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Abstract: Floods cause significant damage to human life, infrastructure, agriculture, and the economy.
Predicting peak runoffs is crucial for hazard assessment, but it is challenging in remote areas like the
Andes due to limited hydrometeorological data. We utilized a 300 km2 catchment over the period
2015–2021 to develop runoff forecasting models exploiting precipitation information retrieved from
an X-band weather radar. For the modeling task, we employed the Random Forest (RF) algorithm
in combination with a Feature Engineering (FE) strategy applied to the radar data. The FE strategy
is based on an object-based approach, which derives precipitation characteristics from radar data.
These characteristics served as inputs for the models, distinguishing them as “enhanced models”
compared to “referential models” that incorporate precipitation estimates from all available pixels
(1210) for each hour. From 29 identified events, enhanced models achieved Nash-Sutcliffe efficiency
(NSE) values ranging from 0.94 to 0.50 for lead times between 1 and 6 h. A comparative analysis
between the enhanced and referential models revealed a remarkable 23% increase in NSE-values at
the 3 h lead time, which marks the peak improvement. The enhanced models integrated new data
into the RF models, resulting in a more accurate representation of precipitation and its temporal
transformation into runoff.

Keywords: Peak runoff forecast; X-band radar; Random Forest; Andes

1. Introduction

Floods stand as one of the most devastating natural disasters, impacting and causing
damage to human life, infrastructure, agriculture, and the economy [1–3]. Thus, peak
runoff forecasting tools play a crucial role in hazard assessment and for allowing decision-
makers to take mitigation actions with sufficient anticipation [1,2,4]. However, predicting
peak runoff remains challenging, particularly in complex (in terms of biophysical and
climatological characteristics) and/or remote areas, such as the mountainous region of the
Andes, due to a lack of sufficient information to describe the extreme variability of the main
hydrometeorological variables that control the runoff generation process (e.g., precipitation,
topography, land uses, soil characteristics, etc.), particularly precipitation [3,5].

A solution that has emerged in the past few decades is to exploit Remote Sensing
(RS) products obtained either from satellite or ground weather radars. For the case of
precipitation, the use of weather radar estimates is encouraged due to their finer spatial and
temporal resolutions when compared to precipitation derived from satellite products. This
makes radar precipitation more suitable for hydrological applications, such as peak runoff
forecasting [2,3,6]. Several precipitation-runoff models have been developed using radar
data [2,3,7,8], exploring the utility of radar precipitation estimates. Specifically, with data
sourced from the X-band radar, which is also utilized in this study, Orellana-Alvear et al. [9]
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employed a random forest algorithm for runoff forecasting. They used native radar data
(i.e., reflectivity instead of the derived rain rate), achieving satisfactory results (NSE = 0.85,
KGE = 0.81). However, to get the most out of this precipitation radar data, it is appropri-
ate to develop a methodology in which the advantages of the high-resolution data can
be exploited.

For peak runoff modeling and forecasting, an effective strategy is to develop precipitation-
runoff models powered by Machine Learning (ML) techniques. Models powered by
ML techniques are data-driven models, meaning that they learn from data about system
functioning by attempting to relate a set of inputs to a set of outputs. With higher quality
data, such as better resolution imagery for precipitation estimation, improved model results
are expected. However, these type of models do not distinguish or consider the physical
processes involved in the simulated system (black box modeling) [10]. Commonly used ML
techniques for runoff forecasting include the Random Forest (RF) algorithm, Fuzzy Logic,
Support Vector Machine (SVM), and Artificial Neural Networks (ANN) [10–12]. Based
on a literature review, the Random Forest (RF) algorithm is better suited for peak runoff
forecasting, among machine learning techniques. Its efficient and scalable architecture
results in significantly lower computational costs for setup and operation compared to other
machine learning techniques. Yet, it is worth mentioning that computational efficiency is
not the primary objective of this research [1,10,12–14].

Despite ML’s success in precipitation-runoff forecasting, several shortcomings affecting
model performance have been identified. These are the use of irrelevant input features
misleading the ML learning process, lack of interpretability, and overfitting issues [1,13,14].
Therefore, it is important to address these issues to improve the performance of the models.
Nowadays, the trend in model research focuses on adding physical knowledge to the ML
models, in what is known as “grey modeling”. These grey-box models aim at optimizing
the ML learning process with the purpose of increasing their accuracy. For improving
the learning process, in grey modeling, raw data can be transformed, removed (in case
of unnecessary information for the model), or used to create new features that describe
certain aspects of the system functioning [15–18]. All of this set of conceptual and/or
mathematic operations for transforming, removing, or creating new inputs is known as
Feature Engineering (FE). However, few research initiatives have addressed the importance
of developing appropriate FE strategies [19].

