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Abstract: Future climate scenarios based on regional climate models (RCMs) have been evaluated
widely. However, the use of RCMs without bias correction may increase the uncertainty in the
assessment of climate change impacts, especially in mountain areas. Five quantile mapping meth-
ods (QMMs) were evaluated as bias correction methods for precipitation and temperature in the
historical period (1979–2005) of one local climate model and three RCMs at the Achibueno River
Basin, southcentral Chile. Additionally, bias-corrected climate scenarios from 2025 to 2050 under two
Representative Concentration Pathways (RCPs) were evaluated on the hydrological response of the
catchment with the Soil and Water Assessment Tool (SWAT+). The parametric transformation func-
tion and robust empirical quantile were the most promising bias correction methods for precipitation
and temperature, respectively. Climate scenarios suggest changes in the frequency and amount of
precipitation with fluctuations in temperatures. Under RCP 2.6, partial increases in precipitation,
water yield, and evapotranspiration are projected, while for RCP 8.5, strong peaks of precipitation
and water yield in short periods of time, together with increases in evapotranspiration, are expected.
Consequently, flooding events and increasing irrigation demand are changes likely to take place.
Therefore, considering adaptation of current and future management practices for the protection of
water resources in southcentral Chile is mandatory.

Keywords: climate change; hydrological modeling; flooding; water scarcity; SWAT+

1. Introduction

During the last decades, severe events associated with climate change have been
observed worldwide [1]. In particular, heat waves, droughts, and floods have gained
considerable attention because of their devastating impacts on the economic and ecolog-
ical sectors [2]. Hydrological processes from different river basins have been strongly
affected by reductions in precipitation and increases in temperatures [3–5]. Therefore, the
effects of future climate scenarios on hydrological processes and water resource availabil-
ity have become a relevant issue, especially in agroecosystems due to potential risks to
food security [6,7].

To evaluate the possible impacts of future climate scenarios at the basin scale, high-
resolution regional climate models (RCMs) are recommended for forecasting and projection
studies. Relative to global circulation models (GCMs), RCMs provide a higher level of detail
at a local and regional scale. However, the outputs of the models can include uncertainties
due to systematic and random biases relative to in-situ datasets [8], the coarser resolutions
of the models or parameterization schemes, and effects related to intricate topography or
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atmosphere–biosphere transitions along with large water bodies [9]. The implications of the
use of climate models without bias correction can include the overestimation of precipitation
and extreme temperature values [10]. As a consequence, confusing or erroneous results
can be obtained.

To minimize inherent errors or biases in the RCM time series, quantile mapping
methods (QMMs) are recommended and have been extensively applied to different climate
datasets [11–14]. QMMs include statistical transformations for the post-processing of
climate modeling outputs based on different methods such as the parametric transformation
function (PTF), distribution derived transformation (DIST), empirical quantiles (QUANT),
robust empirical quantiles (RQUANT), and smoothing spline (SSPLIN) [15]. Because of the
reliability of QMMs, these methods have been successfully applied to precipitation and
temperature datasets from the Coordinated Regional Climate Downscaling Experiment
(CORDEX) in different catchments worldwide [16–19].

Distributed hydrological models are widely used research tools for the evaluation of
the possible effects of future climate scenarios on the availability of water resources at the
catchment level [20,21]. In particular, physically-based hydrological models allow for the
evaluation of future climate scenarios in several components of the hydrological cycle under
different management practices [22,23]. Continuous time models such as the Soil and Water
Assessment Tool + (SWAT+) [24,25] support the evaluation and quantification of the impacts
of climate scenarios with the inclusion of land management practices on water resources
over long periods of time [26]. Due to the possibility of assessing the specific effects of land
management practices on agricultural systems and forest production, along with other
processes, SWAT has been widely applied to different watersheds worldwide [27–29].

Future climate scenarios based on GCMs and RCMs have been evaluated in Chile [30–34],
a country well-known for its mining and agricultural sectors. However, bias correction
methods have not been implemented extensively in regional climate models to assess the
impacts of future climate scenarios on catchments in the southcentral area of the country.
Additionally, several studies have been carried out in Chile using SWAT in different areas;
however, the applications of SWAT have been limited to evaluate the impacts of climate
change on snow accumulation [33,34], climate change under one local climate model in
coastal areas [32], in areas with scarce hydro-meteorological data [35,36], and have focused
on management practices and land use change [37–40]. Therefore, evaluations of future
climate scenarios with proper bias correction at the basin scale with SWAT+ have not
been conducted.

The Achibueno River Basin is a sub-basin of the Loncomilla River Basin located in
the Maule region, in southcentral Chile, while the predominant activities in the river
basin are related to agriculture and forest plantations. Although uncommon extreme
precipitation events have affected the river basin in recent years, the impact of future
climate scenarios has not been well-studied at the hydrological level. Consequently, the aim
of this study was to evaluate the effects of bias-corrected future climate scenarios on the
hydrological response and significance of water resources in the Achibueno River Basin, in
the Maule region, in the southcentral zone of Chile with SWAT+. Considering the complex
topography of the mountain areas, the results of this study can be used as a reference for
other agroecosystems in the region.

