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Abstract: The Xiashu loess exhibits expansion when in contact with water and contraction when
water is lost, making it highly susceptible to the influence of rainfall. Therefore, it is essential to
investigate the infiltration behavior of rainwater in Xiashu loess slopes under various conditions. The
depth of infiltration in slopes directly affects the depth of landslide failure and serves as an important
indicator for studying slope infiltration characteristics; only a handful of academics have delved into
its study. This article is based on on-site rainfall experiments on Xiashu loess slopes, using three
main factors, rainfall intensity, rainfall duration, and slope angle, as discrimination indicators for the
infiltration depth of Xiashu loess slopes. The particle swarm optimization algorithm is employed
to optimize the BP neural network and establish a PSO-BP neural network prediction model. The
experimental data are accurately predicted and compared with the multivariate nonlinear regression
model and traditional BP neural network models. The results demonstrate that the PSO-BP neural
network model exhibits a better fit and higher prediction accuracy than the other two models. This
model provides a novel approach for rapidly determining the infiltration depth of Xiashu loess slopes
under different rainfall conditions. The results of this study lay the foundation for the prediction of
the landslide damage depth and infiltration of Xiashu loess slopes.

Keywords: Xiashu loess; infiltration depth; particle swarm optimization; BP neural network;
multivariate nonlinear regression

1. Introduction

Studies indicate that since the 21st century, landslides have emerged as a major
geological challenge for China [1]. Rainwater infiltration leads to erosion of the slope’s
surface and the softening of its internal rock and soil, diminishing its stability and triggering
landslides, with the Xiashu loess landslide being a common example. The Xiashu loess is
mainly distributed in the area of Nanjing and Zhenjiang, Jiangsu Province [2], which poses
a great threat to the safety issues of people’s lives and properties in the region. The Xiashu
loess has characteristics such as swelling when encountering water and shrinking when
losing water [3], which is significantly affected by rainfall and is prone to landslides in the
rainy season. Therefore, it is crucial to study the infiltration characteristics of the Xiashu
loess slopes under rainfall conditions.

Lately, an increasing number of academics have delved into the issues associated with
the Xiashu loess. Hu et al. [4,5] studied the failure modes of the Xiashu loess under differ-
ent moisture contents through experiments and investigated the infiltration pattern and
damage mechanism of Xiashu loess slopes under different rainfall conditions; Liu et al. [6]
researched the changes in mechanical properties of the Xiashu loess after undergoing
different wet and dry cycles through unsaturated direct shear tests; Chen et al. [7] revealed
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the seismic response mechanism of Xiashu loess slopes through large-scale shaking table
tests on the Xiashu loess; Sun et al. [8] experimentally analyzed a large number of Xiashu
loess samples and found that the slope stability of the Xiashu loess is mainly affected by the
soil water content. It can be seen that research on landslides in the Xiashu loess has focused
on analyzing the causes of landslides as well as on early warning, and less research has
been conducted on the depth of infiltration of Xiashu loess slopes under rainfall conditions.

For other soil slopes, some scholars have explored the infiltration depth of slopes
under different rainfall conditions through simulated rainfall experiments [9,10] but have
not conducted predictive research. At present, in the prediction of slopes, most scholars
focus on the prediction of slope deformation and stability [11–15], and there are few studies
on the prediction of landslide damage depth [16]. Landslide damage depth is affected
by a variety of factors [17], its uncertainty is higher, and it is more difficult to predict
directly. Some scholars believe that shallow landslides parallel to the surface of soil slopes
often occur (failure at wet fronts) [18,19]; thus, the range of landslide damage depths
can be indirectly determined from rainfall infiltration depths and the prediction of slope
infiltration depths is better implementable.

