. Moreover, the R-squared statistic of 0.987 signifies that the linear model
elucidates 98.7% of the variance in the response after controlling for the mean. This elevated
R-squared score offers additional validation of an exceptionally robust linear association
linking the explanatory and outcome variables under examination. Both the graphical
and numerical diagnostic measures endorse the aptness of the fitted linear model for
representing the relationship embodied in the source data (Year vs. ∆T).
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Table A1 provides insights into the values of the Increase in Consumption Factor
(FQ = (1 + ∆T/100) (1 +

∫
T(y)dy)), corresponding to the sum of the Qpeak factor and QCC.

It outlines the denominator factors for T(y) in the years 2030 and 2050 across different
combinations labeled A, B, C, D, and E. Each scenario for both 2030 and 2050 is represented
in columns that include the combination identifier, the denominator factor for T(y) in
2030 (β2030), the corresponding factor for 2050 (β2050), and the discharge factor for each
respective year.

Table A1. Values of the Increase in Consumption Factor FQ.

Combination
Denominator Factor

for T(s) for 2030
(β2030)

∫
T(y) dy

(
1 + ∆T

100

)(
1 +
∫ t

0T(s) ds
)

Factor to the Year
Denominator Factor

for T(s) for 2050
(β2050)

∫
T(y) dy

(
1 + ∆T

100

)(
1 +
∫ t

0T(s) ds
)

Factor to the Year
2030 2050

A 530.7973 0.320139 1.33000 534.09613 0.536935 1.55000
B 270.6562 0.627841 1.64000 217.37157 1.319285 2.33900
C 233.7081 0.727099 1.74000 202.17607 1.418442 2.43900
D 198.1211 0.857703 1.87158 165.61564 1.731570 2.75479
E 147.0637 1.155479 2.17158 141.33525 2.029041 3.05479

Notes: To compute the discharge factors (FQ) =
(

1 + ∆T
100

)(
1 +

∫ t
0 T(y) dy

)
for the years 2030 and 2050, the

values of ∆T/100 are taken into account, with ∆T/100 (2030) = 0.0075 and ∆T/100 (2050) = 0.0085.

Appendix B. Modeling Water Demand Growth as a Product of Population and per
Capita Consumption Trends

The Q_PG(y) model aims to estimate future water demand by accounting for projected
population growth trends and per capita consumption patterns over time. The mathemati-
cal formulation draws on recent population growth forecasts (Philips et al. [69], Romero
et al. [70]) and historical municipal water consumption data.

Specifically, population dynamics were encapsulated in the derivative P′(y) the rate of
population change per year was obtained. See Equation (A4).

dP
dy

=
(−0.7662·y + 1621)

βp
∅p

(A4)

Integrating P′(y) yielded
∫

P′(y)dy, describing total population size as a function of
time. See Equation (A5).

∫ t2

t1

dP =
∫ 2100

1990

(
(−0.7662·y + 1621)

βp
∅p

)
dy (A5)

In the model refinement, determining the constant of integration (C) involves a detailed
approach. This process incorporates specific mathematical parameters tailored to the
inherent characteristics of the dataset. See Equation (A6).

P(y) =

[
1621 · y

βp
∅p

+
0.7662 ·y2

2 βp
∅p

+ C

]2100

1990

P(y) =

[
1621 · y

βp
∅p

+
0.7662 ·y2

2 βp
∅p

− 1, 703, 526
βp

∅p

]2100

1990

(A6)

The value of C, calculated as C = [−1,703,526/(βp
Øp)], results from the interplay of

parameters βp = 202.14 and Øp = 1.7760. This formulation ensures integration, attuned to
the dynamic characteristics encapsulated within the model. Refer to Equation (A6) and
Figure A3.
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Figure A3. The fitted line plot: regression analysis of annual population growth rate.