2. Materials and Methods
2.1. Study Area

The Achibueno River Basin is located in the Maule region, VII Region of Chile, in the
coastal mountain range between 35◦51′S and 71◦40′W. The catchment area is 1551 km2, and
the basin is a sub-basin of the mountain basin located at the Loncomilla River in southcentral
Chile (Figure 1). The area is composed of intrusive rocks, sedimentary sequences, volcanic,
and volcanic-sedimentary sequences [41], and the elevation ranges from 96 m to 3188 m
above sea level. The area is dominated by temperate Mediterranean climatic conditions
and an annual precipitation of approximately 1908 mm, with a dry southern summer
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precipitation level of 75 mm/year (December, January, February) and a rainy southern
winter precipitation level of 1032 mm/year (June, July, August) [42].
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Figure 1. Location of the Achibueno River Basin.

The Ancoa Dam stores water for agricultural uses and generates electricity via a run-
of-river hydroelectric power plant located at the foot of the dam. Additionally, Melado
and Roblería are two inter-basin transfer channels located in the Ancoa River that were
established to increase the water availability in the Ancoa, Achibueno, and Putagán Rivers
in the Maule region. The Melado Channel transfers water from the Melado River, while
the Roblería Channel relocates water from the Ancoa River to the Putagán River, which is
located outside the watershed borderline.

2.2. SWAT+ Model Setup

The Soil and Water Assessment Tool + (SWAT+), is a semi-distributed agro-hydrological
model developed to assess the impacts of land management and climate on water resources
at the basin scale [26]. SWAT+ simulates several physical processes of the hydrological
cycle at different time steps based on the water balance equation (Equation (1)).

SWt = SWo +
t

∑
i=1

(Pr − Surq − Latq − ET − Perc) (1)

where SWt is the final soil water content (mm), SWo is the initial soil water content (mm), t
is the time step (days), Pr is the amount of precipitation on day i (mm), Surq is the amount
of surface runoff on day i (mm), Latq is the amount of lateral flow to the channel on day i
(mm), ET is the amount of evapotranspiration on day i (mm), and Perc is the amount of
percolation of soil water from the bottom of the soil profile on day i (mm).

SWAT+ (v.2.3.3) was operated via QSWAT+ (v.2.4.7) on QGIS (v.3.22) [43]. The creation
of river networks and natural flow paths was automatically established by QSWAT+ based
on the minimum river threshold and the point of union with the Loncomilla River as a
headwater stream (Figure 1). In addition, the Ancoa Dam was manually added according
to area delimitation and local information. Hydrological response units (HRUs) were
generated by QSWAT+ on the basis of raster images by merging the slope map from the
digital elevation model (DEM), soil type map, and land use map. Meteorological forcing
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data at daily time steps were used for the determination of the main processes involved in
catchment hydrology.

2.2.1. Input Parameters in SWAT+

The DEM was obtained by the Shuttle Radar Topography Mission (STRM) with a 90 m
spatial resolution (Figure 1) [44]. The other input parameters are presented in Table 1.

Table 1. Input parameters used for SWAT+ modeling.

Type Input Data Description Source

Spatial Data
DEM Digital elevation model (90 m resolution) Shuttle Radar Topography Mission [44]

Soil type Soil samples and agrological study of El Maule Field studies and CIREN 1997 [45]
Land use Land use map from 2016 CONAF 2017 [46]

Meteorological Data

Temperature Minimum and maximum temperature (9 *) Camels-CL dataset [42]
Precipitations Daily precipitations (9 *) Camels-CL dataset [42]
Wind velocity Daily wind (4 *) DGA

Relative humidity Daily relative humidity (1 *) DGA

Notes: * Number of selected stations.

The landscape slope was divided by QSWAT+ into five categories (Figure 2a) based
on the information from the DEM. The soil data required to complete the input database of
the model were obtained through field studies in the catchment, in addition to information
obtained from Agrological Studies of the VII Region conducted by the Natural Resources
Information Center (CIREN) in 1997 (Table 2). Thus, a comprehensive soil map was
generated for the studied area using 17 soil types described by CIREN [45], in addition
to soil samples, local observations during field studies, and soil analysis in the laboratory
(Figure 2b).

Soil samples were collected to corroborate and complement the soil description from
CIREN (Table 2). Soil physicochemical data such as bulk density (BD), soil carbon content
(CBN), hydraulic conductivity (K), pH, and texture were collected by fieldwork in the
framework of this study. The soil samples were analyzed at the Laboratory of Soils and
Foliar Analysis of Pontificia Universidad Católica de Valparaíso (PUCV). The prevailing
soil textures in the catchment are clay loam soils (66.0%) that originate from sedimentary
deposits with moderate permeability; loamy silt soils (23.7%) that originate from basic
volcanic materials; and loamy soils (2.2%) that have an alluvial origin and consist of
sedimentary soils [45].

Table 2. General description of the soils in the Achibueno River Basin.

Symbol Name Layers Depth (cm) * BD (g cm−3) * CBN (%) * K (mm h−1) * pH * Texture *