Various methods are employed for prediction, including support vector machine,
neural networks, extreme learning machine, multiple regression, etc. Each method has its
own set of advantages and disadvantages, and they have collectively yielded improved
prediction results [20–23]. The above method can realize the rapid estimation of landslide
characteristics by building a prediction model, which is different from the traditional
numerical simulation analysis method because of its high efficiency and excellent prediction
accuracy [24]. Among these, neural networks are utilized to establish relationships between
variables by simulating biological neural networks. They possess a strong capability
to accommodate nonlinearity and exhibit autonomous learning, making them widely
employed in slope prediction research. However, it also has limitations, such as the issue
of too rapid a convergence and the susceptibility to becoming trapped in local minima [25].
In order to make up for the deficiencies in neural networks, many scholars have used
different algorithms to optimize neural networks, and these algorithms include the Genetic
Algorithm [26,27], Bird Swarm Algorithm [28], particle swarm algorithm [29–31], Sparrow
Algorithm, etc., which are all able to overcome the limitations of local optimums and assign
optimized weights and thresholds to the neural network to improve the prediction accuracy
of the neural network. In this paper, based on the experimental situation, we consider
optimizing the BP neural network with the particle swarm algorithm (PSO) to make up
for the shortcomings of the neural network, so that the optimized neural network has a
better prediction effect [32,33]. This study forecasts the infiltration depth of Xiashu loess
slopes using a BP neural network enhanced by the particle swarm algorithm (PSO), aiming
to clarify the relationship between rainfall duration, rainfall intensity, slope angle, and
the depth of slope infiltration. Concurrently, a comparison is made between the PSO-BP
neural network model, the multivariate nonlinear regression prediction model, and the
unoptimized BP neural network to evaluate the pros and cons of these models and to
formulate the prediction model effectively. A rapid method for determining the infiltration
depth of Xiashu loess slopes is proposed to provide the basis for the subsequent prediction
of landslide damage depth and infiltration studies of Xiashu loess slopes.

2. Methodology
2.1. Principles of Multivariate Nonlinear Regression Model

Regression analysis is a quantitative depiction of uncertain relationships between
things that exist in the objective world with the help of mathematical models. In the anal-
ysis of a nonlinear link between a dependent variable Y and one or several independent
variables (X1~Xn), employing a nonlinear regression model is feasible, along with the use
of statistical analysis techniques and functions for the analytical interpretation and formal
depiction of the relationship. The multiple regression equation allows the relationship be-
tween input and output values to be established in order to quickly and efficiently estimate
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the output values from the input values. Based on the output values, this information
is useful for risk assessment. In nonlinear regression models, least-squares stands as the
predominant technique for estimating parameters, and the models developed through
this approach are considered a posteriori models in the realm of statistical mathematical
modeling. This technique is applicable for forecasting the depth of rainfall infiltration
on slopes, employing a linear function to mimic a nonlinear function, and repeating this
method to achieve the best parameter solution.

Presently, two primary varieties of nonlinear mathematical models exist, linking
several independent variables with a single dependent variable. In Type I nonlinear
mathematical models, the initial step is to examine the functional link between an inde-
pendent variable and its dependent counterpart independently, followed by overlaying
this connection between the dependent and independent variables. Should the overlaid
functional link fail to meet specific criteria, it becomes essential to delve deeper into the
interplay among the independent variables. Nonlinear mathematical models of Type I are
straightforward, highly suitable, and broadly applicable. In contrast, Type II nonlinear
mathematical models have been less applied by scholars due to their excessive complexity.
Thus, the considered nonlinear mathematical models are currently dominated by Type I.
The mathematical expression for the nonlinear mathematical model of Type I is given in
the following equation:

y = k0 + ∑n
i=1 ki fi(xi) + ∑n

i=1 k jxixj, (1)

where y is the dependent variable; ki is the regression coefficient; xi and xj are independent
variables, i = 0,· · · , n; j = 0,· · · , n; and fi(xi) is the functional relationship between a
particular independent variable and the dependent variable.

2.2. Principles of BP Neural Network

Developed in the 1980s, BP neural networks have found extensive application among
researchers in control, optimization, and nonlinear prediction, owing to their straightfor-
ward design and user-friendliness. Neural networks reflect the structure and function of
the human brain’s nerves, abstracting the properties of the real brain and simplifying it
into an information processing system. Typically, a BP neural network is composed of
three distinct layers: input, hidden, and output layers. The learning principle is as follows:
During forward propagation, a set of weights and thresholds is randomly generated. This
set of randomly generated numbers, along with the excitation function, jointly act on the
input parameters. The input parameters are passed from the input layer to the output
layer through the implicit layer. The output value is compared to the expected value. If
the error between the two exceeds the accepted range, the error is back-propagated from
the output layer. The initial randomly generated weights and thresholds are then adjusted
and corrected to continue the learning process through continuous iterative learning. This
process continues until the final output value and the expected value have an error within
an acceptable range. At this point, the training ends. Research has demonstrated that a
tri-layered BP neural network meets the criteria for general function mapping, and various
multivariate functions can be estimated with any desired precision using a limited set of
hidden-layer BP neural networks. The structure of the BP neural network is shown in
Figure 1.

