Occurrence and Risk Assessment of Antibiotics in Urban River–Wetland–Lake Systems in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Pretreatment
2.3. Sample Treatment and Analysis
2.4. Human Health Risk Assessment
Noncarcinogenic Risk Assessment
2.5. Ecological Risk Assessment
2.6. Source Identification Analysis
3. Results
3.1. Occurrence of Target Antibiotics
3.2. Antibiotic Compositions in Different Areas and Comparison with Other Regions
3.3. Correlation between Antibiotic Concentrations and Water Properties
3.4. Human Health Risk Assessment
3.5. Ecological Risk Assessment
3.6. Pollution Source Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Danner, M.C.; Robertson, A.; Behrends, V.; Reiss, J. Antibiotic pollution in surface fresh waters: Occurrence and effects. Sci. Total Environ. 2019, 664, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Lu, S.Y.; Guo, W.; Xi, B.D.; Wang, W.L. Antibiotics in the aquatic environments: A review of lakes, China. Sci. Total Environ. 2018, 627, 1195–1208. [Google Scholar] [CrossRef]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.W.; Yan, D.D.; Mo, K.L.; Chen, Q.W.; Zhang, J.Y.; Chen, Y.C.; Wang, Z.Y. Antibiotics along an alpine river and in the receiving lake with a catchment dominated by grazing husbandry. J. Environ. Sci. 2022, 115, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Lin, C.Y.; Lei, K.; Wang, B.D.; Xin, M.; Gu, X.; Cao, Y.X.; Liu, X.T.; Ouyang, W.; He, M.C. Occurrence, spatiotemporal variation, and ecological risk of antibiotics in the water of the semi-enclosed urbanized Jiaozhou Bay in eastern China. Water Res. 2020, 184, 116187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.C.; Zhang, X.R.; Zhou, Y.; Han, Q.F.; Wang, X.L.; Song, C.; Wang, S.G.; Zhao, S. Occurrence, distribution and risk assessment of antibiotics at various aquaculture stages in typical aquaculture areas surrounding the Yellow Sea. J. Environ. Sci. 2023, 126, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.Y.; Zhang, H.; Xiong, P.; Zhu, Q.Q.; Liao, C.Y.; Jiang, G.B. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2021, 753, 141975. [Google Scholar] [CrossRef]
- Valdez-Carrillo, M.; Abrell, L.; Ramirez-Hernandez, J.; Reyes-Lopez, J.A.; Carreon-Diazconti, C. Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: A review. Environ. Sci. Pollut. Res. 2020, 27, 44863–44891. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.L.L.; Bai, Y.H.; Huo, Y.; Jian, Z.Y.; Hu, W.C.; Zhao, C.; Qu, J.H. Integrating microbial biomass, composition and function to discern the level of anthropogenic activity in a river ecosystem. Environ. Int. 2018, 116, 147–155. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Song, W.J.; Lin, H.; Wang, W.B.; Du, L.N.; Xing, W. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. Environ. Int. 2018, 116, 60–73. [Google Scholar] [CrossRef]
- Gao, J.H.; Jia, J.J.; Kettner, A.J.; Xing, F.; Wang, Y.P.; Xu, X.N.; Yang, Y.; Zou, X.Q.; Gao, S.; Qi, S.H.; et al. Changes in water and sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions, China. Sci. Total Environ. 2014, 481, 542–553. [Google Scholar] [CrossRef]
- Hou, L.Y.; Zhang, L.P.; Li, F.R.; Huang, S.J.; Yang, J.; Ma, C.; Zhang, D.X.; Yu, C.P.; Hu, A.Y. Urban ponds as hotspots of antibiotic resistome in the urban environment. J. Hazard. Mater. 2021, 403, 124008. [Google Scholar] [CrossRef]
- Perez, J.I.; Alvarez-Arroyo, R.; Arrieta, J.; Suescun, J.M.; Paunero, S.; Gomez, M.A. Occurrence of antibiotics and antibiotic-resistant bacteria (ARB) in the Nervion river. Chemosphere 2022, 288, 132479. [Google Scholar] [CrossRef]
- Zhao, B.; Xu, J.M.; Zhang, G.D.; Lu, S.Y.; Liu, X.H.; Li, L.X.; Li, M. Occurrence of antibiotics and antibiotic resistance genes in the Fuxian Lake and antibiotic source analysis based on principal component analysis-multiple linear regression model. Chemosphere 2021, 262, 127741. [Google Scholar] [CrossRef]
- Maghsodian, Z.; Sanati, A.M.; Mashifana, T.; Sillanpaa, M.; Feng, S.Y.; Nhat, T.; Ramavandi, B. Occurrence and Distribution of Antibiotics in the Water, Sediment, and Biota of Freshwater and Marine Environments: A Review. Antibiotics 2022, 11, 1461. [Google Scholar] [CrossRef] [PubMed]
- GB11893-89; Water Quality–Determination of Total Phosphorus–Ammonium Molybdate Spectrophotometric Method. The Ministry of Environmental Protection: Beijing, China, 1989.