ACH Achibueno 3 1200 1.6 1.3 11.8 6.3 Loam
PO Asociación Posillas 3 1150 1.3 0.8 14.6 6.2 Clay loam
SRB Asociación Sierra Bellavista 3 800 1.5 1.2 64.2 6.5 Loam sand
CLB Caliboro 4 1000 1.7 0.5 19.6 7.2 Loamy
CHI Chiguay 3 450 1.6 1.3 16.3 5.8 Clay loam
CBN Colbun 5 850 1.5 1.1 9.9 5.9 Silty clay
DIG Diguillin 4 1100 1.1 4.2 42.6 6.4 Loamy silt
LOB La Obra 3 800 1.8 0.9 13.0 6.0 Loamy sand
LNS Linares 3 500 1.5 1.7 17.1 6.8 Loamy sand
MLC Maulecura 2 550 1.7 5.5 29.2 6.6 Loamy
MRF Miraflores 3 750 1.7 0.5 22.8 7.3 Loamy
MS Miscelaneo suelo 2 600 1.3 1.4 29.2 5.8 Loamy
PAL Palmilla 3 950 1.9 0.7 22.8 6.7 Clay loam
PND Panimavida 3 900 1.2 1.0 22.8 6.2 Clay loam
PRL Parral 4 1120 1.6 0.5 19.6 6.2 Clay loam
PUT Putagan 3 850 1.5 1.2 12.1 6.7 Loamy sand
VAQ Vaquería 2 500 1.7 0.8 8.2 5.5 Sandy clay loam

Notes: * Corroborated by field studies.

Hydro-meteorological input data at daily time steps from 1979 to 2019 were acquired
from the Catchment Attributes and Meteorology for Large-sample Studies—Chile dataset
(Camels-CL) [42]. In particular, nine reference stations located in the region surrounding
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the study area (Figure 2d) were selected for precipitation and temperature (minimum
and maximum). The Explorador solar database from the Chilean Ministry of Energy was
used for the solar radiation data [47]. Due to the scarcity of local data in the Achibueno
River Basin and areas with a similar climate, time series of relative air humidity and wind
velocity from surrounding stations of the mountain range of the Mataquito River Basin,
Maule region, were supplied by the “Dirección General de Aguas” (DGA), the Central
Water Directorate.
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River Basin.

Discharge data are available for the period 1979 to 2019 from two discharge stations
located in the catchment: Rio Ancoa en El Morro (lat. −35◦9′S, long. −71◦3′W), and Río
Achibueno en La Recova (lat. −36◦0′S, long. −71◦4′W) [42]. However, due to some gaps in
information and unreliable discharge peak values from the Rio Ancoa en El Morro station,
Río Achibueno en La Recova was selected for calibration and validation procedures.

2.2.2. Sensitivity Analysis, Calibration, and Validation of the Model

A 41-year period (1979–2019) was selected in accordance with the available forcing
records for simulating runoff processes at daily time steps in the Achibueno River Basin
and included a one-year period for model warm-up. The Rio Ancoa en La Recova dis-
charge station was selected as the observed reference value for the sensitivity analysis
and calibration procedures from 1996 to 1998 and from 2000 to 2002 for model validation,
respectively. SWAT+ Toolbox v1.0, a sensitivity and automatic calibration tool, was used for
the global sensitivity analysis and calibration procedures. Sensitivity analysis was carried
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out based on reports in the literature [48,49] and previous experience in the region [38].
With the most sensitive parameters, 1000 iterations were performed under SWAT+ Toolbox
for the calibration period from 1996 to 1998 at daily time steps. Subsequently, the model
was validated for the period from 2000 to 2002 based on the availability and continuity of
the discharge records.

Efficiency criteria were calculated to assess the model performance including the
coefficient of determination (R2) and goodness of fit measures such as the Nash–Sutcliffe ef-
ficiency (NSE), RMSE-observation standard deviation ratio (RSR), percentage bias (PBIAS),
and Kling–Gupta efficiency (KGE). The recommended ranges of values for each efficiency
criterion [50–53] were evaluated during the calibration and validation periods of the model.

2.3. Climate Model Evaluation
2.3.1. Selected Climate Models

One local and three regional climate models forced under the basis of GCMs from the
Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), and the Coordinated
Regional Climate Downscaling Experiment (CORDEX) were selected for the assessment
of future climate scenarios, particularly with respect to precipitation and temperature
(minimum and maximum). A local climate model from Chile with a resolution of 10 km
(Local 10 k), developed by the Center of Climate and Resilience Research ((CR)2) [54],
was established based on the GCM MPI-ESM-MR (Max Planck Institute for Meteorology,
Hamburg, Germany), and the Regional Climate Model System version 4.6 (RegCM 4.6).
A regional climate model from Chile with a 50 km resolution (Reg 50 k) was developed
by (CR)2 [54] based on REMO 2009 and RegCM 4.6. The Local 10 k and Reg 50 k datasets
include actual observations and atmospheric reanalysis data from CR2MET, a product for
the continental Chilean territory with a 5 km spatial resolution and historical data from
1979 to 2016. In addition, time series from two RCMs from the CORDEX project were
evaluated, Remo 2015 based on the GCMs MPI-ESM-LR, and RegCM 4.7 based on the
GCMs MPI-ESM-MR. Both RCMs have a resolution of 0.22◦ (~25 km) and incorporate ERA-
Interim reanalysis data from 1970 to 2005 as the historical period. Therefore, to evaluate the
effect of different bias correction methods on the precipitation and temperature datasets,
the historical time series from 1979 to 2005 at a daily time step was selected. For graphical
displays, the empirical cumulative distribution function (ECDF) is presented to compare
the historical periods without bias correction against the observed dataset.