The effectiveness of employing FE strategies in hydrological models is supported
in several studies [19–25]. In the specific case of precipitation-runoff models, there are
studies; for example, in the one conducted by Muñoz et al. [20], they employed FE through
a spatiotemporal object-based approach. This object-based approach is derived from the
framework proposed in the study by Laverde-Barajas et al. [26]. Among other aspects, this
framework suggests the identification of precipitation objects and extraction of attributes
from them, which can be used as inputs for forecasting models. Also, the authors suggested
that this method could be employed, among other potential approaches, to assess the
performance of high-resolution precipitation products in a specific area. Thus, given the
existing studies, the challenge lies in extracting physical and meteorological features (such
as the area, volume, and location of the objects) from high-resolution images. This is done
to add physical meaning to precipitation-runoff processes and enhance the efficiency of
peak runoff forecasting models.

All in all, we aim to enhance peak runoff forecasts by exploiting precipitation estimates
retrieved from weather radar data using an FE strategy with an object-based approach
to derive precipitation attributes, which are then used to generate the enhanced models.
Furthermore, we evaluate the effectiveness of the FE approach through a direct compar-
ison between referential models (those without the application of the FE strategy) and
enhanced models (those incorporating the FE strategy). This evaluation is performed using
performance metrics, considering lead times of 1, 3, and 6 h.
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2. Study Area and Dataset
2.1. Study Area

The study area corresponds to the Tomebamba catchment, situated in the southern
Ecuadorian Andes, northwest of Cuenca city. The outlet of the study catchment is the
Matadero Sayausí discharge station (Figure 1) where the Tomebamba river (also known
as Matadero at this point) enters Cuenca. Therefore, it is important to forecast potentially
hazardous peak runoff events in this location.
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Figure 1. Location and attributes of the Tomebamba catchment, located in the southern
Ecuadorian Andes.

The catchment’s altitudinal range spans from approximately 2592 to 4164 m above
sea level (m.a.s.l), covering an estimated surface area of approximately 300 km2. The
mean annual precipitation exhibits variation across the catchment, with lower elevations
experiencing an average of 850 mm of precipitation per year, while the upper regions receive
a higher annual precipitation of around 1100 mm [27]. The average annual temperature
in the study area ranges between 4 ◦C and 15 ◦C [28]. The potential evapotranspiration
for the study catchment is approximately 981 mm/year [29]. The higher elevations of the
catchment, situated above 3500 m.a.s.l., encompass a pristine region characterized by a
blend of wetlands, lagoons, and paramo grasslands. Transitioning to the mid-elevations
(2700–3500 m.a.s.l.), the landscapes exhibit a diverse composition, featuring a mix of forests,
agricultural and grazing areas, and sporadic urban settlements [30]. The snow line in
Ecuador is approximately 4700 m.a.s.l, so there is no contribution of snow to the runoff in
the study area [31].

2.2. Dataset

The dataset for this study encompasses precipitation estimates and runoff data. Precip-
itation estimates were derived from a single polarized, non-Doppler, X-band radar located
at an elevation of 4440 m above sea level on the Paragüillas hill [32]. The radar has a bin
resolution of 2 degrees in azimuth and 100 m in range. More detailed information about
the radar can be found in the study developed by Orellana-Alvear et al. [32].

Radar data were utilized to derive precipitation estimates on an hourly scale, serving
as inputs for the models. These estimations were recorded as precipitation depths in
millimeters (mm). The series of radar precipitation depth was obtained using a step-wise
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correction model, as previously outlined by Orellana-Alvear et al. [32]. This model applies
clutter and attenuation corrections to ensure data accuracy. Subsequently, the precipitation
rate was determined through a site-specific Z-R relationship (Z = 204R1.57) for intense
precipitation events identified by Orellana et al. [33]. The data were then transformed
from the precipitation rate (measured in mm/h) to the precipitation depth (in mm). This
approach culminated in aggregating the data to an hourly scale from its original 5 min
resolution records.

Hourly runoff time series data from the Matadero-Sayausí station (outlet of the catch-
ment, see Figure 2) are available from 2015 to July 2021. Figure 2 displays the hourly
time series of runoff during the available data period. The events used to generate fore-
cast models were determined based on common dates with records of precipitation and
runoff data.
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Figure 2. Hourly runoff data for the period from January 2015 to July 2021.

Although runoff data is available from 2015 to 2021, there is a gap in the radar data,
resulting in only having radar information for the years 2015 to 2017 and the year 2021.
This period constitutes the study timeframe for event detection.

3. Methods

Figure 3 presents an overview of the methodology employed in this study. First, the
runoff time series was analyzed to obtain near-independent peak runoff events. For each
identified peak, a 12 h window before and after peak values was considered to capture
the entire hydrological event (i.e., each event has a fixed duration of 25 h, starting and
ending close to a base flow). Additionally, a lag analysis was conducted for each variable
(runoff and precipitation) to determine the adequate number of lags for the development
stage of the forecasting models. Subsequently, the input feature space (IFS) was obtained
by intersecting the dates of near-independent hydrological events together with their
corresponding lags from runoff and precipitation data. (Figure 3b).