- HJ636-2012; Water Quality—Determination of Total Nitrogen–Alkaline Potassium Persulfate Digestion UV Spectrophotometric Method. China Environmental Science Press: Beijing, China, 2012.
- Lin, X.H.; Xu, J.C.; Keller, A.A.; He, L.; Gu, Y.H.; Zheng, W.W.; Sun, D.Y.; Lu, Z.B.; Huang, J.W.; Huang, X.F.; et al. Occurrence and risk assessment of emerging contaminants in a water reclamation and ecological reuse project. Sci. Total Environ. 2020, 744, 140977. [Google Scholar] [CrossRef]
- Asano, T.; Levine, A.D. Wastewater reclamation, recycling and reuse: Past, present, and future. Water Sci. Technol. 1996, 33, 1–14. [Google Scholar] [CrossRef]
- The Ministry of Environmental Protection (Ed.) Exposure Factors Handbook of Chinese Population; China Environmental Press: Beijing, China, 2013. [Google Scholar]
- Integrated Risk Information System; Office of Research and Development, National Center for Environmental Assessment: Washington, DC, USA, 2006. Available online: http://www.epa.gov/iris (accessed on 3 February 1993).
- USEPA. Description and Use in Health Risk Assessments; USEPA: Washington, DC, USA, 1993. Available online: https://www.epa.gov/iris/reference-dose-rfd-description-and-use-health-risk-assessments (accessed on 3 February 1993).
- Sharafi, K.; Nodehi, R.N.; Yunesian, M.; Mahvi, A.H.; Pirsaheb, M.; Nazmara, S. Human health risk assessment for some toxic metals in widely consumed rice brands (domestic and imported) in Tehran, Iran: Uncertainty and sensitivity analysis. Food Chem. 2019, 277, 145–155. [Google Scholar] [CrossRef]
- Du, J.; Zhao, H.X.; Wang, Y.; Xie, H.J.; Zhu, M.H.; Chen, J.W. Presence and environmental risk assessment of selected antibiotics in coastal water adjacent to mariculture areas in the Bohai Sea. Ecotoxicol. Environ. Saf. 2019, 177, 117–123. [Google Scholar] [CrossRef]
- ECOTOX. Ecotoxicology Database. Available online: https://cfpub.epa.gov/ecotox/ (accessed on 3 February 1993).