2.3.2. Bias Correction Methods

Quantile mapping methods (QMMs) were selected for bias correction, particularly
because they implement statistical transformations for the post-processing of climate mod-
eling outputs and are recommended by researchers [15,17]. In particular, parametric trans-
formation function (PTF), distribution derived transformation (DIST), and non-parametric
transformations as empirical quantiles (QUANT), robust empirical quantiles (RQUANT),
and smoothing spline (SSPLIN) were used and evaluated. The selected quantile mapping
methods for bias correction were applied using the R package “Qmap” (v.1.0-4) [15] and
are described as follows:

The exponential tendency to an asymptote (expasympt) method was used as the PTF
and is defined as:

Po = (a + bPm)
(

1 − e(
−Pm

τ )
)

(2)

where Po and Pm are the probabilities of the observed and modeled variables, respectively;
a, b, and τ are method-related parameters that are subject to calibration.

The DIST allows us to adjust the distribution of a modeled variable (P m) so that it
matches the distribution of an observed variable (Po). This is defined as:

Po = F−1
m (Fm(Pm)) (3)
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where F is a cumulative distribution function (CDF) and F−1 is the corresponding quantile
function (inverse CDF). The subscripts o and m indicate the parameters of the distribu-
tion that correspond to the observed and modeled data, respectively. The DIST includes
Bernoulli and Gamma distributions to compute the occurrence probability and intensities
of precipitation, therefore, it is recommended only for precipitation [55].

The QUANT estimates values of the empirical CDF of the observed and modeled
time series for regularly spaced quantiles. Accordingly, QUANT employs interpolation
to estimate data with unavailable quantile values. RQUANT employs local linear least
squares regression to estimate the values of the quantile–quantile relation of the observed
and modeled time series for regularly spaced quantiles. Similarly to QUANT, unavailable
quantile values are estimated by the interpolation of fitted values. In SSPLIN, a smoothing
spline is fitted to the quantile–quantile plot of the observed and modeled time series.

In the case of precipitation, the PTF, DIST, QUANT, RQUANT, and SSPLIN were eval-
uated, while for the minimum and maximum temperatures, the PTF, QUANT, RQUANT,
and SSPLIN were evaluated.

2.3.3. Evaluation of Bias Correction

The bias correction methods were evaluated using raw and bias-corrected time series
from the historical period (1979–2005) of the evaluated climate models related to the
observed precipitation and maximum and minimum temperature datasets at a daily time
step. Statistical measures such as the mean bias error (MBE), mean absolute error (MAE),
and root mean square error (RMSE) were used, and are described as follows:

MBE = n−1
n

∑
i=1

(
PEi − Pobsi

)
(4)

MAE = n−1
n

∑
i=1

∣∣PEi − Pobsi

∣∣ (5)

RMSE =

√
n−1

n

∑
i=1

(
PEi − Pobsi

)2 (6)

where PEi is the model estimate for the involved data point i, Pobsi
is the observed value

for the considered data point i, and n is the length of the distribution of the data point
being analyzed.

Positive and negative values from MBE indicate the underestimation and overesti-
mation of bias, respectively, while zero values indicate an absence of bias in the gener-
ated results. In the case of MAE and RMSE, both methods only have positive values,
where 0 values indicates a perfect match between the observed and corrected values [56].

2.3.4. Climate Scenarios

After the implementation of the most effective bias correction method on the evaluated
climate models, future climate scenarios based on Representative Concentration Pathways
(RCPs) 2.6 and 8.5 were used as the forcing input data for the period from 2025 to 2050 in
the calibrated and validated SWAT+ model. In addition, the effect of climate scenarios on
the hydrological response of the Achibueno River Basin were evaluated. For the graphical
displays, the impacts of future climate scenarios on the water balance components and
surface runoff are presented.

3. Results
3.1. Swat+ Simulation, Calibration, and Validation

The simulation of a 41-year period (1979 to 2019) was successfully performed with
SWAT+, which included a total of 21 sub-basins, 211 channels, and 5390 HRUs. In relation
to the sensitivity analysis, seven parameters were selected due to their significant effects on
the modeled runoff in the Achibueno River Basin. After the calibration process had been
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completed, the efficiency criteria were calculated for the calibration and validation periods
(Table 3).

Table 3. Efficiency criteria for the simulation, calibration, and validation periods for the Rio Ancoa en
La Recova station at daily time steps.

Statisticians Without Calibration Calibration Validation

NSE −0.35 0.58 0.65
R2 0.44 0.69 0.67

RSR 1.15 0.65 0.59
PBIAS 4.90 1.20 −14.50
KGE 0.36 0.77 0.74

Satisfactory model performances were obtained with an NSE of 0.58 and 0.65 for
the calibration and validation periods, respectively. Under the recommended ranges of
values [52], the NSE at the daily time step can be considered satisfactory when the NSE
values are greater than 0.50. R2 values were considered good and improved from 0.44 in
the simulation to 0.69, and 0.67 for the calibration and validation periods, respectively.
RSR ranged from 1.15 to 0.64 during calibration and 0.59 during validation; therefore, the
model performances were considered satisfactory and good, respectively. The PBIAS values
were classified as very good for the simulation and calibration periods (4.9% and 1.5%,
respectively), while for the validation period, they were classified as good (−14.5%). The
variation in PBIAS during the validation period was associated with a bias in the discharge
peaks difficult to achieve. Similar observations for PBIAS have been presented in previous
studies based on daily time steps in the region [38]. In addition, the KGE improved from
unsatisfactory to very good with values ranging from 0.36 to 0.77 during the calibration
period and was classified as good during the validation period, with a value of 0.74. Even
when the NSE and KGE values cannot be directly compared because their relationships are
non-unique and have a partial dependency on the coefficient of variation from the observed
time series [50], both statistics provide relevant information for use in the calibration and
validation procedures, especially in areas where data are scare.