This fitted line plot, Figure A3, shows the original average consumption data points
(for the 18 cities over time) along with the fitted linear regression line. The R-squared value
is 46.9%, indicating a moderate linear relationship between the variables. Though not an
extremely tight fit, given that this model incorporates data across 18 cities spanning over
20 years, capturing the general increasing trend is reasonable. There may be additional
factors influencing each city’s consumption from year to year that introduce some variability
around the trend. However, with a diverse sample of cities, there are likely common macro
factors that lend themselves to an overall linear modeled trend. The residuals exhibit
constant variance and no systematic patterns, supporting the use of this aggregate linear
model across cities despite the R-squared value not being exceptionally high. Justifying the
use of this model with a larger sample of cities covering a long time period may provide
more reliable and meaningful insights than finding tighter-fitting models of individual
cities with more limited data.

The residual plot in Figure A4 illustrates the relationship between residuals (depicted
on the vertical axis) and fitted values (depicted on the horizontal axis) within the context of
a linear regression model that has been applied to analyze the average water consumption
data across 18 cities over time. See Figure A4.

The residuals in Figure A4 appear to be randomly scattered around zero with no
apparent patterns or trends, indicating that a linear model is appropriate.

The polynomial regression yielded an equation modeling population as a quadratic
function of time, with both linear and quadratic terms proving to be highly statistically
significant (F test p-values < 0.01). The overall model fit was extremely strong, with an
R-squared of 99.9% and an adjusted R-squared of 99.8%, meaning over 99% of the variance
in the historical population is captured by the quadratic trend.

The goodness of fit and significance testing indicates this quadratic regression model
accurately reflects the nonlinear accelerating population growth trajectory over the study
period [69,70]. The precision of the equation in modeling historical data lends credibility
for extrapolating future projections. The derived functional form establishes a robust
foundation for integration into the integrated water demand model via Equation (A6).

The F-test values, along with negligible p-values, provide overwhelming evidence
to reject the null hypothesis of no relationship in favor of this robust quadratic linkage
between year and population size. Furthermore, the additional predictive capability of the
quadratic term over just a linear trend is supported by its high F score of 181.37 and highly
significant p-value of 0.001.
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Figure A4. Residual plots for regression analysis of annual population growth rate. Refer to the
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Likewise, per capita water consumption patterns were modeled using the function
C(y), derived from the consumption statistics of the 18 cities in the IBNET database [71]-the
only cities with publicly available annual municipal water data from 2000–2020. See
Equation (A7).

dC
dy

=
0.7383
βc

∅c
(A7)

Taking the derivative C′(y) gave the rate of per capita consumption change over time.
See Equation (A8). ∫ t2

t1

dC =
∫ 2100

2000

(
0.7383
βc

∅c

)
dy (A8)

Integrating this function,
∫

C′(y)dy, quantified total per capita consumption. In a
parallel manner to the determination of the integration constant C, the refinement of
the model involves the calculation of another integration constant, denoted as K, for
the per capita water consumption patterns. This process employs a similarly detailed
approach, incorporating specific mathematical parameters tailored to the dataset’s intrinsic
characteristics. See Equation (A9).

C(y) =
[

0.7383 · y
βc

∅c
+ K

]2100

2000

C(y) =
[

0.7383 · y
βc

∅c
− 1370

βc
∅c

− µ

]2100

2000
(A9)

The function C(y), derived from consumption statistics of the 18 cities in the IBNET
database [71], is expressed as C(y) = [(((−1370 + 0.7383 × y) − (−1370 + 0.7383 × y2000))/βc

Øc)
− µ], where y represents the year. The integration constant for this function is defined as
K = [(−1370/βc

Øc) − µ]. The derived integration constant values that ensure the model’s
satisfaction are as follows: βc = 96.2969; Øc = 0.79675; µ = 0.0763283. This formulation
ensures a thorough integration, finely tailored to the dynamic characteristics within the
model. Refer to Equation (A9) and Figure A5.
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Figure A5. Fitted line plot: regression analysis of annual consumption growth rate.