- Inam, E.J.; Nwoke, I.B.; Udosen, E.D.; Offiong, N.-A.O. Ecological risks of phenolic endocrine disrupting compounds in an urban tropical river. Environ. Sci. Pollut. Res. 2019, 26, 21589–21597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef]
- Zhao, L.; Dong, Y.H.; Wang, H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci. Total Environ. 2010, 408, 1069–1075. [Google Scholar] [CrossRef]
- Vione, D.; Feitosa-Felizzola, J.; Minero, C.; Chiron, S. Phototransformation of selected human-used macrolides in surface water: Kinetics, model predictions and degradation pathways. Water Res. 2009, 43, 1959–1967. [Google Scholar] [CrossRef]
- Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K.L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999, 225, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Jiang, C.X.; Wang, Y.L.; Song, R.R.; Tan, Y.; Yang, Y.Y.; Zhang, Z.L. Sources, Environmental Fate, and Ecological Risks of Antibiotics in Sediments of Asia’s Longest River: A Whole-Basin Investigation. Environ. Sci. Technol. 2022, 56, 14439–14451. [Google Scholar] [CrossRef]
- Lei, K.H.; Lai, H.T. Effects of sunlight, microbial activity, and temperature on the declines of antibiotic lincomycin in freshwater and saline aquaculture pond waters and sediments. Environ. Sci. Pollut. Res. 2019, 26, 33988–33994. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Yang, L.S.; Zhang, L.; Ye, B.X.; Wang, L. Antibiotics in soil and water in China-a systematic review and source analysis. Environ. Pollut. 2020, 266, 115147. [Google Scholar] [CrossRef]
- Li, S.; Shi, W.Z.; Liu, W.; Li, H.M.; Zhang, W.; Hu, J.R.; Ke, Y.C.; Sun, W.L.; Ni, J.R. A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005–2016). Sci. Total Environ. 2018, 615, 906–917. [Google Scholar] [CrossRef]
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galban-Malagon, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef]
- Jia, J.; Guan, Y.J.; Cheng, M.Q.; Chen, H.; He, J.F.; Wang, S.; Wang, Z.Z. Occurrence and distribution of antibiotics and antibiotic resistance genes in Ba River, China. Sci. Total Environ. 2018, 642, 1136–1144. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef]
- Chen, Q.W.; Dong, J.W.; Zhang, T.; Yi, Q.T.; Zhang, J.Y.; Hu, L.M. A method to study antibiotic emission and fate for data-scarce rural catchments. Environ. Int. 2019, 127, 514–521. [Google Scholar] [CrossRef]
- Li, W.H.; Shi, Y.L.; Gao, L.H.; Liu, J.M.; Cai, Y.Q. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere 2012, 89, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Thiele-Bruhn, S. Pharmaceutical antibiotic compounds in soils—A review. J. Plant Nutr. Soil Sci. 2003, 166, 145–167. [Google Scholar] [CrossRef]
- Li, F.F.; Chen, L.J.; Chen, W.D.; Bao, Y.Y.; Zheng, Y.H.; Huang, B.; Mu, Q.L.; Wen, D.H.; Feng, C.P. Antibiotics in coastal water and sediments of the East China Sea: Distribution, ecological risk assessment and indicators screening. Mar. Pollut. Bull. 2020, 151, 110810. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.W.; Wen, Q.; Ma, Y.Q.; Yang, C.C.; Liu, Z.C. Antibiotics pollution in Gonghu Bay in the period of water diversion from Yangtze River to Taihu Lake. Environ. Earth Sci. 2018, 77, 419. [Google Scholar] [CrossRef]