3.2. Climate Models

The empirical cumulative distribution function (ECDF) during the historical period
(1979–2005) from the Camels-CL dataset and the evaluated climate models without bias
correction are presented for the precipitation (Figure 3), minimum temperature (Tmin)
(Figure 4), and maximum temperature (Tmax) (Figure 5). In addition, the range of values
from the Camels-CL dataset and the evaluated climate models during the historical period
(1979–2005) without bias correction are presented in Table 4.

Table 4. Range of precipitation (mm/day) and temperature (◦C/day) (minimum and maximum)
obtained from the Camels-CL dataset and the evaluated climate models without bias correction
during the historical period (1979–2005).

Source
Precipitations Minimum Temperatures Maximum Temperatures

Min Max Min Max Min Max

Camels-CL 0 203.1 c −14.1 h 15.8 i −5.7 h 34.1 i

Local 10 k 0 458.6 h −21.1 i 22.3 f −11.7 i 40.3 a

Reg 50 k 0 409.2 c −22.6 i 18.4 d,f −11.4 i 37.8 d,f

Remo 2015 0 412.6 e −44.1 i 24.4 f −11.6 i 41.9 a

RegCM 4.7 0 548.3 c,h −26.8 i 23.2 f −13.2 i 44.2 f

Notes: a Rio Achibueno en La Recova, c Rio Ancoa Antes Tunel Canal Melado, d Rio Ancoa en El Llepo, e Rio
Ancoa en El Morro, f Rio Loncomilla en Bodega, h Rio Melado en El Salto, i Rio Putagan en Yerbas Buenas.
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Figure 3. ECDF plots of precipitation from the historical period (1979–2005) of the nine referential
hydro-meteorological stations and the four climate models without bias correction.

For the historical period from the Camels-CL dataset, the precipitation ranged from 0 to
203 mm/day as the maximum precipitation, obtained from the hydro-meteorological sta-
tion of Rio Ancoa Antes Tunel Canal Melado (Figure 3c). In the case of the evaluated
climate model, the maximum precipitation values were obtained at Rio Acoa en El Morro
(Figure 3e), located in the middle part of the Achibueno Basin, together to Rio Ancoa
Antes Tunel Canal Melado (Figure 3c) and Rio Melado en El Salto (Figure 3h), both hydro-
meteorological stations located in the upper part of the basin. It is known that RCM
outputs can present bias related to coarse-resolution, especially in complex areas with
strong surface forcing like the Andes Mountains [57], in addition to the scarce presence of
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hydro-meteorological stations [58]. The Achibueno Basin is located in the mountainous
areas of the Maule region, thus, as the data suggest, the evaluated climate models clearly
overestimated the precipitation values, and a similar observation has been reported for
other RCMs in South America [58,59].
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referential hydro-meteorological stations and the four climate models without bias correction.

In the case of minimum temperature, Rio Melado en El Salto (Figure 4h) presented
the lowest temperature record during the historical period from the Camels-CL dataset
with −14.1 ◦C. Rio Putagan en Yerbas Buenas (Figure 4i) was the station with the highest
minimum temperature value of 15.8 ◦C. However, in the evaluated climate models, Rio
Putagan en Yerbas Buenas presented the lowest temperature, particularly under RegCM
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4.7 with −44.1 ◦C. In addition, Rio Loncomilla en Bodega (Figure 4f) presented the highest
values of minimum temperature, in particular under Remo 2015 with 24.4 ◦C.
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Similar to the minimum temperatures, Rio Melado en El Salto (Figure 5h) presented
the lowest maximum temperature record during the historical period from the Camels-CL
dataset with −5.7 ◦C. In addition, Rio Putagan en Yerbas Buenas (Figure 5i) station had the
highest maximum temperature value in the Camels-CL dataset with 34.1 ◦C. However, in
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the evaluated climate models, the referential station Putagan en Yerbas Buenas presented
the lowest temperature, particularly under RegCM 4.7 with −13.2 ◦C. In addition, Rio
Loncomilla en Bodega (Figure 5f) presented the highest value of maximum temperature,
particularly under RegCM 4.7 with 44.2 ◦C. In the case of both the minimum and maximum
temperatures, the evaluated climate models under- and overestimated the temperatures,
similar to López-Franca et al. [60]. Although the Local 10 k and Reg 50 k include actual
observations and atmospheric reanalysis data during the historical period, both climate
models presented bias with relation to the Camels-CL dataset. Therefore, in order to
avoid confusing or erroneous results from the evaluated climate models related to the
overestimation of precipitation and the under- and overestimation of the temperature, bias
correction methods were implemented before the evaluation of future climate scenarios in
the Achibueno River Basin.

3.3. Bias Correction Methods

Quantile mapping methods were evaluated on the historical period (1979–2005) of
the climate models, taking as reference the hydro-meteorological stations and observed
data from the Camels-CL dataset. For precipitation, the PTF, DIST, QUANT, RQUANT,
and SSPLIN were applied. In addition, the PTF, QUANT, RQUANT, and SSPLIN were
implemented for minimum and maximum temperatures. In order to compare the bias
correction methods in the four evaluated climate models, the MBE, MAE, and RMSE were
calculated for the precipitation, minimum temperature (Tmin), and maximum temperature
(Tmax), respectively (Table 5).

Table 5. Comparison of different climate models and bias correction methods using the summary
statistics of MBE, MAE, and RMSE against the observed data for precipitation, minimum temperature
(Tmin), and maximum temperature (Tmax).

