The Forecast of Streamflow through Göksu Stream Using Machine Learning and Statistical Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Site Description
2.2. Machine Learning Methods
2.2.1. Extreme Gradient Boosting (XGBoost)
2.2.2. Random Forest (RF)
2.2.3. Support Vector Machine (SVM)
2.3. Statistical Methods
2.3.1. Simple Exponential Smoothing (SES)
2.3.2. Autoregressive Integrated Moving Average Model (ARIMA)
ΔZt = Zt − Zt − 1 Δ2 Zt − 1 = ΔZt − ΔZt − 1
2.4. Model Performance Metrics
3. Results
3.1. Machine Learning Methods Results
3.2. Statistical Methods Result
Machine Learning Methods | Statistical Methods | ||||
---|---|---|---|---|---|
Performance Metrics | XGBOOST | RF | SVM | SES | ARIMA |
R2 | 0.72 | 0.68 | 0.61 | 0.55 | 0.63 |
r | 0.845 | 0.825 | 0.778 | 0.74 | 0.79 |
MAE | 2.294 | 2.659 | 2.36 | 2.94 | 2.55 |
RMSE | 3.664 | 3.919 | 4.683 | 4.59 | 4.19 |
MAPE | 62.28% | 87.08% | 68.40% | 133.40% | 92.70% |
NSE | 0.711 | 0.669 | 0.528 | 0.546 | 0.622 |
Total Number of Instances | 24 | 24 | 24 | 24 | 24 |
4. Discussion
5. Conclusions
- The study confirmed the effectiveness of selected machine learning and statistical methods in predicting streamflows, demonstrating their utility in hydrological studies.
- The findings indicated the potential of these methods to support decisions related to water resource systems.
- For a variety of hydrological and environmental applications, including flood flowrate estimation, hydroelectric generation, and water resource management, the study highlights the need of precise streamflow forecast.
- The prediction results calculated in the study coincide with the actual streamflow data. After analyzing all the findings from our study and considering the dataset, it is concluded that the XGBoost model is the best choice for making accurate forecasts.
- The study successfully demonstrates the effectiveness of machine learning and statistical methods in forecasting monthly average streamflows, highlighting their crucial role in hydrological studies and related applications.
- It underscores the importance of continuous innovation in modeling techniques and dataset diversification for improving flood predictions, essential for effective basin management and urban planning. Overall, the study contributes to advancing the field of hydrology and provides valuable insights for future research and application.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erdal, H.I.; Karakurt, O. Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms. J. Hydrol. 2013, 477, 119–128. [Google Scholar] [CrossRef]
- Ni, L.; Wang, D.; Singh, V.P.; Wu, J.; Wang, Y.; Tao, Y.; Zhang, J. Streamflow and rainfall forecasting by two long short-term memory-based models. J. Hydrol. 2020, 583, 124296. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; El-Shafie, A.; Jaafar, O.; Afan, H.A.; Sayl, K.N. Artificial intelligence-based models for stream-flow forecasting: 2000–2015. J. Hydrol. 2015, 530, 829–844. [Google Scholar] [CrossRef]
- Fathian, F.; Mehdizadeh, S.; Sales, A.K.; Safari, M.J.S. Hybrid models to improve the monthly river flow prediction: Integrating artificial intelligence and non-linear time series models. J. Hydrol. 2019, 575, 1200–1213. [Google Scholar] [CrossRef]
- Tongal, H.; Booij, M.J. Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. J. Hydrol. 2018, 564, 266–282. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Valavi, R.; Shahabi, H.; Chapi, K.; Shirzadi, A. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. J. Environ. Manag. 2018, 217, 1–11. [Google Scholar] [CrossRef]