Using this information, referential models were generated, considering only lagged
variables and without applying any Feature Engineering strategy. Following this, enhanced
models were developed based on the referential models, but with the addition of FE; this is
replacing the precipitation input with precipitation attributes derived from the object-based
approach (Figure 3a). Finally, an evaluation and comparison were performed between the
referential models and the enhanced models (Figure 3b).
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3.1. Determination of Independent Peak Runoff Events

Near-independent peak runoff events were determined using the WETSPRO time
series tool [34], which employs a peak-over-threshold (POT) approach to derive nearly
independent peak flows. The POT method, based on baseflow, categorizes two peaks as
near-independent if the flow between them decreases to approximately the baseflow level.

Two parameters in the POT selection require calibration: the maximum ratio difference
with the subflow and the minimum peak height. The maximum ratio difference is the
percentage by which the lowest flow can vary below the baseflow level between two events
to be considered independent. The minimum peak height was determined using the 90th
percentile value obtained from Equation (1), which represents the probability of exceedance.

P =
m

(N + 1)
(1)

where P is the probability of exceedance: this corresponds to the probability that a defined
event, or peak runoff, is equaled or exceeded. N represents the total number of elements in
a series, and m represents the order of the series when arranged in descending order.

Furthermore, in the flow separation to estimate the baseflow, two parameters must be
calibrated: (i) the recession constant of the slow flow component, and (ii) the fraction of the
total flow attributed to the quick flow component.

3.2. Development of Peak Runoff Forecasting Models

The referential models were developed using precipitation radar data (for each pixel)
and runoff information. The process of developing referential models solely involved
statistical lag analyses without applying any Feature Engineering (FE) strategy to the pre-
cipitation data. In contrast, the enhanced models incorporated additional precipitation
inputs, taking into account hydrometeorological attributes, which replaced the raw precipi-
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tation radar data. The Random Forest (RF) regression algorithm was employed to build all
the models, and a detailed description of this algorithm is provided in the Section 3.2.2.

The construction of the IFS for the RF models was based in the methodology presented
by Muñoz et al. [5], and consists of three primary components. Firstly, it integrates hourly
runoff and precipitation radar data. Secondly, it considers three precipitation attributes
derived from the object-based approach: total area of precipitation objects, total volume
of precipitation objects, and distances to the centroids of precipitation objects. Thirdly,
it incorporates lag information from previous hours for both precipitation radar data
and runoff. The determination of precipitation and runoff lags was based on statistical
correlation analyses, including cross-correlation functions for precipitation, as well as
partial and auto-correlation functions for runoff. This process is described in detail in the
subsequent subsection.

3.2.1. Runoff and Precipitation Lags

The determination of runoff and precipitation lags is crucial as they enrich the input
feature space for the runoff forecasting models. To determine the optimal number of
precipitation and runoff lags, we conducted statistical analyses. For runoff, the study of
Sudheer et al. [35] recommends utilizing the Auto-Correlation Function (ACF) and the
Partial Auto-Correlation Function (PACF). Whereas for precipitation, we used Pearson’s
cross-correlation between precipitation and runoff time series.

On one hand, the ACF and PACF contemplate the autoregressive behavior of runoff.
The ACF measures the correlation between a value in a time series and its past values,
encompassing the influence of intermediate time intervals. In contrast, the PACF focuses
on a direct correlation without considering the influence of other values.

On the other hand, precipitation lags can be seen as a proxy variable for mimicking
soil moisture in the catchment. This is advantageous for the model, as precipitation on
unsaturated or partially saturated soil initially infiltrates the soil until reaching saturation
before transforming into runoff. Conversely, if the soil is already saturated, most of the
precipitation is expected to be directly converted into runoff.

3.2.2. Random Forest (RF) Algorithm for Regression

The Random Forest is a machine learning technique, and it has been widely employed
in hydrological forecasting [1,15,16,20,36]. The strength of RF lies in its ensemble nature,
where each decision tree within the forest is trained on a distinct data subset, promoting
diversity and minimizing potential bias. Additionally, the technique incorporates ran-
domized feature selection within each tree, enhancing robustness and capturing intricate
relationships in the data. The comprehensive explanation of the Random Forest (RF) algo-
rithm can be found in Breiman [37]; however, a concise summary of the algorithm’s flow is
as follows:

i. The bootstrap resampling method is applied to randomly select samples from the
IFS, which are used to construct individual regression trees. The “out-of-bag” (OOB)
sampling technique is applied to each bootstrap sample. The OOB samples consist of
the data that are not included in a particular bootstrap sample, serving as a validation
set for the corresponding tree, allowing for unbiased regression.

ii. Data splitting for each bootstrap sample determined in (i). It occurs randomly at each
node within every tree. To prevent the risk of overfitting, it is crucial to specify a
maximum number of features for choosing the optimal split from the complete set of
predictors within the feature space. This helps to ensure diversity in the models and
avoids duplicate model construction.

iii. All models generated in the bootstrap sample generation stage grow based on the
splits defined in step (ii). Their growth is restricted by defining an upper limit, which
can be achieved by configuring a hyperparameter governing the maximum depth or
specifying the minimum number of samples expected in the final node. The regulation
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of the maximum size of the trees (pruning) is intended to decrease the structural
complexity of the model, resulting in noise reduction and the model’s simplicity.

iv. Determination of the regression prediction result, which involves calculating the
arithmetic mean of the responses from all the regression trees.