This fitted line plot shows the original average consumption data points (for the
18 cities over time [71]) along with the fitted linear regression line. The R-squared value
is 46.9%, indicating a moderate linear relationship between the variables. Though not an
extremely tight fit, given that this model incorporates data across 18 cities spanning over
20 years, capturing the general increasing trend is reasonable. There may be additional
factors influencing each city’s consumption from year to year that introduce some variability
around the trend. However, with a diverse sample of cities, there are likely common macro
factors that lend themselves to an overall linear modeled trend. The residuals exhibit
constant variance and no systematic patterns, supporting the use of this aggregate linear
model across cities despite the R-squared value not being exceptionally high. Justifying the
use of this model with a larger sample of cities covering a long time period may provide
more reliable and meaningful insights than finding tighter-fitting models of individual
cities with more limited data.

The residual plot in Figure A6 illustrates the relationship between residuals (depicted
on the vertical axis) and fitted values (depicted on the horizontal axis) within the context of
a linear regression model that has been applied to analyze the average water consumption
data across 18 cities over time [71]. The residuals appear to be randomly scattered around
zero with no apparent patterns or trends, indicating that a linear model is appropriate. The
variance of residuals seems relatively constant across fitted values, meeting the assumption
of homoscedasticity as a statistical condition for regression analysis, which refers to the
equality of variances of errors across all levels of the independent predictor variable. There
are no extreme outlier residuals. Overall, this residual plot supports using the linear
regression on this dataset with 18 cities.

Multiplying the two integrals combines projected population growth and per capita
use to estimate future aggregate municipal water demand, QPG(y). Equation (A10) shows
the mathematical developments of P(y), C(y), and the specifics of the QPG(y) integral
formulation. See Equation (3).

QPG(y) =
∫ 2100

1990

(
P′(y) dy

)
·
∫ 2100

2000

(
C′(y) dy

)
(A10)
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Figure A6. Residual plots for regression analysis of average consumption growth rate. Refer to
Figure A1 for details.

Table A2 displays parameter fitting data related to Population, P(t), and Consumption
C(t) by year and product for water demand projection. The highlighted years in this
study are systematically identified, with corresponding values for population determined
accordingly. The results for each year of

∫
P′(y)dy and

∫
C′(y)dy are presented in separate

columns. The final column showcases the product of these integrals, generating the
coefficient QPG(y).

Table A2. Parameter fitting data: Population, P(t), and C(t) by year and product for projecting
water demand.

Year Population
∫

P′(y)
∫

C′(y)
∫

P′(y) ×
∫

C′(y)

1990 5300 0.0000 −0.2703
2015 7300 0.1742 0.2147 0.037
2022 8000 0.2161 0.3505 0.076
2030 8500 0.2602 0.5056 0.132
2050 9700 0.3534 0.8936 0.316
2100 11,200 0.4785 1.8636 0.892

Notes: Notably, the values for both the years 2030 and 2050 are highlighted in the final column, offering insights
into the water demand projection for the specified time frames in the analysis conducted for this study, as
presented in Table 1.

As a concluding remark for the explanatory appendix, it is essential to recognize
numerous avenues for future research. Notable contributions, such as Zhou’s [72] work,
underscore the ongoing necessity for advancements in forecasting. Studies focused on
predicting daily water consumption could utilize a time series model with equations for
trend, seasonality, climatic correlation, autocorrelation, and persistence components.
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The continuous exploration of advanced predictive models is vital for refining future
consumption estimations, facilitating timely anticipation, and addressing extreme demands.
As emphasized by Haque et al. [73] and El-Rawy et al. [74], predicting the potential impacts
of climatic changes on water demand is essential for implementing measures to mitigate
adverse effects on water supply. This ensures that demand is met whenever and wherever
required, enhancing the accuracy of future consumption estimations and enabling decision
makers to anticipate and address extreme demands in a timely manner.
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