Influence of Structural Symmetry of Fault Zones on Fluid-Induced Fault Slips and Earthquakes
Abstract
:1. Introduction
2. Theoretical Background
2.1. Sliding Model
2.2. Material Model
2.3. Seismic Computational Model
3. Numerical Modelling
3.1. Model Setup
3.2. Fluid Injecting and Extracting
4. Results and Discussion
4.1. Upper Reservoir
4.1.1. Fluid Pattern I
4.1.2. Fluid Pattern II
4.1.3. Fluid Pattern III
4.1.4. Fluid Pattern IV
4.1.5. Fluid Pattern V
4.1.6. Fluid Pattern VI
4.2. Lower Reservoir
5. Conclusions
- (1)
- The stability of a fault was the result of a variety of factors. For the same fault, the fault slip results under different fluid patterns were significantly different. Simultaneously, under the same fluid pattern, the slip results for faults with different structures also varied. When evaluating the stability of faults in subsurface fluid engineering, the fault structure, the fluid pattern, and their combined action must be considered comprehensively.
- (2)
- When fluids were injected into a subsurface reservoir, the primary cause of fault slippage was the reduction in shear strength due to a decrease in effective stress. When fluid was extracted from the reservoir, the main cause of fault sliding was often the increase in effective stress, which could lead to compressive deformation of the reservoir rock. When fluid was injected into the footwall reservoir, the asymmetric fault was more stable than the symmetrical fault. When fluid was injected into the hanging wall reservoir, in contrast, the symmetrical fault was more stable.
- (3)
- When the fault was asymmetric, it was more dangerous if fluid was injected into or extracted from the hanging wall reservoir than from the footwall reservoir. When the fault was symmetrical, injecting fluid into or extracting fluid from the footwall reservoir posed a greater danger.
- (4)
- In numerous subsurface fluid injection and extraction projects, symmetrical faults are generally regarded as posing a higher risk compared to asymmetric faults. The reason is that symmetrical faults typically have high permeability in both the left and right damage zones. For asymmetric faults, however, only the induced fracture zone exhibits high permeability. Comprehensive investigation of the effect of fault zone symmetry on fault slips is essential for accurately assessing the risks associated with subsurface fluid injection and extraction.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ite, A.E.; Ibok, U.J.; Ite, M.U.; Petters, S.W. Petroleum Exploration and Production: Past and Present Environmental Issues in the Nigeria’s Niger Delta. Am. J. Environ. Prot. 2013, 1, 78–90. [Google Scholar] [CrossRef]
- Leather, D.T.B.; Bahadori, A.; Nwaoha, C.; Wood, D.A. Engineering, A review of Australia’s natural gas resources and their exploitation. J. Nat. Gas Sci. Eng. 2013, 10, 68–88. [Google Scholar] [CrossRef]
- Luo, X.; Wang, S.; Jing, Z.; Lv, M.; Wang, Z.; Zhai, Z.; Zhang, Y. A Review of Shale Gas Exploitation Technology. In Proceedings of the International Conference on Renewable Energy and Environmental Technology, Bali, Indonesia, 28 September 2014. [Google Scholar]
- Neelu, R.; Upadhyay, B.; Parida, A. New Approach to Evaluate and Predict the Reservoir Performance of a Two-Phase Flow Coalbed Methane Well with Fully Coupled Time-Dependent Desorption and Pressure-Dependent Diffusivity Effects. Energy Fuel 2022, 36, 5284–5306. [Google Scholar] [CrossRef]