Effective hyperparameter tuning is crucial to ensure optimal model performance and
prevent overfitting. In the context of runoff forecasting, the most influential hyperparameter
is the number of trees (n_estimators) [27]. Additionally, the hyperparameters max_depth
(the maximum depth that can reach a tree) and max_features (the maximum number
of features to perform the splits) are notably influential as well [27]. To find the best
combination of these three hyperparameters (n_estimators, max_depth, and max_features),
a systematic search was conducted using a random grid search methodology within a 3-fold
cross-validation framework. Model performance was evaluated using the Nash-Sutcliffe
Efficiency (NSE), a measure of agreement between simulations and observations, which is
defined in the following section (3.3 Model evaluation and comparison between referential
and enhanced models). Table 1 presents the grid search space of the three hyperparameters
in the optimization process.

Table 1. Grid of the RF hyperparameters.

Hyperparameter Values

n_trees a 50; 800; 10
max_features n_features b, n_features(1/2), log2(n_features)
max_depth a 5; 200; 5

Note(s): a domain defined by min, max, and increment. b n_features denote the quantity of estimators (features)
in the IFS.

The RF technique’s implementation in forecasting models was performed using the
scikit-learn package for machine learning in Python® version 3.7 [38].

3.2.3. Object-Based Approach to Derive Precipitation Attributes for Enhanced
Forecasting Models

The precipitation radar data associated with the identified independent peak runoff
events were processed using the object-based approach (OBA) introduced by Laverde-
Barajas et al. [26]. The OBA methodology employs algorithms, including size filtering and
morphological closing to derive precipitation characteristics from remote sensing (RS) data.
The resulting attributes offer a detailed representation of precipitation events, encompassing
information, such as their spatial distribution (localization of precipitation objects in the
catchment, area of the objects) and meteorological properties (volume, intensities). The
implementation of the OBA was performed using the scikit-image processing package
within Python® version 3.7 [39].

Overview of Object-Based Approach (OBA) Process Implementation

An overview of the OBA’s application in this study is presented below, while a
comprehensive description can be found in Laverde-Barajas et al. [26].

(i) Data retrieval: The precipitation radar data for the identified peak runoff events
were retrieved, along with the clipping of imagery to the Tomebamba catchment (Figure 4a).

(ii) Detection of precipitation objects: The process of detecting precipitation objects
begins with the definition of a detection sensitivity threshold. This threshold is set to
filter out unwanted noise and retain only well-defined precipitation entities within the
precipitation imagery. Calibration of the detection sensitivity was carried out through
iterative experimentation, resulting in the selection of a volume threshold of precipitation
of 0.1 mm. This implies that precipitation features with depths less than 0.1 mm were
excluded (Figure 4b).

(iii) Size filtering: A filter based on size criteria was applied to the objects detected in
step (i). The criteria define the minimum object area to be considered as a precipitation
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entity. In this instance, four pixels were chosen, equivalent to 1 km2, as the minimum area
(Figure 4c).

(iv) Morphological closing: The morphological closing technique was employed to
refine the identified precipitation objects found in step (ii), which involves expanding
and/or removing boundaries of the objects (Figure 4d). This algorithm combines dilation
and erosion processes to enhance the delineation of precipitation features. During dilation,
the boundaries of the precipitation objects are expanded, while erosion subsequently
removes these expanded boundaries. This sequential operation of morphological dilation
followed by erosion aids in the precise delineation of convective entities, ensuring a more
accurate representation of precipitation patterns.

(v) Determination of precipitation attributes: From the refined objects in step (iii),
physical characteristics, such as the centroid location and spatial extent, along with meteo-
rological attributes, like the precipitation volume, were retrieved. These characteristics are
further detailed in the subsequent subsection.
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Object Attributes

Three key precipitation attributes for the forecasting models were retrieved from
the radar data, precipitation volume, areal extension of precipitation objects, and ob-
jects distance, i.e., the distance between centroids of each precipitation object and the
catchment outlet.

The volume of precipitation provided the model with a comprehensive understanding
of the water quantity that precipitated during that specific hour. The area allowed us
to capture the spatial extent of the precipitation, providing insights for the model into
the distribution and coverage of the precipitation. Additionally, the distance from the
precipitation objects to the catchment outlet was calculated using the distance between
two points. This distance contributed spatial information to the model, helping determine
how far from the outlet the precipitation occurs and providing the model with an estimate
of the time it takes for that precipitation to reach the outlet.