- Ngumba, E.; Gachanja, A.; Tuhkanen, T. Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya. Sci. Total Environ. 2016, 539, 206–213. [Google Scholar] [CrossRef]
- Zhi, S.L.; Shen, S.Z.; Zhou, J.; Ding, G.Y.; Zhang, K.Q. Systematic analysis of occurrence, density and ecological risks of 45 veterinary antibiotics: Focused on family livestock farms in Erhai Lake basin, Yunnan, China. Environ. Pollut. 2020, 267, 115539. [Google Scholar] [CrossRef]
- Kuang, Y.Z.; Guo, X.Y.; Hu, J.R.; Li, S.; Zhang, R.J.; Gao, Q.; Yang, X.; Chen, Q.; Sun, W.L. Occurrence and risks of antibiotics in an urban river in northeastern Tibetan Plateau. Sci. Rep. 2020, 10, 20054. [Google Scholar] [CrossRef]
- Linghu, K.; Wu, Q.X.; Zhang, J.; Wang, Z.H.; Zeng, J.; Gao, S.L. Occurrence, distribution and ecological risk assessment of antibiotics in Nanming river: Contribution from wastewater treatment plant and implications of urban river syndrome. Process Saf. Environ. Prot. 2023, 169, 428–436. [Google Scholar] [CrossRef]
- Hu, Y.; Yan, X.; Shen, Y.; Di, M.X.; Wang, J. Antibiotics in surface water and sediments from Hanjiang River, Central China: Occurrence, behavior and risk assessment. Ecotoxicol. Environ. Saf. 2018, 157, 150–158. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Li, M.X.; Guo, C.S.; An, D.; Xu, J.; Zhang, Y.; Xi, B.D. Distribution and ecological risk of antibiotics in a typical effluent-receiving river (Wangyang River) in north China. Chemosphere 2014, 112, 267–274. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sanchez-Melsio, A.; Borrego, C.M.; Barcelo, D.; Balcazar, J.L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Chen, H.Y.; Jing, L.J.; Teng, Y.G. Ecotoxicological risk assessment and source apportionment of antibiotics in the waters and sediments of a peri-urban river. Sci. Total Environ. 2020, 731, 139128. [Google Scholar] [CrossRef]
- Matongo, S.; Birungi, G.; Moodley, B.; Ndungu, P. Occurrence of selected pharmaceuticals in water and sediment of Umgeni River, KwaZulu-Natal, South Africa. Environ. Sci. Pollut. Res. 2015, 22, 10298–10308. [Google Scholar] [CrossRef] [PubMed]
- Müller, B.; Thoma, R.; Baumann, K.B.; Callbeck, C.M.; Schubert, C.J. Nitrogen removal processes in lakes of different trophic states from on-site measurements and historic data. Aquat. Sci. 2021, 83, 37. [Google Scholar] [CrossRef]
- Ogunbanwo, O.M.; Kay, P.; Boxall, A.B.; Wilkinson, J.; Sinclair, C.J.; Shabi, R.A.; Fasasi, A.E.; Lewis, G.A.; Amoda, O.A.; Brown, L.E. High Concentrations of Pharmaceuticals in a Nigerian River Catchment. Environ. Toxicol. Chem. 2022, 41, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Kairigo, P.; Ngumba, E.; Sundberg, L.R.; Gachanja, A.; Tuhkanen, T. Occurrence of antibiotics and risk of antibiotic resistance evolution in selected Kenyan wastewaters, surface waters and sediments. Sci. Total Environ. 2020, 720, 137580. [Google Scholar] [CrossRef] [PubMed]
- Sargenti, M.; Bartolacci, S.; Luciani, A.; Di Biagio, K.; Baldini, M.; Galarini, R.; Giusepponi, D.; Capuccella, M. Investigation of the Correlation between the Use of Antibiotics in Aquaculture Systems and Their Detection in Aquatic Environments: A Case Study of the Nera River Aquafarms in Italy. Sustainability 2020, 12, 5176. [Google Scholar] [CrossRef]