- Huang, J.; Liao, Z.; Hu, Q.; Song, Z.; Wang, X. Fracture mechanism of tight sandstone under high and complex 3-D stress compression: Insights from acoustic emission. J. Pet. Sci. Eng. 2022, 208, 109635. [Google Scholar] [CrossRef]
- Yadav, K.; Sircar, A. Geothermal energy provinces in India: A renewable heritage. TIDEE TERI Inf. Dig. Energy Environ. 2022, 21, 175. [Google Scholar] [CrossRef]
- Grant, F.J. Groundwater, Deep Injection of Waste Water in the Western Canada Sedimentary Basin. Groundwater 2014, 53, 187–194. [Google Scholar]
- van der Zwaan, B.; Gerlagh, R. Economics of geological CO2 storage and leakage. Clim. Change 2009, 93, 285–309. [Google Scholar] [CrossRef]
- Wang, J.; Xie, H.P.; Kmatthai, S.; Hu, J.J.; Li, C.B. The role of natural fracture activation in hydraulic fracturing for deep unconventional geo-energy reservoir stimulation. Pet. Sci. 2023, 20, 2141–2164. [Google Scholar] [CrossRef]
- Thomas, S. Enhanced Oil Recovery—An Overview. Oil Gas Sci. Technol. Rev. L’ifp 2008, 63, 9–19. [Google Scholar] [CrossRef]
- Graham, R.A.; Cox, R.J.; Stadlwieser, J.A.; Stinn, R. Enhanced Oil Recovery by Gas Injection: Proposed Screening Criteria; The Petroleum Society: Richardson, TX, USA, 1996; pp. 96–119. [Google Scholar]
- Islam, M.R.; Chakma, A.; Jha, K.N. Engineering, Heavy oil recovery by inert gas injection with horizontal wells. J. Pet. Sci. Eng. 1994, 11, 213–226. [Google Scholar] [CrossRef]
- Bayer, P.; Rybach, L.; Blum, P.; Brauchler, R. Review on life cycle environmental effects of geothermal power generation. Renew. Sustain. Energy Rev. 2013, 26, 446–463. [Google Scholar] [CrossRef]
- Arman, A.; Christian, B. From hot rock to useful energy: A global estimate of enhanced geothermal systems potential. Appl. Energy 2020, 279, 115769. [Google Scholar]
- Feng, Z.; Zhao, Y.; Zhou, A.; Zhang, N. Development program of hot dry rock geothermal resource in the Yangbajing Basin of China. Renew. Energy 2012, 39, 490–495. [Google Scholar] [CrossRef]
- Li, Q.; Wei, Y.N.; Liu, G.; Shi, H. CO2-EWR: A cleaner solution for coal chemical industry in China. J. Clean. Prod. 2015, 103, 330–337. [Google Scholar] [CrossRef]
- Wei, N.; Liu, S.; Li, X. Evaluation on potential of CO2 enhanced water recovery deployment in China’s coal chemical industry. Clim. Change Res. 2021, 17, 70–78. [Google Scholar]
- Tong, L.; Wei, X.; Liu, X.; Liang, L.; Wang, X.; Chen, J.; Lei, H. A Criterion for a Hydraulic Fracture Crossing a Natural Fracture in Toughness Dominant Regime and Viscosity Dominant Regime. Eng. Fract. Mech. 2023, 289, 109421. [Google Scholar] [CrossRef]
- Jones, P.; Hillier, D.; Comfort, D. Fracking for Shale Gas: Planning Policy and Practice. Town Ctry. Plan. 2016, 85, 145–150. [Google Scholar]
- Wu, B.; Wei, X.; Wang, W.; Li, J.; Liu, T.; Wang, X. Effect of stress and material barriers on hydraulic fracture height containment in layered formations. Environ. Earth Sci. 2022, 81, 255. [Google Scholar] [CrossRef]
- Hough, S.E.; Page, M. A Century of Induced Earthquakes in Oklahoma? Bull. Seismol. Soc. Am. 2015, 105, 2863–2870. [Google Scholar] [CrossRef]
- Vlek, C. Induced earthquakes from long-term gas extraction in Groningen, the Netherlands: Statistical analysis and prognosis for acceptable-risk regulation. Risk Anal. 2018, 38, 1455–1473. [Google Scholar] [CrossRef]