3.3. Model Evaluation between Referential and Enhanced Models

For model evaluation, we split the near independent peak events into two sets: 80%
for training and 20% for testing. Each event was utilized to simulate peak runoff within a
25 h window, covering the peak runoff and the 12 h before and after it, in order to capture
the entire hydrograph.

To evaluate the model performance, two of the most widely used indices in hydrology
for assessing the goodness of fit between model simulations and observations were selected:
the Nash-Sutcliffe efficiency (NSE) and the Kling-Gupta efficiency (KGE) [40]. These
two indices, along with the Root Mean Square Error (RMSE), were chosen to assess the
different aspects of model performance. The KGE is particularly effective in accounting for
peak runoff underestimations and low runoff overestimations, while the NSE, also known
as the coefficient of efficiency, is less sensitive to extreme high values, providing a robust
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measure of the overall model accuracy [41]. The equations for these metrics can be found
in Table 2.

Table 2. Equations for performance metrics.

Metric Equation Range Ideal Value

NSE 1− ∑n
i=1(Oi−Pi)

2

∑n
i=1(Oi −O)

2
−∞, 1 1

KGE 1−
√
(r − 1)2 + (∝ −1) 2 + (β − 1)2 −∞, 1 1

RMSE
√

1
n

n
∑

i=1
(Oi − Pi)

2 0, +∞ 0

where n represents the number of instances, Oi denotes the observed runoff at time i, Pi signifies the predicted
runoff at time i, O is the mean observed runoff, Op is the mean predicted runoff, r stands for the correlation

coefficient between Op and O, α =
σp
σo

is the variability ratio, β =
Op

Oo
is the bias ratio, and σ stands for the

standard deviation.

For the comparison between the referential and enhanced models, the initial guidance
was based on the values obtained in the efficiency metrics described above. This was
carried out and analyzed for each 1, 3, and 6 h forecast window, respectively. Additionally,
a visual comparison was conducted by examining hydrographs of specific events, similarly
for 1, 3, and 6 h forecasts, in which the observed runoff was compared to the forecasts of
both the referential and enhanced models.

4. Results
4.1. Independent Peak Runoff Events

Nearly independent peak runoff events were defined using the following calibrated
parameters in the WETSPRO tool. First, a difference of 10% was allowed with the subflow
(baseflow), and second, a minimum peak height was obtained from the 90th percentile
value (17.92 m3/s) (Figure 5). To determine the baseflow, we derived it from the original
runoff time series using recession constant values of 500, 60, and 5 h for baseflow, interflow,
and overland flow, respectively. The parameter w obtained from the calibration was 0.7
for baseflow and 0.5 for interflow. With these criteria and considering the respective
availability of radar data, 29 independent peak hydrological events were obtained, of
which, the initial 23 events (80% of total events), chronologically ordered, were utilized for
training the models, while the subsequent 6 events (20% of total events) were reserved for
testing purposes.
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4.2. Development of Peak Runoff Forecasting Models

Referential models were developed incorporating, in addition to the latest precipita-
tion and runoff data, a fixed number of precipitation and runoff lags. To determine the
correlated number of runoff lags, we employed a method that involves utilizing both the
autocorrelation function (ACF) and the partial autocorrelation function (PACF) for a more
focused analysis. The ACF assesses the correlation between a value in a time series and its
past values, considering the influence of intermediate time intervals. In contrast, the PACF
concentrates on a direct correlation without the influence of intervening values, providing
a more targeted approach. From the ACF, we obtained 260 significant lags (approximately
11 days) when using a 95% confidence band (Figure 6a). This result was complemented
with the PACF and its respective 95% confidence level. The PACF analysis revealed a
significant correlation up to lag 8 (hours) (Figure 6b). Based on both results, we defined
8 as the appropriate number of runoff lags.
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Similarly, the number of precipitation lags was defined using Pearson’s cross-correlation
between each precipitation pixel (1210) and the runoff time series (i.e., a correlation curve
was generated for each pixel with the runoff time series). For this, a correlation threshold
of 0.2 was employed, as suggested by Muñoz et al. [5]. With this threshold, we determined
12 as the number of precipitation lags (hours). The maximum correlation appeared to be at
lag 5 (0.31) which agrees with the concentration-time of the catchment [5].

For the enhanced models, we enriched the IFS of referential models with additional
information derived from precipitation radar. This additional information was obtained
by applying the OBA to the precipitation data, as described in Section 3.2.3. This new
dataset replaced the original precipitation data (pixel-based timeseries) used in the refer-
ential models. The inputs related to runoff remained unchanged from those used in the
referential models.