- Dalkılıç, H.Y.; Yeşilyurt, S.N.; Samui, P. Daily flow modeling with random forest and k-nearest neighbor methods. Erzincan Univ. J. Sci. Technol. 2021, 14, 914–925. [Google Scholar]
- Nazimi, N.; Saplıoğlu, K. Monthly streamflow prediction using ANN, KNN and ANFIS models: Example of Gediz River Basin. Tek. Bilim. Derg. 2023, 13, 42–49. [Google Scholar] [CrossRef]
- Stakhiv, E.; Stewart, B. Needs for climate information in support of decision-making in the water sector. Procedia Environ. Sci. 2010, 1, 102–119. [Google Scholar] [CrossRef]
- Nourani, V.; Komasi, M. A geomorphology-based ANFIS model for multi-station modeling of rainfall–runoff process. J. Hydrol. 2013, 490, 41–55. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, Z.; Li, B.; Hou, B.; Hu, Y.; Wang, J. New flood early warning and forecasting method based on similarity theory. J. Hydrol. Eng. 2019, 24, 04019023. [Google Scholar] [CrossRef]
- Latifoğlu, L. A novel approach for prediction of daily streamflow discharge data using correlation-based feature selection and random forest method. Int. Adv. Res. Eng. J. 2022, 6, 1–7. [Google Scholar] [CrossRef]
- Kisi, O.; Latifoğlu, L.; Latifoğlu, F. Investigation of empirical mode decomposition in forecasting of hydrological time series. Water Resour. Manag. 2014, 28, 4045–4057. [Google Scholar] [CrossRef]
- Petty, T.R.; Dhingra, P. Streamflow hydrology estimate using machine learning (SHEM). J. Am. Water Resour. Assoc. 2018, 54, 55–68. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, D.; Wang, G.; Qiu, J.; Long, K.; Du, Y.; Xie, H.; Wei, Z.; Shangguan, W.; Dai, Y. A hybrid deep learning algorithm and its application to streamflow prediction. J. Hydrol. 2021, 601, 126636. [Google Scholar] [CrossRef]
- Xiang, Z.; Demir, I. Distributed long-term hourly streamflow predictions using deep learning–A case study for State of Iowa. Environ. Model. Softw. 2020, 131, 104761. [Google Scholar] [CrossRef]
- Delaney, C.J.; Hartman, R.K.; Mendoza, J.; Dettinger, M.; Delle Monache, L.; Jasperse, J.; Martin Ralph, F.; Talbot, C.; Brown, J.; Reynolds, D.; et al. Forecast informed reservoir operations using ensemble streamflow predictions for a multipurpose reservoir in Northern California. Water Resour. Res. 2020, 56, e2019WR026604. [Google Scholar] [CrossRef]
- Malik, A.; Tikhamarine, Y.; Souag-Gamane, D.; Kisi, O.; Pham, Q.B. Support vector regression optimized by meta-heuristic algorithms for daily streamflow prediction. Stoch. Environ. Res. Risk Assess. 2020, 34, 1755–1773. [Google Scholar] [CrossRef]
- Asadi, H.; Shahedi, K.; Jarihani, B.; Sidle, R.C. Rainfall-runoff modelling using hydrological connectivity index and artificial neural network approach. Water 2019, 11, 212. [Google Scholar] [CrossRef]
- Snieder, E.; Shakir, R.; Khan, U.T. A comprehensive comparison of four input variable selection methods for artificial neural network flow forecasting models. J. Hydrol. 2020, 583, 124299. [Google Scholar] [CrossRef]
- Ikram, R.M.A.; Ewees, A.A.; Parmar, K.S.; Yaseen, Z.M.; Shahid, S.; Kisi, O. The viability of extended marine predators’ algorithm-based artificial neural networks for streamflow prediction. Appl. Soft Comput. 2022, 131, 109739. [Google Scholar] [CrossRef]