- González, P.J.; Tiampo, K.F.; Palano, M.; Cannavó, F.; Fernández, J. The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading. Nat. Geosci. 2012, 5, 821–825. [Google Scholar] [CrossRef]
- Fan, Z.; Eichhubl, P.; Gale, J.F.W. Geomechanical analysis of fluid injection and seismic fault slip for the Mw 4.8 Timpson, Texas, earthquake sequence. J. Geophys. Res. Solid Earth 2016, 121, 2798–2812. [Google Scholar] [CrossRef]
- Deichmann, N.; Giardini, D. Earthquakes Induced by the Stimulation of an Enhanced Geothermal System below Basel (Switzerland). Seismol. Res. Lett. 2009, 80, 784–798. [Google Scholar] [CrossRef]
- Ellsworth, W.L.; Giardini, D.; Townend, J.; Ge, S.; Shimamoto, T. Triggering of the Pohang, Korea, Earthquake (Mw 5.5) by Enhanced Geothermal System Stimulation. Seismol. Res. Lett. 2019, 5, 1844–1858. [Google Scholar] [CrossRef]
- Bao, X.; Eaton, D.W. Fault activation by hydraulic fracturing in western Canada. Science 2016, 354, 1406–1409. [Google Scholar] [CrossRef]
- Watts, D.R.; Hauser, E.C.; Mohshin, M.; Dominic, D.F. Induced seismicity risk management: The problem of disappearing faults. AAPG Bull. 2021, 105, 265–273. [Google Scholar] [CrossRef]
- White, J.A.; Foxall, W. A Phased Approach to Induced Seismicity Risk Management. Energy Procedia 2014, 63, 4841–4849. [Google Scholar] [CrossRef]
- Gaucher, E.; Schoenball, M.; Heidbach, O.; Zang, A.; Fokker, P.A.; van Wees, J.D.; Kohl, T. Induced seismicity in geothermal reservoirs: A review of forecasting approaches. Renew. Sustain. Energy Rev. 2015, 52, 1473–1490. [Google Scholar] [CrossRef]
- Goertz-Allmann, B.P.; Wiemer, S. Geomechanical modeling of induced seismicity source parameters and implications for seismic hazard assessment. Geophysics 2012, 78, KS25–KS39. [Google Scholar] [CrossRef]
- Wang, L.; Kwiatek, G.; Bohnhoff, M.; Rybacki, E.; Dresen, G. Injection-induced fault slip and associated seismicity in the lab: Insights from source mechanisms, local stress states and fault geometry. Earth Planet. Sci. Lett. 2024, 626, 118515. [Google Scholar] [CrossRef]
- Wang, L.; Kwiatek, G.; Rybacki, E.; Bonnelye, A.; Bohnhoff, M.; Dresen, G. Laboratory Study on Fluid-Induced Fault Slip Behavior: The Role of Fluid Pressurization Rate. Geophys. Res. Lett. 2020, 47, e2019GL086627. [Google Scholar] [CrossRef]
- Jia, Z.; Liu, S.; Cheng, S.; Zhao, X.; Zhang, G. Modeling of Complex Geological Body and Computation of Geomagnetic Anomaly. Math. Probl. Eng. 2020, 2020, 9839606. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, X.-P.; Ji, P.-Q. Numerical study of interaction between a hydraulic fracture and a weak plane using the bonded-particle model based on moment tensors. Comput. Geotech. 2019, 105, 79–93. [Google Scholar] [CrossRef]
- Sainoki, A.; Schwartzkopff, A.K.; Jiang, L.; Mitri, H.S. Numerical Modeling of Complex Stress State in a Fault Damage Zone and Its Implication on Near-Fault Seismic Activity. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021784. [Google Scholar] [CrossRef]
- Foley, L.; Daltaban, T.S.; Wang, J.T. Numerical simulation of fluid flow in complex faulted regions. Geol. Soc. Lond. Spec. Publ. 1998, 127, 121–132. [Google Scholar] [CrossRef]
- Chen, S.; Ding, B.; Gong, L.; Huang, Z.; Yu, B.; Sun, S. Comparison of multi-field coupling numerical simulation in hot dry rock thermal exploitation of enhanced geothermal systems. Adv. Geo-Energy Res. 2019, 3, 396–409. [Google Scholar] [CrossRef]