- Im, J.K.; Kim, S.H.; Noh, H.R.; Yu, S.J. Temporal-spatial variation and environmental risk assessment of pharmaceuticals in tributaries of the Han River watershed, South Korea. Sci. Total Environ. 2020, 741, 140486. [Google Scholar] [CrossRef]
- Li, L.; Liu, D.; Zhang, Q.; Song, K.; Zhou, X.H.; Tang, Z.; Zhou, X. Occurrence and ecological risk assessment of selected antibiotics in the freshwater lakes along the middle and lower reaches of Yangtze River Basin. J. Environ. Manag. 2019, 249, 109396. [Google Scholar] [CrossRef]
- Lee, J.; Ju, F.; Maile-Moskowitz, A.; Beck, K.; Maccagnan, A.; McArdell, C.S.; Dal Molin, M.; Fenicia, F.; Vikesland, P.J.; Pruden, A.; et al. Unraveling the riverine antibiotic resistome: The downstream fate of anthropogenic inputs. Water Res. 2021, 197, 117050. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bai, J.H.; Zhang, K.G.; Wang, Y.Q.; Xiao, R.; Campos, M.; Acuna, J.; Jorquera, M.A. Occurrence, bioaccumulation and ecological risks of antibiotics in the water- plant-sediment systems in different functional areas of the largest shallow lake in North China: Impacts of river input and historical agricultural activities. Sci. Total Environ. 2023, 857, 159260. [Google Scholar] [CrossRef] [PubMed]
- Malnes, D.; Ahrens, L.; Kohler, S.; Forsberg, M.; Golovko, O. Occurrence and mass flows of contaminants of emerging concern (CECs) in Sweden’s three largest lakes and associated rivers. Chemosphere 2022, 294, 133825. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.J.; Tang, J.H.; Li, J.; Zheng, Q.; Liu, D.; Chen, Y.J.; Zou, Y.D.; Chen, X.X.; Luo, C.L.; Zhang, G. Antibiotics in the offshore waters of the Bohai Sea and the Yellow Sea in China: Occurrence, distribution and ecological risks. Environ. Pollut. 2013, 174, 71–77. [Google Scholar] [CrossRef] [PubMed]
- DuJuan, Z.H.X.; LiuSisi, X.H.J.; WangYan, C.J.W. Antibiotics in the coastal water of the South Yellow Sea in China: Occurrence, distribution and ecological risks. Sci. Total Environ. 2017, 595, 521–527. [Google Scholar] [CrossRef]
- Han, Q.F.; Zhao, S.; Zhang, X.R.; Wang, X.L.; Song, C.; Wang, S.G. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environ. Int. 2020, 138, 105551. [Google Scholar] [CrossRef]
- Ingerslev, F.; Torang, L.; Loke, M.L.; Halling-Sorensen, B.; Nyholm, N. Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere 2001, 44, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.X.; Huang, X.L.; Witter, J.D.; Spongberg, A.L.; Wang, K.X.; Wang, D.; Liu, J.T. Occurrence of pharmaceuticals and personal care products and associated environmental risks in the central and lower Yangtze river, China. Ecotoxicol. Environ. Saf. 2014, 106, 19–26. [Google Scholar] [CrossRef]
- Yang, X.; Chen, F.; Meng, F.G.; Xie, Y.Y.; Chen, H.; Young, K.; Luo, W.X.; Ye, T.J.; Fu, W.J. Occurrence and fate of PPCPs and correlations with water quality parameters in urban riverine waters of the Pearl River Delta, South China. Environ. Sci. Pollut. Res. 2013, 20, 5864–5875. [Google Scholar] [CrossRef]