Climate Model-
Bias Correction Method

Precipitation Tmin Tmax

MBE MAE RMSE MBE MAE RMSE MBE MAE RMSE

Local 10 k −2.2 10.5 25.5 −2.1 4.7 5.5 −0.1 6.2 7.3
Local 10 k—PTF 0.0 8.6 20.2 −0.2 2.8 3.6 0.3 4.3 5.4
Local 10 k—DIST −1.1 9.6 23.5 - - - - - -

Local 10 k—QUANT 0.0 8.7 20.4 −0.5 2.7 3.4 0.0 4.0 5.0
Local 10 k—RQUANT 0.0 8.7 20.4 −0.5 2.7 3.4 0.0 4.0 5.0

Local 10 k—SSPLIN 0.0 8.7 20.4 −0.5 2.7 3.4 −0.1 3.9 5.0
REG 50 k −2.1 10.2 21.7 0.0 4 4.8 2.3 5.9 7.1

REG 50 k—PTF 0.1 8.5 19.3 −0.2 2.8 3.6 0.2 4.4 5.6
REG 50 k—DIST −0.2 8.8 20.8 - - - - - -

REG 50 k—QUANT 0.0 8.7 20.5 −0.5 2.6 3.4 0.0 4.2 5.3
REG 50 k—RQUANT 0.0 8.7 20.4 −0.5 2.6 3.4 0.0 4.2 5.3

REG 50 k—SSPLIN −0.1 8.9 22.1 −0.5 2.6 3.4 0.0 4.2 5.3
Remo 2015 −3.8 11.6 27.8 −1.1 5.1 6.3 0.4 5.6 6.9

Remo 2015—PTF 0.0 8.5 19.8 −0.2 2.9 3.7 0.3 4.2 5.3
Remo 2015—DIST −0.5 8.9 21.2 - - - - - -

Remo 2015—QUANT 0.0 8.5 20.0 −0.5 2.8 3.5 0.0 3.9 4.9
Remo 2015—RQUANT 0.0 8.5 20.0 −0.5 2.8 3.5 0.0 3.9 4.9

Remo 2015—SSPLIN 0.0 8.5 20.1 −0.5 2.8 3.5 −0.7 4.2 5.3
RegCM 4.7 −3.4 11.4 26.9 −1.1 4.3 5.2 −1.9 6.4 7.6

RegCM 4.7—PTF 0.1 8.4 19.5 −0.3 2.9 3.7 0.3 3.9 5.0
RegCM 4.7—DIST −0.1 8.7 20.8 - - - - - -

RegCM 4.7—QUANT 0.0 8.6 20.4 −0.5 2.8 3.5 0.0 3.6 4.6
RegCM 4.7—RQUANT 0.0 8.6 20.3 −0.5 2.8 3.5 0.0 3.6 4.6

RegCM 4.7—SSPLIN −0.1 8.7 21.2 −0.5 2.8 3.5 −0.1 3.6 4.6

The comparisons of different statistical measures based on the observed values and
the evaluated climate models revealed differences before and after the bias correction
methods. While DIST is only recommended for precipitation [55], in this case, it was the
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worst accuracy bias correction method for precipitation out of the evaluated climate models,
similar to the observations of other authors [17]. In the case of the PTF, QUANT, RQUANT,
and SSPLIN, the MBE was satisfactory for precipitation (close to 0). However, PTF obtained
a better accuracy considering the three statistical measures. In the case of temperature,
although the PTF seemed promising, positive and negative values were estimated for
the MBE, indicating the under- and overestimation of bias. In addition, the MAE and
RMSE were the highest from the evaluated bias correction methods for temperature. In
the case of SSPLIN, negative values for MBE were calculated (overestimation of the bias)
even though there were similar values of MAE and RMSE compared to the other methods,
similar to other authors [17]. In the case of QUANT and RQUANT, both methods indicated
the best accuracy for temperature in the evaluated climate models. Moreover, the values
between the reference quantiles were interpolated through linear function in QUANT, while
RQUANT extended the QUANT method by using local linear least squares regression to
estimate the values of the quantile–quantile relation of the modeled and observed time
series [61–63]. Therefore, based on the higher capability to correct the modeled empirical
CDF at higher percentiles [63], RQUANT seems to be more promising as a bias correction
method for temperature. As a consequence, PTF was selected as the bias correction method
for precipitation, and RQUANT was selected for the minimum and maximum temperatures.

3.4. Future Climate Scenarios

After the selection of the most promising bias correction method for precipitation
(PTF) and the minimum and maximum temperatures (RQUANT), bias-corrected future
climate scenarios at daily time steps were generated (2025–2050) under RCPs 2.6 and 8.5 for
precipitation and the minimum and maximum temperatures, respectively (Figure 6). The
effects of bias-corrected future climate scenarios on the catchment hydrology components
of the Achibueno River Basin under RCPs 2.6 and 8.5 are presented in Table 6, and under
seasonal basis in Figure 7. In addition, projections of surface runoff at Rio Ancoa en La
Recova station are presented in Figure 8.

Table 6. Water balance components (mm/year) from 1990 to 2009 as the historical period and future
climate scenarios for the period 2025–2050 under the RCP 2.6 and RCP 8.5 scenarios.