- Gan, Q.; Elsworth, D. Thermal drawdown and late-stage seismic-slip fault reactivation in enhanced geothermal reservoirs. J. Geophys. Res. Solid Earth 2014, 119, 8936–8949. [Google Scholar] [CrossRef]
- Yoon, S.; Lee, H.; Kim, J. The modeling of fault activation, slip, and induced seismicity for geological CO2 storage at a pilot-scale site in the Janggi Basin, South Korea. Int. J. Rock Mech. Min. Sci. 2023, 170, 105441. [Google Scholar] [CrossRef]
- Yoon, J.S.; Zang, A.; Stephansson, O.; Zimmermann, G. Modelling of Fluid-injection-induced Fault Reactivation Using a 2D Discrete Element Based Hydro-mechanical Coupled Dynamic Simulator. Energy Procedia 2016, 97, 454–461. [Google Scholar] [CrossRef]
- Treffeisen, T.; Henk, A. How pore pressure changes affect stress and strain in fault zones with complex internal structure—Insights from hydromechanical modelling. J. Struct. Geol. 2023, 170, 104847. [Google Scholar] [CrossRef]
- Li, C.; Xu, Z. Numerical Modeling and Investigation of Fault-Induced Water Inrush Hazard under Different Mining Advancing Directions. Mathematics 2022, 10, 1561. [Google Scholar] [CrossRef]
- Park, J.-W.; Guglielmi, Y.; Graupner, B.; Rutqvist, J.; Park, E.-S. Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2). Tunn. Undergr. Space 2019, 29, 197–213. [Google Scholar]
- Chang, K.W.; Yoon, H.; Kim, Y.; Lee, M.Y. Operational and geological controls of coupled poroelastic stressing and pore-pressure accumulation along faults: Induced earthquakes in Pohang, South Korea. Sci. Rep. 2020, 10, 2073. [Google Scholar] [CrossRef]
- Flodin, E.; Aydin, A. Faults with asymmetric damage zones in sandstone, Valley of Fire State Park, southern Nevada. J. Struct. Geol. 2004, 26, 983–988. [Google Scholar] [CrossRef]
- Brogi, A. Fault zone architecture and permeability features in siliceous sedimentary rocks: Insights from the Rapolano geothermal area (Northern Apennines, Italy). J. Struct. Geol. 2008, 30, 237–256. [Google Scholar] [CrossRef]
- Berg, S.S.; Skar, T. Controls on damage zone asymmetry of a normal fault zone: Outcrop analyses of a segment of the Moab fault, SE Utah. J. Struct. Geol. 2005, 27, 1803–1822. [Google Scholar] [CrossRef]
- Ben-Zion, Y.; Sammis, C.G. Characterization of Fault Zones. Pure Appl. Geophys. 2003, 160, 677–715. [Google Scholar] [CrossRef]
- Wang, L.; Kwiatek, G.; Renard, F.; Guérin-Marthe, S.; Rybacki, E.; Bohnhoff, M.; Naumann, M.; Dresen, G. Fault roughness controls injection-induced seismicity. Proc. Natl. Acad. Sci. USA 2024, 121, e2310039121. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, W.; Xue, Y.; Song, G.; Liu, H. Structural Characteristics of Faulting Zone and Its Ability in Transporting and Sealing Oil and Gas. Acta Geol. Sin. 2010, 84, 570–578. [Google Scholar]
- Egholm, D.L.; Clausen, O.R.; Sandiford, M.; Kristensen, M.B.; Korstgård, J.A. The mechanics of clay smearing along faults. Geology 2008, 36, 787–790. [Google Scholar] [CrossRef]
- Xiao-Fei, F.U.; Xue, G.; Li-Xu, Z.; Yan-Fang, L.V. Formation and evolution of clay smear and hydrocarbon migration and sealing. J. China Univ. Min. 2012, 41, 52–63. [Google Scholar]
- Allan, U.S. Model for hydrocarbon migration and entrapment within faulted structures. AAPG Bull. 1989, 73, 803–811. [Google Scholar]