Table 3 presents the optimal hyperparameter combinations for the both referential and
enhanced forecasting models across increasing lead times. The values for the number-of-
trees hyperparameter in the referential models does not provide a clear insight, as it changes
independently of the lead time. On the contrary, enhanced models exhibit variation across
lead times, with the 1 h lead time having the highest number (420 trees). This suggests a
more complex ensemble structure for short-term predictions. Moreover, referential models
consistently utilized a high proportion of max features (9688), reflecting their dependence
on a broad set of input features, which aligns with the relatively larger number of features
employed in these models.
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Table 3. Hyperparameters for referential and enhanced models.

Referential Models

Lead Time n_trees max_features max_depth

1 h 300 9688 55
3 h 450 9688 5
6 h 400 9688 35

Enhanced Models

Lead time n_trees max_features max_depth

1 h 420 32 25
3 h 310 32 65
6 h 130 5 40

Enhanced models, however, adopted a different approach. For the 1 h and 3 h lead
times, they employed n_features (32 features), whereas for the 6 h lead time, it used the log
base 2 of n_features (5 features). This could be attributed to the diminishing relevance of
some features for the 6 h lead time, as they provide information beyond the catchment’s
concentration time. Consequently, using fewer features yields similar results. In addition,
the referential models exhibit varying maximum depths, with the 3 h lead time having
the lowest depth (5). This may indicate a preference for shallow trees in this case. The
choice of shallow trees suggests a modeling strategy prioritizing the capture of simpler and
more general patterns in the data, limiting the model’s complexity and mitigating the risk
of overfitting.

On the other hand, enhanced models display different depths for different lead times.
The 3 h lead time has the highest depth (65), indicating a more complex tree structure. It can
be considered that the attributes given to these enhanced models are more effectively lever-
aged and contribute more substantially to the modeling process. All in all, the enhanced
models seem to adopt a more focused approach, particularly evident in the reduction of
max features. This implies an attempt to refine the model’s concentration based on the
most influential characteristics, potentially enhancing interpretability.

Precipitation Attributes for Enhanced Forecasting Models

From the events identified in Section 4.1, we determined precipitation objects for
each hour, as illustrated in Figure 4, and obtained their respective precipitation attributes
(area, volume, and distance). For each event and hour, as expected, the attributes varied in
magnitude. Below, the different attributes that were identified, along with their respective
physical meanings, are presented.

In Figure 7, two precipitation objects represented by circles are observed. For illus-
tration purposes, let us consider that each object corresponds to a different time, but both
have the same volume.

Analyzing the area extent of each object, illustrated in Figure 7, one object is noted to
have a larger area than the other. Consequently, it is feasible to infer that the object with the
smaller area has more intense and localized precipitation, for the same volume, compared
to the larger object. This analysis could be reversed with two equal areas but different
volumes, in which case the intensity of the precipitation event would depend solely on
how large the volume is.

Furthermore, different distances from the centroid of the objects to the outlet of the
catchment were obtained. Illustrating this with the example from Figure 7, the smaller
object is positioned closer to the outlet, resulting in a shorter distance. This information
is relevant for the model as it provides insights into the time required for precipitation to
leave the catchment. In the case of the object with the longer distance, it would theoretically
take more time for the precipitation to exit the catchment.
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Figure 7. Representation of two precipitation objects.

In summary, each object presented its unique characteristics, and the physical infor-
mation corresponding to each precipitation object described in this example was added to
the enhanced models through these attributes (area, volume, and distance).

4.3. Comparison between Referential and Enhanced Models

Figure 8 illustrates the comparative results of the referential models (orange dots)
and enhanced models (blue dots) using scatter plots. The improvement in the enhanced
models becomes apparent as they approach the dashed 45-degree line, symbolizing points
where observed and predicted values match. For the 1 h lead time, both the referential and
enhanced models demonstrate a close proximity to the 45-degree dashed line, indicating
a high level of accuracy. However, at higher runoff values (exceeding 90 m3/s, beyond
the 99th percentile), a substantial improvement is evident in the enhanced models, with
all blue values closely adhering to the bisector line. In the range of 40 m3/s to 80 m3/s
(between the percentiles 98 and 99 approximately), although some dispersion is present,
the blue values progressively converge more closely.

Moving to the 3 h lead time, a greater dispersion is observed; however, overall,
and particularly for runoff values exceeding 80 m3/s, it is evident that the results of
the enhanced models approach the guideline more closely. While there is a tendency to
underestimate the observed values, this underestimation is less pronounced than in the
referential models. Lastly, for the 6 h lead time, despite increased dispersion, the values
of the referential models remain the farthest from the dashed 45-degree line, especially in
terms of underestimation. The improvement for this lead time is perceptible in the scatter
plot, demonstrating a positive impact on the model’s performance.