2.3. Particle Swarm Optimization

Eberhart and Kennedy jointly introduced the particle swarm optimization (PSO)
algorithm in 1995, drawing inspiration from the collective food-seeking patterns of animal
birds. This algorithm mimics bird foraging for group iteration and seeks the most suitable
area within the particle group to identify the optimal particles for the desired solution
space. Each particle in the algorithm represents a solution. The initial state of all particles in
the population is continuously iterated. At each iteration, the particles update themselves
to keep track of the optimal value, in order to find the optimal solution.
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Figure 1. BP neural network structure.

The particle swarm algorithm begins by initializing a group of random particles.
Assuming there are m particles in the swarm, each particle has an n-dimensional vector that
represents a solution in the n-dimensional optimization space. Xj represents the positional
vector for particle j, and Vj denotes the velocity vector for particle j.

Xj = Xj1, Xj2, · · · Xjn, (2)

Vj = Vj1, Vj2, · · ·Vjn, (3)

In the iterative phase, vectors representing particle positions are integrated into the
fitness function Ek to obtain their fitness values. The optimal fitness values of the particles
are compared to search for the particle swarm’s successive single best position Pj and global
best position Gj.

Pj = Pj1, Pj2, · · · , Pjn, (4)

Gj = Gj1, Gj2, · · · , Gjn, (5)

The individual optimal solution achieved by each particle during the search process is
represented by Pj, while the global optimal solution achieved by the particles during the
search process, the optimal solution of the particle swarm algorithm, is represented by Gj.
The particle swarm algorithm updates and optimizes based on four values: Xj, Vj, Pj, and
Gj. These values are used to determine the position and velocity vectors after each iteration,
with the algorithm’s evolution equation being

Vj(k + 1) = w · Vj(k) + c1 · r1 ·
[
Pj(k)− Xj(k)

]
+ c2 · r2 ·

[
Gj(k)−X j(k)

]
, (6)

Xj(k + 1) = Xj(k) + Vj(k + 1), (7)

where w is the inertia weight; c1 and c2 are learning factors, usually taking a value between
0 and 2; and r1 and r2 represent a pair of random numbers in the range of [0, 1], typically
distributed evenly. To prevent a blind search process, it is important to limit the speed of
the particle swarm during the search process. Typically, the speed Vj should be limited to a
range of [vmin, vmax].
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The effectiveness of particle swarm algorithms is significantly influenced by inertia
weights w. Higher inertia weights are conducive to the overall optimization of searches,
whereas lower inertia weights support the optimization of local searches. In this paper, by
adaptively adjusting the inertia weights in the algorithm, w decreases as the number of
iterations continues to increase, with the following equation:

w = wmax − (wmax − wmin)
k

kmax
, (8)

where k is the current number of iteration steps; kmax is the maximum number of iteration
steps; and wmax and wmin represent the maximum and minimum values of the inertia
weight w.

The particle swarm algorithm optimizes the neural network by continuously updating
its weights and thresholds and assigning the optimized values to the neural network.

2.4. PSO-BP Neural Network Model Prediction Process

As previously noted, the BP neural network’s predictive capabilities suffer from
sluggish convergence rates, susceptibility to local extremes, and heightened sensitivity to
weight and threshold values, yet the PSO algorithm compensates for these shortcomings in
the BP neural network. Therefore, the PSO algorithm can be combined with a BP neural
network to achieve higher accuracy and convergence speeds. The PSO-BP neural network
model prediction process is as follows:

(1) Import the forecasted data; introduce random disturbances to the dataset; segregate
the training, validation, and test datasets; and normalize the data:

X =
(X − Xmin)

(Xmax − Xmin)
, (9)

where Xmax and Xmin represent the maximum and minimum values of each group of
samples, respectively.

(2) Establish a BP neural network, and set the number of nodes and training parameters.
The number of hidden layers is generally determined by empirical formulae to give an
approximate range:

hj ≤
√

hi × (hk + 3), (10)

where hj is the number of nodes in the hidden layer; hi is the number of nodes in the input
layer; and hk is the number of nodes in the output layer.