- Hibbitt, Karlsson & Sorensen. ABAQUS Theory Manual, Version 6.2; Hibbitt, Karlsson & Sorensen: Providence, RI, USA, 2001. [Google Scholar]
- Zhou, X.; Burbey, T.J. Deformation characteristics of a clayey interbed during fluid injection. Eng. Geol. 2014, 183, 185–192. [Google Scholar] [CrossRef]
- Biot, M.A. General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
- Rice, J.R.; Cleary, M.P. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. Space Phys. 1976, 14, 227–241. [Google Scholar] [CrossRef]
- Aki, K. Scaling Law of Seismic Spectrum. J. Geophys. Res. Atmos. 1967, 72, 1217–1231. [Google Scholar] [CrossRef]
- Hanks, T.C.; Kanamori, H. A moment magnitude scale. J. Geophys. Res. 1979, 84, 2348. [Google Scholar] [CrossRef]
- Mazzoldi, A.; Rinaldi, A.P.; Borgia, A.; Rutqvist, J. Induced seismicity within geological carbon sequestration projects: Maximum earthquake magnitude and leakage potential from undetected faults. Int. J. Greenh. Gas Control. 2012, 10, 434–442. [Google Scholar] [CrossRef]
- Rinaldi, A.P.; Rutqvist, J. Modeling of deep fracture zone opening and transient ground surface uplift at KB-502 CO2 injection well, in Salah, Algeria. Int. J. Greenh. Gas Control. 2013, 12, 155–167. [Google Scholar] [CrossRef]
- Guo, M.; Ji, C.; Liu, Z.; Zhang, P. Artificial hydraulic fracture propagation law of hot dry rock reservoir in Gonghe Basin, Qinghai province. J. Xi’an Univ. Sci. Technol. 2023, 43, 514–522. [Google Scholar]
Property | Density (kg/m3) | Young’s Modulus (GPa) | Poisson’s Ratio (-) | Porosity (-) | Permeability (m/s) |
---|---|---|---|---|---|
Overburden | 2600 | 20 | 0.37 | 0.01 | 1 × 10−16 |
Reservoir | 2200 | 25 | 0.30 | 0.2 | 1 × 10−7 |
Underburden | 2600 | 30 | 0.33 | 0.36 | 1 × 10−16 |
Fault core | 2500 | 10 | 0.3 | 0.05 | 1 × 10−15 |
Damage zone | 2000 | 10 | 0.3 | 0.2 | 1 × 10−7 |
Sliding crush zone | 2500 | 10 | 0.3 | 0.05 | 1 × 10−15 |
Induced fracture zone | 2000 | 10 | 0.3 | 0.2 | 1 × 10−7 |
Reservoir Category | Fluid Pattern | Asymmetric Fault | Symmetrical Fault | ||
---|---|---|---|---|---|
Average Slip (mm) | Induced Earthquake (Mw) | Average Slip (mm) | Induced Earthquake (Mw) | ||
Upper reservoir | I | 4.40 | 2.77 | 16.47 | 3.15 |
II | 8.96 | 2.98 | 7.85 | 2.94 | |
III | 4.08 | 2.75 | 5.18 | 2.82 | |
IV | 5.97 | 2.86 | 5.07 | 2.81 | |
V | 6.84 | 2.90 | 13.83 | 3.10 | |
VI | 10.85 | 3.03 | 6.46 | 2.88 | |
Lower reservoir | I | 2.03 | 2.55 | 19.44 | 3.20 |
II | 9.40 | 2.99 | 7.92 | 2.94 | |
III | 1.59 | 2.47 | 9.35 | 2.99 | |
IV | 5.22 | 2.82 | 4.28 | 2.76 | |
V | 5.25 | 2.82 | 11.35 | 3.04 | |
VI | 9.28 | 2.99 | 9.34 | 2.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Z.; Bai, B. Influence of Structural Symmetry of Fault Zones on Fluid-Induced Fault Slips and Earthquakes. Water 2024, 16, 1118. https://doi.org/10.3390/w16081118
Niu Z, Bai B. Influence of Structural Symmetry of Fault Zones on Fluid-Induced Fault Slips and Earthquakes. Water. 2024; 16(8):1118. https://doi.org/10.3390/w16081118
Chicago/Turabian StyleNiu, Zhiyong, and Bing Bai. 2024. "Influence of Structural Symmetry of Fault Zones on Fluid-Induced Fault Slips and Earthquakes" Water 16, no. 8: 1118. https://doi.org/10.3390/w16081118
APA StyleNiu, Z., & Bai, B. (2024). Influence of Structural Symmetry of Fault Zones on Fluid-Induced Fault Slips and Earthquakes. Water, 16(8), 1118. https://doi.org/10.3390/w16081118