- Niu, W.J.; Feng, Z.K.; Chen, Y.B.; Zhang, H.R.; Cheng, C.T. Annual streamflow time series prediction using extreme learning machine based on gravitational search algorithm and variational mode decomposition. J. Hydrol. Eng. 2020, 25, 04020008. [Google Scholar] [CrossRef]
- Hussain, D.; Hussain, T.; Khan, A.A.; Naqvi, S.A.A.; Jamil, A. A deep learning approach for hydrological time-series prediction: A case study of Gilgit river basin. Earth Sci. Inform. 2020, 13, 915–927. [Google Scholar] [CrossRef]
- Adnan, R.M.; Yuan, X.; Kisi, O.; Yuan, Y. Streamflow forecasting using artificial neural network and support vector machine models. Am. Sci. Res. J. Eng. Technol. Sci. 2017, 29, 286–294. [Google Scholar]
- Le, X.H.; Nguyen, D.H.; Jung, S.; Yeon, M.; Lee, G. Comparison of deep learning techniques for river streamflow forecasting. IEEE Access 2021, 9, 71805–71820. [Google Scholar] [CrossRef]
- Saraiva, S.V.; de Oliveira Carvalho, F.; Santos, C.A.G.; Barreto, L.C.; Freire, P.K.D.M.M. Daily streamflow forecasting in Sobradinho Reservoir using machine learning models coupled with wavelet transform and bootstrapping. Appl. Soft Comput. 2021, 102, 107081. [Google Scholar] [CrossRef]
- Kagoda, P.A.; Ndiritu, J.; Ntuli, C.; Mwaka, B. Application of radial basis function neural networks to short-term streamflow forecasting. Phys. Chem. Earth 2010, 35, 571–581. [Google Scholar] [CrossRef]
- Yonaba, H.; Anctil, F.; Fortin, V. Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting. J. Hydrol. Eng. 2010, 15, 275–283. [Google Scholar] [CrossRef]
- Zaini, N.; Malek, M.A.; Yusoff, M.; Mardi, N.H.; Norhisham, S. Daily River Flow Forecasting with Hybrid Support Vector Machine–Particle Swarm Optimization. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 012035. [Google Scholar] [CrossRef]
- Farias, C.A.; Santos, C.A.; Lourenço, A.M.; Carneiro, T.C. Kohonen neural networks for rainfall-runoff modeling: Case study of Piancó River Basin. J. Urban Environ. Eng. 2013, 7, 176–182. [Google Scholar] [CrossRef]
- Danandeh Mehr, A.; Kahya, E.; Şahin, A.; Nazemosadat, M.J. Successive-station monthly streamflow prediction using different artificial neural network algorithms. Int. J. Environ. Sci. Technol. 2015, 12, 2191–2200. [Google Scholar] [CrossRef]
- Adhikary, S.K.; Muttil, N.; Yilmaz, A.G. Improving streamflow forecast using optimal rain gauge network-based input to artificial neural network models. Hydrol. Res. 2018, 49, 1559–1577. [Google Scholar] [CrossRef]
- Prasad, R.; Deo, R.C.; Li, Y.; Maraseni, T. Input selection and performance optimization of ANN-based streamflow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm. Atmos. Res. 2017, 197, 42–63. [Google Scholar] [CrossRef]
- Alvisi, S.; Franchini, M. Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environ. Model. Softw. 2011, 26, 523–537. [Google Scholar] [CrossRef]
- Aslan, M.F.; Sabanci, K.; Durdu, A. Different wheat species classifier application of ANN and ELM. J. Multidiscip. Eng. Sci. Technol. 2017, 4, 8194–8198. [Google Scholar]
- Dickey, D.A.; Fuller, W.A. Likelihood ratio statistics for autoregressive time series with a unit root. Econom. J. Econom. Soc. 1981, 49, 1057–1072. [Google Scholar] [CrossRef]
- Kazemi, M. A comparative study of singular spectrum analysis, neural network, ARIMA and exponential smoothing for monthly rainfall forecasting. J. Math. Model. 2023, 11, 783–803. [Google Scholar]
- Murat, M.; Malinowska, I.; Hoffmann, H.; Baranowski, P. Statistical modelling of agrometeorological time series by exponential smoothing. Int. Agrophys. 2016, 30, 57–65. [Google Scholar] [CrossRef]