Component Historical
RCP 2.6 RCP 8.5

Local 10 k Reg 50 k Remo 2015 RegCM 4.7 Local 10 k Reg 50 k Remo 2015 RegCM 4.7

Precipitation 1950 2051 2056 2013 2029 2067 1935 1901 1992
Surq 199 183 187 174 177 197 152 151 178
Latq 860 950 927 907 941 968 889 858 940

Water Yield 1059 1133 1114 1081 1119 1165 1041 1009 1118
ET 494 545 576 586 553 529 561 568 530

GW Recharge * 309 343 337 330 340 345 314 312 333

Notes: * Groundwater recharge.

Both the RCP 2.6 and RCP 8.5 scenarios suggest fluctuations in precipitation and
temperature. The frequency and amount of precipitation in both scenarios were not
homogeneous and presented strong peaks of precipitation in different periods (Figure 6a,b).
In the case of maximum temperature, strong fluctuations with a tendency to increase over
the years are expected to occur (Figure 6f). It is known that the effects of climate change
has been severe in Chile, in particular, related to the mega-drought that has affected some
regions of the country since 2010 [5,64]. Therefore, in order to compare the effects of climate
change scenarios on the hydrological response of the Achibueno River Basin, a historical
period of 20 years (1990–2009) under the Camels-CL dataset was used as the reference
(Table 6).

Compared with the 20-year historical period, the effects of the climate scenarios on the
components of the catchment hydrology reflected variations in all of the components. In
particular, variations in the trends of precipitation and water yield are projected, especially
for the winter and spring seasons. In addition, increases in evapotranspiration during the
spring and summer seasons are projected in both scenarios (Figure 7e,f).
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Figure 6. Bias-corrected climate scenarios under RCPs 2.6 and 8.5 where (a,b) shows the precipitation
(mm/year), (c,d) minimum temperatures (◦C/year), and (e,f) maximum temperatures (◦C/year) in
the Achibueno River Basin for the period 2025–2050, respectively.

Differences between the evaluated climate models under the two RCP’s are projected
in the hydrological response of the studied catchment. In comparison to the historical
period, the four evaluated climate models suggest increases in precipitation, Latq, water
yield, ET, and GW recharge under RCP 2.6. In the case of RCP 8.5, the Local 10 k and
RegCM 4.7 climate models presented increases in precipitation, Latq, water yield, ET, and
GW recharge compared to the historical period. In addition, the Reg 50 k and Remo 2015
climate models suggest a clear reduction in precipitation, with impacts on water fluxes
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and the internal moisture distribution in the catchment. Additionally, events with different
intensities and amounts of precipitation are expected during short periods of time. In the
case of ET, the results suggest increases in the four evaluated climate models compared to
the historical period under both RCPs, mainly related to increases in temperature. Although
the Local 10 k climate model was developed under the basis of RegCM 4.6, a previous
version of RegCM 4.7, it is possible to observe some similarities in the trends among both
climate models. In the case of Reg 50 k, a climate model developed under the basis of
based Remo 2009 and RegCM 4.6, similarities were not evident in comparison to Remo
2015, especially under RCP 8.5.

The projected results of surface runoff at Rio Achibueno en La Recova station presented
variations following the hydrological response of the catchment under both RCPs. In the
case of RCP 2.6 (Figure 8a), the projected surface runoff presented fluctuations over the
period 2025–2050 including years with a reduced amount of surface runoff but also periods
with extreme values. In the case of RCP 8.5 (Figure 8b), in both the Local 10 k and RegCM 4.7
climate models, higher precipitation values were obtained under RCP 8.5, and similarly
in the projected surface runoff at Rio Achibueno en La Recova station. In contrast, under
the Reg 50 k and Remo 2015 climate models, a clear reduction in precipitation is expected
under RCP 8.5, consequently, decreases in surface runoff were projected. However, for
the overall precipitation values under RCP 8.5, it is clear that there is a tendency for a
reduction in the frequency of events. Additionally, events with different intensities and
amounts of precipitation are expected during short periods under both RCPs. It is known
that among the effects of climate change at the basin scale, water-related problems include
water scarcity under decreases in precipitation, but also potential flooding situations in
cases of extreme precipitation events [65]. In addition, under both RCPs, the results suggest
increases in temperature and evapotranspiration, which can contribute to an increase in the
water demand for irrigation. Therefore, it is important to consider the current and future
management practices related to the protection of water resources in order to prevent both
situations: possible increases in flooding under extreme precipitation events, and increases
in the water demand for irrigation under reduced precipitation periods.

Although bias correction methods can be implemented in the different outputs of
RCMs like precipitation and temperature, some authors recommend the bias correction
of surface runoff in order to assess the impact of climate change at the basin scale under a
scarcity of observed precipitation and temperature time series [66]. However, it is known
that RCMs can increase the biases related to precipitation and/or temperature under certain
conditions like warmer or wetter climatic conditions [67]. Even when there are different
bias correction methods, a proper bias correction method should consider a case-by-case
implementation based on the availability of hydro-meteorological records and the local
conditions. For instance, in mountainous areas, some physical limitations can contribute
to random biases in the surrounding mountain ranges [9]. Because of the local conditions
in the Achibueno River Basin, and based on the presented results, we encourage the
use of quantile mapping like PTF and RQUANT as bias correction methods in studies
focused on assessing the climate change impacts at the basin scale, in order to avoid the
under- or overestimation of precipitation and temperature, especially in mountainous
areas. Thus, we recommend maintaining efforts in preserving the hydro-meteorological
networks, especially in mountainous areas, in order to reduce bias-related uncertainties
and in the prevention of flooding events related to extreme precipitation. The combined
effect of bias-corrected future climate scenarios and future land use change under different
management practices in the region is a matter of ongoing research.
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Figure 7. Historical period and bias-corrected climate scenarios RCPs 2.6 and 8.5 during
the period 2025–2050 where (a,b) shows the precipitation (mm/season), (c,d) water yield
(mm/season), and (e,f) evapotranspiration (mm/season) in the Achibueno River Basin under sea-
sonal basis, respectively.