In addition, as outlined in Section 3.3, the models underwent evaluation using three
performance metrics: the NSE, the KGE, and the RMSE. For all metrics, the highest values
were achieved for the shortest forecast lead time (1 h), with lower values observed for 3
and 6 h, respectively. Furthermore, for all enhanced models, the efficiencies consistently
exhibited higher values across all metrics compared to referential models, as demonstrated
in Table 4. The best performances encountered for the 1 h lead time (NSE = 0.93) can be
attributed to the autoregressive nature of runoff, which is magnified for the shorter lead
times. The decreasing accuracy observed with longer forecasting horizons, such as 3 and 6
h, can be attributed mainly due to greater lack of hours of precipitation, which could be
improved with forecasts of precipitation for example.
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Figure 8. Results for the referential and enhanced models for the 1,3 and 6 h lead time.

Table 4. Metrics of efficiency of the referential and enhanced models.

Lead Time
NSE KGE RMSE

Referential Enhanced Referential Enhanced Referential Enhanced

1 h 0.93 0.94 0.90 0.92 7.33 6.83
3 h 0.65 0.75 0.54 0.66 16.72 14.14
6 h 0.42 0.50 0.37 0.44 21.56 20.07

Figure 9 presents hydrographs for each lead time, illustrating two cases from the
testing events subset for which meaningful comparisons can be made. These events
were selected, one event that demonstrates the improvements and another where the
improvements are not so evident. This is to be rigorous in the evaluation and to provide a
balanced overview in the study.

For the 1 h lead time, the values of the referential models closely resemble those of the
enhanced models and observed data, particularly evident in event 2. However, notable
improvements, especially in peak runoff, are observed in event 1. This enhancement is
reflected in the percentage of improvement presented in Table 5. Moving to the 3 h lead
time, a more pronounced difference in forecasts is noticeable, with the enhanced models
outperforming the referential models, as indicated in Table 5. Despite some underesti-
mation in event 1, there is a noticeable improvement compared to the referential model.
Similarly, for the 6 h lead time, enhancements in the enhanced models are evident, even
with occasional instances of greater underestimation. However, in cases like event 2, the
enhanced models closely approach the observed values, surpassing the performance of the
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referential models, as mentioned earlier. Furthermore, notable shifts were observed in the
peaks of event 2, Figure 9b, likely arising from the absence of precipitation information
within the forecast window. This error increases as the forecast window duration extends.
Addressing such disparities could involve forecasting precipitation and/or incorporating
an additional objective function, such as the time-to-peak during training. However, these
considerations are beyond the scope of this study.
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Table 5. Percentage of forecasting improvement across lead times.

Lead Time NSE KGE RMSE

1 h 1% 2% 7%
3 h 15% 23% 15%
6 h 18% 17% 7%

Finally, considering all evaluated events, a comprehensive comparison of improve-
ments between the enhanced models and referential models was conducted. According to
Table 5, for the 1 h lead time, efficiency improvements are minimal but noticeable across all
metrics. At the 3 h lead time, improvements exceeding 15% are observed, with the KGE
metric showing the most significant increase of 23% in the enhanced models compared to
the referential models. Despite the metrics being lower for the 6 h lead time compared to
the 3 and 1 h lead times (see Table 4), improvements in the metrics of the enhanced models
versus referential models are still present, reaching up to an 18% increase in NSE.

5. Discussion

For the purposes of this study, peak runoff forecasting models were developed us-
ing the RF algorithm for a mountain catchment located in the Ecuadorian Andes. The
methodology employed in this study aims to enhance peak runoff forecasts by exploiting
precipitation estimates retrieved from weather radar data using a feature engineering
strategy with an object-based approach to derive precipitation attributes.

We developed referential models for lead times ranging from 1 to 6 h to address peak
runoff forecasting in the study catchment. In addition to these referential models, our focus
was on analyzing weather radar precipitation using an OBA to generate new precipitation
attributes to add to the models and thus create enhanced models. The enhancement of
models, based on precipitation attributes, such as area, volume, and distance to the centroid
of the objects of precipitation, show the advantages of applying FE to the already acceptable
reference models.

The performance of the referential models, as measured based on the NSE, ranged
from 0.42 to 0.93. These results are comparable to a study utilizing radar data and RF, with
NSE values between 0.66 and 0.85 [9]. These results also align with studies employing
radar data in physically based models, like HEC-HMS [42], with NSE values between
0.55 and 0.98, or TOPMODEL [43], with NSE values between 0.64 and 0.91. While the
aim of this study was not to outperform physically based models that use radar data, it
is important to note that ML models, which require less data preprocessing and do not
rely on simplifying assumptions to represent complex systems, facilitated faster forecast
generation, with similar results.

Furthermore, the performance of our models is consistent with studies in runoff fore-
casting that utilize different machine learning techniques. This is supported by Noymanee
et al. [44] in their flood forecasting study, where they achieved NSE values ranging from
0.51 to 0.8 for lead times of 3 and 6 h using different machine learning methods, including
neural networks, Bayesian linear regression, and boosted decision trees.