- Chen, H.; Liu, S.; Xu, X.R.; Zhou, G.J.; Liu, S.S.; Yue, W.Z.; Sun, K.F.; Ying, G.G. Antibiotics in the coastal environment of the Hailing Bay region, South China Sea: Spatial distribution, source analysis and ecological risks. Mar. Pollut. Bull. 2015, 95, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Yu, S.; Hong, B.; Li, J.; Han, H.; Qie, G. Antibiotics control in aquaculture requires more than antibiotic-free feeds: A tilapia farming case. Environ. Pollut. 2021, 268, 115854. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.J.; Ying, G.G.; Liu, S.; Zhang, R.Q.; Lai, H.J.; Chen, Z.F.; Pan, C.G. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. Sci. Total Environ. 2013, 444, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Teng, Y.G.; Wang, J.S. Load estimation and source apportionment of nonpoint source nitrogen and phosphorus based on integrated application of SLURP model, ECM, and RUSLE: A case study in the Jinjiang River, China. Environ. Monit. Assess. 2013, 185, 2009–2021. [Google Scholar] [CrossRef]
- Wu, Q.; Xiao, S.K.; Pan, C.G.; Yin, C.; Wang, Y.H.; Yu, K.F. Occurrence, source apportionment and risk assessment of antibiotics in water and sediment from the subtropical Beibu Gulf, South China. Sci. Total Environ. 2022, 806, 150439. [Google Scholar] [CrossRef]
NO. | Antibiotics | Parent Ion (m/z, Da) | Daughter Ion (m/z, Da) | Frag (V) | CE (eV) | RT (min) |
---|---|---|---|---|---|---|
1 | Erythromycin | 734 | 158 | 135 | 33 | 10.218 |
2 | Roxithromycin | 847 | 679.4 | 190 | 21 | 11.732 |
3 | Lincomycin | 407.5 | 126.1 | 150 | 33 | 5.502 |
4 | Azithromycin | 749.9 | 591.4 | 215 | 29 | 8.576 |
5 | Tylosin | 1042.4 | 814 | 135 | 27 | 13.495 |
6 | Clindamycin | 425 | 126.1 | 80 | 35 | 8.779 |
7 | Sulfacetamide | 215 | 156.3 | 110 | 10 | 2.948 |
8 | Sulfachloropyridazine | 285 | 155.9 | 110 | 13 | 8.087 |
9 | Sulfadimoxine | 311 | 155.9 | 125 | 17 | 9.854 |
10 | Sulfapyridine | 250.3 | 155.9 | 110 | 13 | 5.328 |
11 | Sulfathiazole | 256 | 155.9 | 92 | 13 | 5.043 |
12 | Sulfamethizole | 271.1 | 156.1 | 60 | 21 | 7.567 |
13 | Sulfapyridine | 251.2 | 156.1 | 102 | 13 | 3.729 |
14 | Sulfamonomethoxine | 281 | 156 | 160 | 18 | 7.149 |
15 | Sulfamethoxazole | 254 | 155.8 | 105 | 13 | 8.616 |
16 | Sulfamethazine | 279 | 156 | 112 | 17 | 6.941 |
17 | Trimethoprim | 291 | 230 | 165 | 21 | 6.406 |
18 | Sulfaquinoxaline | 301 | 156 | 118 | 16 | 10.120 |
19 | Ofloxacin | 362 | 318 | 180 | 15 | 6.848 |
20 | Norfloxacin | 320 | 302 | 128 | 21 | 6.882 |
21 | Ciprofloxacin | 332.1 | 314 | 100 | 18 | 6.938 |
22 | Enrofloxacin | 360 | 316 | 180 | 17 | 7.424 |
23 | Sarafloxacin | 386 | 268.1 | 180 | 29 | 8.541 |
24 | Lomefloxacin | 352 | 265 | 180 | 23 | 7.168 |
25 | Fleroxacin | 370 | 326 | 180 | 16 | 6.770 |
26 | Difloxacin | 400 | 356 | 180 | 23 | 8.122 |
27 | Doxycycline Hydrochloride | 445.2 | 427.9 | 115 | 15 | 8.914 |
28 | Tetracycline | 445.2 | 410 | 115 | 20 | 7.351 |
29 | Oxytetracycline | 461.2 | 442.9 | 130 | 10 | 6.987 |
30 | Aureomycin | 479.3 | 443.8 | 142 | 25 | 7.351 |
31 | Chloramphenicol | 321 | 152 | 110 | 9 | 9.260 |
32 | Florfenicol | 356 | 185 | 110 | 20 | 8.709 |
33 | Thiamphenicol | 354 | 184.7 | 140 | 13 | 6.521 |
34 | Rifampicin | 821 | 397 | 220 | 30 | 12.285 |
NO. | Antibiotics | MDLs (ng/L) | Linearity (R2) | Recoveries (Average ± RSD, %) |
---|---|---|---|---|