Water 2024, 16, 1138 17 of 20

Water 2024, 16, x FOR PEER REVIEW 16 of 21 
 

 

Table 6. Water balance components (mm/year) from 1990 to 2009 as the historical period and future 
climate scenarios for the period 2025–2050 under the RCP 2.6 and RCP 8.5 scenarios. 

Component Historical 
  RCP 2.6    RCP 8.5  

Local 10 k Reg 50 k Remo 2015 RegCM 4.7 Local 10 k Reg 50 k Remo 2015 RegCM 4.7 
Precipitation 1950 2051 2056 2013 2029 2067 1935 1901 1992 

Surq 199 183 187 174 177 197 152 151 178 
Latq 860 950 927 907 941 968 889 858 940 

Water Yield 1059 1133 1114 1081 1119 1165 1041 1009 1118 
ET 494 545 576 586 553 529 561 568 530 

GW Recharge * 309 343 337 330 340 345 314 312 333 
Notes: * Groundwater recharge. 

Differences between the evaluated climate models under the two RCP’s are projected 
in the hydrological response of the studied catchment. In comparison to the historical pe-
riod, the four evaluated climate models suggest increases in precipitation, Latq, water 
yield, ET, and GW recharge under RCP 2.6. In the case of RCP 8.5, the Local 10 k and 
RegCM 4.7 climate models presented increases in precipitation, Latq, water yield, ET, and 
GW recharge compared to the historical period. In addition, the Reg 50 k and Remo 2015 
climate models suggest a clear reduction in precipitation, with impacts on water fluxes 
and the internal moisture distribution in the catchment. Additionally, events with differ-
ent intensities and amounts of precipitation are expected during short periods of time. In 
the case of ET, the results suggest increases in the four evaluated climate models compared 
to the historical period under both RCPs, mainly related to increases in temperature. Alt-
hough the Local 10 k climate model was developed under the basis of RegCM 4.6, a pre-
vious version of RegCM 4.7, it is possible to observe some similarities in the trends among 
both climate models. In the case of Reg 50 k, a climate model developed under the basis 
of based Remo 2009 and RegCM 4.6, similarities were not evident in comparison to Remo 
2015, especially under RCP 8.5.  

  
(a) (b) 

 
Figure 8. Projected surface runoff (mm/year) at Rio Achibueno en La Recova station for the period 
2025–2050 under bias-corrected climate scenarios RCP 2.6 (a) and RCP 8.5 (b). 

The projected results of surface runoff at Rio Achibueno en La Recova station pre-
sented variations following the hydrological response of the catchment under both RCPs. 
In the case of RCP 2.6 (Figure 8a), the projected surface runoff presented fluctuations over 
the period 2025–2050 including years with a reduced amount of surface runoff but also 

Figure 8. Projected surface runoff (mm/year) at Rio Achibueno en La Recova station for the period
2025–2050 under bias-corrected climate scenarios RCP 2.6 (a) and RCP 8.5 (b).

4. Conclusions

We present the evaluation of five bias correction methods and the effects of bias-
corrected future climate scenarios on the hydrological response of the Achibueno River
Basin in southcentral Chile. Quantile mapping methods were evaluated for precipitation
and temperature (maximum and minimum) in the historical period (1979–2005) of one local
climate model and three regional climate models. Parametric transformation function (PTF)
and robust empirical quantile (RQUANT) were the most prominent bias correction methods
for precipitation and temperature, respectively. The effects of bias-corrected future climate
scenarios based on Representative Concentration Pathways (RCPs) 2.6 and 8.5 from the four
climate models were evaluated over the period 2025–2050 on the hydrological response of
the Achibueno River Basin by simulating hydrological fluxes with SWAT+ at daily time
steps. Bias-corrected future climate scenarios resulted in differences in precipitation and
temperature under both RCP scenarios. In the case of RCP 2.6, an increase in precipitation,
water yield, evapotranspiration, and groundwater recharge were projected for all the eval-
uated climate models. In contrast, under RCP 8.5, strong peaks of precipitation in different
periods, with differences in amount as well as frequency, were projected, especially under
the Local 10 k and RegCM 4.7 climate models scenarios. As a consequence, variation in the
overall water yield, increases in evapotranspiration, and partial decreases in groundwater
recharge were projected. In this regard, yearly fluctuations in surface runoff under RCP
2.6 were projected, while for RCP 8.5, strong peaks in short periods of time together with
decreases in surface runoff were projected. In both scenarios, the most promising and
also the most impacting changes in catchment hydrology attributable to the fluctuation
in precipitation and surface runoff with simultaneous increases in evapotranspiration are
expected to occur, with clear impacts on future water availability. Consequently, increases
in flood events under extreme precipitation as well as increases in the water demand
for irrigation under reduced precipitation periods are changes that most likely will take
place. Therefore, it is important to consider possible adaptation strategies of current and
future river basin management practices in the interest of protecting water resources in the
mountainous areas of southcentral Chile.
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