The performance of the enhanced models, with NSE ranging from 0.50 to 0.94, is
superior to that of the referential models for all lead times (1, 3, 6 h), respectively, in the
study. Even in the 1 h lead time, where the reference model’s efficiency was already high
and had limited capacity for improvement, the performance was slightly improved.

These enhancements can be attributed to the new information provided to the en-
hanced models through the feature engineering strategy proposed in this study. This new
information is expected to add physical insights to the models. To prove this statement,
further analysis is required, such as local and global sensitivity analyses to determine the
impact of each attribute and the total number of attributes.

Key features included the volume of rain objects, providing an estimate of the amount
of water that would contribute to runoff, in combination with the area of rain objects, which
helped determine whether the volume mentioned earlier was concentrated in a small area
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(intense localized rain) or distributed over a larger area. For a specific volume, more intense
rain is represented when it falls over a smaller area, leading to soil saturation and the
faster conversion of rain into runoff. In addition to area and volume, the distance from the
centroid of the rain object to the outlet was extracted.

Analyzing the event of 24 May 2021, it was observed that a rain object concentrated
near the outlet of the catchment improved the 1 h forecast since the model interpreted that
this rain, being near the outlet, would exit relatively soon. For a 3 h forecast, precipitation
data from the middle and upper parts of the catchment, with a time of concentration of 5 h,
are more likely to contribute, as data very close to the outlet would already be considered
to have left the catchment. Theoretically, for a 6 h forecast, all observed precipitation data
should have already left the catchment (one of the reasons for the lower efficiencies among
different lead times). However, the feature data improved the efficiencies, as they can also
provide certain physical insights, such as previous moisture conditions in different areas,
for instance.

Based on the conclusions of the study of Laverde-Barajas et al. [26], we proved the
potential of evaluating other remote sensing products different from satellite sources, with
an object-based approach. In our study, the potential of using the OBA for X-band radar
data was explored, and it was found to be effective in helping with the enhancement of peak
runoffs. However, it is important to acknowledge that, due to data availability constraints,
enhanced models could not be applied through the classification of events based on their
duration and area, as conducted in the study of Laverde-Barajas et al. [26]. Nevertheless, it
is anticipated that with an increased number of peak runoff events, this approach could
further enhance the models.

A potential extension of this study would be to involve feature engineering techniques
that focus on obtaining additional variables derived from remote sensing data, such as
satellite imagery. These variables may include, but are not limited to, soil moisture, as
demonstrated by Massari et al. [45], watershed topography, as shown by Tripathi et al. [46],
and geomorphic and biophysical parameters, such as the Normalized Difference Vegetation
Index (NDVI) and the Index of Connectivity (IC), as presented by Asadi et al. [47]. By
incorporating these variables, the study could potentially enhance its predictive power and
provide valuable insights into the underlying mechanisms driving runoff generation in the
study area.

Also, a next step in the study, could be to determine whether the observed peak flows
lead to flooding. This can be achieved by establishing flow thresholds, analyzing historical
flood events, or deriving this information from an extensive runoff dataset. Producing
flood models requires an evaluation with additional metrics beyond those used in this
study—specifically, categorical metrics. This system could be assessed using metrics, such
as the probability of detection (POD), the false alarm ratio (FAR), and/or the critical success
index (CSI) [48].

6. Conclusions

In this study, we developed enhanced peak runoff forecasting models by exploiting
precipitation data retrieved from an X-band radar data. This was performed by applying a
Feature Engineering (FE) strategy accounting for an object-based approach to derive key
precipitation attributes instead of using a pixel-based timeseries. To assess the effectiveness
of the application of the FE strategy, we conducted a comparative analysis of the perfor-
mance metrics between the referential models and enhanced models across a range of 1 to
6 h modeling lead times. Based on the results, the following conclusions can be drawn:

• The application of the FE strategy resulted in enhanced model efficiencies and enabled
us to better leverage precipitation radar data by incorporating attributes of precipita-
tion, such as the precipitation volume, areal extension of precipitation objects, and the
distance between the centroid of these objects and the outlet of the catchment.

• All enhanced models demonstrated improvements in their efficiencies. Notably,
the models for 3 and 6 h lead times exhibited more significant enhancements com-
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pared to the 1 h forecast, where the autoregressive behavior already produced an
efficient model.

• To fully utilize the high spatial resolution of radar data for modeling, it is crucial
to extract relevant attributes, rather than using the entire dataset, which introduces
noise to the models. The enhanced models achieved a significant reduction in input
data, emphasizing the efficiency gained through selective attribute extraction. This
highlights a simplified method that optimally utilizes ground-based radar data.

• This study has demonstrated the positive impact of improving the representativeness
of precipitation retrieved from a high-resolution X-band weather radar. By extracting
relevant attributes from high-resolution imagery, we were able to better capture the
spatial characteristic of precipitation and improve the assimilation of this information
to RF models.
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