- Fırat, A. Estimation of Average Flow and Maximum Precipitation by Artificial Neural Networks Case of Istanbul Göksu Stream. Master’s Thesis, Sakarya University, Serdivan, Türkiye, 2019. [Google Scholar]
- SYGM (General Directorate of Water Management, in Turkish: Su Yönetimi Genel Müdürlüğü). Marmara Basin Flood Management Plan; Republic of Türkiye Ministry of Agriculture and Forestry—General Directorate of Water Management: Ankara, Türkiye, 2023; pp. 1–1540. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I. Random forests and decision trees. Int. J. Comput. Sci. Issues 2012, 9, 272. [Google Scholar]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Qi, Y. Random forest for bioinformatics. In Ensemble Machine Learning: Methods and Applications; Springer: New York, NY, USA, 2012; pp. 307–323. [Google Scholar]
- Atallah, R.; Al-Mousa, A. Heart Disease Detection Using Machine Learning Majority Voting Ensemble Method. In Proceedings of the 2nd International Conference on New Trends in Computing Sciences (ICTCS), Amman, Jordan, 9–11 October 2019. [Google Scholar]
- Shevade, S.K.; Keerthi, S.S.; Bhattacharyya, C.; Murthy, K.R.K. Improvements to the SMO algorithm for SVM regression. IEEE Trans. Neural Netw. 2000, 11, 1188–1193. [Google Scholar] [CrossRef] [PubMed]
- Billah, B.; King, M.L.; Snyder, R.D.; Koehler, A.B. Exponential smoothing model selection for forecasting. Int. J. Forecast. 2006, 22, 239–247. [Google Scholar] [CrossRef]
- Corberán-Vallet, A.; Bermúdez, J.D.; Segura, J.V.; Vercher, E. A forecasting support system based on exponential smoothing. In Handbook on Decision Making: Vol 1: Techniques and Applications; Springer: Berlin/Heidelberg, Germany, 2010; pp. 181–204. [Google Scholar]
- Mensah, E.K. Box-Jenkins Modelling and Forecasting of Brent Crude Oil Price; Munich Personal RePEc Archive; University Library of Munich: Munich, Germany, 2015; pp. 1–10. [Google Scholar]
- Hyndman, R.J. Box-Jenkins Modelling. In Regional Symposium on Environment and Natural Resources; John Wiley & Sons: San Francisco, CA, USA, 2001; pp. 10–11. [Google Scholar]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Lewis, C.D. Industrial and Business Forecasting Methods; Butterworths Publishing: London, UK, 1982; ISBN 978-0408005593. [Google Scholar]
- Nash, J.; Sutcliffe, J.V. River flow forecasting through conceptual models’ part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciner, M.N.; Güler, M.; Namlı, E.; Samastı, M.; Ulu, M.; Peker, İ.B.; Gülbaz, S. The Forecast of Streamflow through Göksu Stream Using Machine Learning and Statistical Methods. Water 2024, 16, 1125. https://doi.org/10.3390/w16081125
Ciner MN, Güler M, Namlı E, Samastı M, Ulu M, Peker İB, Gülbaz S. The Forecast of Streamflow through Göksu Stream Using Machine Learning and Statistical Methods. Water. 2024; 16(8):1125. https://doi.org/10.3390/w16081125
Chicago/Turabian StyleCiner, Mirac Nur, Mustafa Güler, Ersin Namlı, Mesut Samastı, Mesut Ulu, İsmail Bilal Peker, and Sezar Gülbaz. 2024. "The Forecast of Streamflow through Göksu Stream Using Machine Learning and Statistical Methods" Water 16, no. 8: 1125. https://doi.org/10.3390/w16081125
APA StyleCiner, M. N., Güler, M., Namlı, E., Samastı, M., Ulu, M., Peker, İ. B., & Gülbaz, S. (2024). The Forecast of Streamflow through Göksu Stream Using Machine Learning and Statistical Methods. Water, 16(8), 1125. https://doi.org/10.3390/w16081125