1 | Erythromycin | 1 | 0.9986 | 81.2 ± 3.8 |
2 | Roxithromycin | 1 | 0.9995 | 90.1 ± 4.2 |
3 | Lincomycin | 0.5 | 0.9945 | 85.6 ± 3.5 |
4 | Azithromycin | 1 | 0.9930 | 87.2 ± 3.4 |
5 | Tylosin | 2 | 0.9901 | 76.9 ± 8.7 |
6 | Clindamycin | 1 | 0.9851 | 81.2 ± 6.7 |
7 | Sulfacetamide | 1 | 0.9971 | 61.23 ± 3.5 |
8 | Sulfachloropyridazine | 1 | 0.9976 | 89.1 ± 2.5 |
9 | Sulfadimoxine | 1 | 0.9974 | 85.1 ± 5.1 |
10 | Sulfapyridine | 1 | 0.9977 | 79.6 ± 4.6 |
11 | Sulfathiazole | 1 | 0.9975 | 83.7 ± 5.2 |
12 | Sulfamethizole | 1 | 0.9994 | 81.3 ± 6.3 |
13 | Sulfapyridine | 1 | 0.9987 | 98.3 ± 2.1 |
14 | Sulfamonomethoxine | 1 | 0.9975 | 100.1 ± 7.2 |
15 | Sulfamethoxazole | 1 | 0.9956 | 79.5 ± 6.1 |
16 | Sulfamethazine | 1 | 0.9980 | 87.6 ± 5.5 |
17 | Trimethoprim | 1 | 0.9997 | 86.4 ± 3.4 |
18 | Sulfaquinoxaline | 1 | 0.9938 | 75.6 ± 4.2 |
19 | Ofloxacin | 1 | 0.9971 | 76.8 ± 3.8 |
20 | Norfloxacin | 1 | 0.9999 | 89.5 ± 3.8 |
21 | Ciprofloxacin | 1 | 0.9998 | 71.2 ± 4.5 |
22 | Enrofloxacin | 1 | 0.9998 | 78.6 ± 3.4 |
23 | Sarafloxacin | 1 | 0.9999 | 78.9 ± 4.2 |
24 | Lomefloxacin | 1 | 0.9998 | 61.8 ± 8.2 |
25 | Fleroxacin | 1 | 0.9994 | 61.2 ± 7.9 |
26 | Difloxacin | 1 | 0.9999 | 61.45 ± 8.7 |
27 | Doxycycline Hydrochloride | 20 | 0.9961 | 76.1 ± 3.8 |
28 | Tetracycline | 20 | 0.9971 | 64.1 ± 8.9 |
29 | Oxytetracycline | 20 | 0.9912 | 74.1 ± 10.1 |
30 | Aureomycin | 20 | 0.9941 | 82.7 ± 6.9 |
31 | Chloramphenicol | 1 | 0.9984 | 88.2 ± 7.7 |
32 | Florfenicol | 1 | 0.9986 | 85.3 ± 7.8 |
33 | Thiamphenicol | 1 | 0.9981 | 78.9 ± 5.6 |
34 | Rifampicin | 1 | 0.9987 | 82.6 ± 8.9 |
Classes | Abbreviations | Panlong River (ng/L) | XH Wetland (ng/L) | Lake Dianchi (ng/L) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Median | Freq | Min | Max | Mean | Median | Freq | Min | Max | Mean | Median | Freq | ||
LNs | LIN | 0.71 | 1.37 | 1.10 | 1.13 | 100 | ND | 1.35 | 1.25 | 0 | 20 | ND | 1.51 | 0.66 | 0.80 | 62.5 |
SAs | SMX | 2.56 | 5.53 | 3.51 | 3.24 | 100 | ND | 2.23 | 0.63 | 0 | 40 | 1.93 | 4.69 | 3.12 | 2.75 | 100 |
TMP | ND | 2.02 | 1.01 | 0 | 12.5 | ND | 4.09 | 1.56 | 1.04 | 50 | ND | 4.66 | 1.73 | 1.04 | 50 | |
QNs | OFL | ND | 5.47 | 2.43 | 3.68 | 75 | ND | 2.12 | 0.21 | 0 | 10 | ND | 4.55 | 1.72 | 1.32 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Duan, L.; Xu, T.; Hou, P.; Xu, J.; Li, H.; Zhang, H. Occurrence and Risk Assessment of Antibiotics in Urban River–Wetland–Lake Systems in Southwest China. Water 2024, 16, 1124. https://doi.org/10.3390/w16081124
Zeng Y, Duan L, Xu T, Hou P, Xu J, Li H, Zhang H. Occurrence and Risk Assessment of Antibiotics in Urban River–Wetland–Lake Systems in Southwest China. Water. 2024; 16(8):1124. https://doi.org/10.3390/w16081124
Chicago/Turabian StyleZeng, Yanbo, Lizeng Duan, Tianbao Xu, Pengfei Hou, Jing Xu, Huayu Li, and Hucai Zhang. 2024. "Occurrence and Risk Assessment of Antibiotics in Urban River–Wetland–Lake Systems in Southwest China" Water 16, no. 8: 1124. https://doi.org/10.3390/w16081124
APA StyleZeng, Y., Duan, L., Xu, T., Hou, P., Xu, J., Li, H., & Zhang, H. (2024). Occurrence and Risk Assessment of Antibiotics in Urban River–Wetland–Lake Systems in Southwest China. Water, 16(8), 1124. https://doi.org/10.3390/w16081124