(3) Set the PSO parameters (learning factors, population size, number of population
renewals, etc.) and randomly initialize the particle position and velocity.

(4) If the particle’s current adaptation value Xj is better than the historical optimal
adaptation value Pj, then Pj = Xj; if the particle’s historical optimal adaptation value is
better than the global optimal adaptation value Gj, then Gj = Pj. Based on Equations (6)
and (7), the particles are updated to determine if the end condition is reached, and if not,
iteration continues until the optimal weights and thresholds are obtained.

(5) Assign the optimal connection weights and thresholds to the BP neural network
and continue training the BP neural network to complete the prediction and output the
prediction results.

Based on the above process, Figure 2 depicts the flowchart of the PSO-BP neural
network experiment.
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3. Case Study
3.1. Sample Plot Overview

The study area is situated in Jurong City, Jiangsu Province, China, specifically in Xiashu
Town Zhu Li Village, West Xu group, southwest of the slope, in the northwestern part of
Zhenjiang City. The topography of the study area is dominated by plains and hills, with
the east being low and the west being high. The area falls under the subtropical monsoon
climate, with rainfall mainly concentrated in the spring and summer. The groundwater
conditions are complex, with relatively shallow depths. During the rainy season, the
Nanjing–Zhenjiang area experiences a high frequency of landslides, posing a serious threat
to the safety of residents, factory workers, and tourists in the affected areas. This issue is
closely linked to the widespread distribution of the Xiashu loess in the Zhenjiang area of
Jiangsu Province.

Tea trees have been planted on the slopes of the test site, with the northeast side of
the slope being close to a natural water pond located 5–6 m away. The main threats in the
area are crops in farmland. The surface lithology of the slope body consists mainly of a
1.5 m thick layer of powdery clay from the Xiashu Formation, which is the focus of the
experiment. The slope body has an overall height difference of about 8~10 m, with a gentle
front edge and a steeper back edge. The first step involves a 5–6 m slope with an angle
of 35–40◦, while the rear may be the back wall of a previous localized landslide, with an
angle of approximately 50◦; a height difference of 3–4 m; and an exposed, dry, and loose
back edge wall. Gullies and soil fissures have developed on the slope, with initial fissures
distributed in an F-shape and measuring 1–2 cm wide. The preliminary investigation
indicated that the slope morphology and angle of the test section were representative of
most slopes in the area, leading to the selection of this slope as the test site.

Damage to the Xiashu loess slope occurs when the slope angle, rainfall intensity, and
rainfall duration reach certain values during testing (Figure 3e).

3.2. Field Rainfall Test Program Setup

The slope test site measures 4 × 5 m and is constructed using steel frames. The
equipment required for the test includes steel frames to build the test platform, artificial
rainfall devices, and a monitoring system. The purpose of this integrated test device is to
monitor the change in water content of the slope soil over time under continuous rainfall,
in order to elucidate the effect of rainfall on the depth of infiltration of slopes. Water content
monitoring points are distributed at various depths on the top, middle, and foot of the
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Xiashu loess slope to compare and analyze infiltration at different locations. Additionally, a
probe slot is located on the right side of the slope in the test section for convenient sampling
and observation of the wetting front. Figure 4 shows the layout of the test setup.
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The experimental rainfall setting takes into account the rainfall and evaporation in the
region. Through the collection of meteorological data in recent years in the Ningzhen area,
it can be seen that the area is dominated by short-term heavy rainfall, the duration of rainfall
in most cases is not more than 12 h, and the maximum intensity of rainfall that occurs is
63.2 mm/h. Therefore, the field rainfall test program setup in this paper consists of three
types of rainfall intensities, 30 mm/h, 60 mm/h, and 90 mm/h, and four types of rainfall
duration, 1 h, 2 h, 4.5 h, and 8 h. Additionally, there are three types of experimental slope
angles: 35◦, 40◦, and 45◦. Due to the limited test conditions, it was not possible to analyze
the depth of infiltration for slopes with slower slope angles. To obtain more extensive
and reliable prediction results, numerical simulation was considered to compensate for
slopes with 20◦, 25◦, and 30◦ slope angles. This allowed the established prediction model
to predict the depth of infiltration for most of the slopes in the Nanjing–Zhenjiang area.
The numerical simulation results and the test results were compared and verified under
the same conditions. It was found that the two infiltration results were basically the same,
despite possible differences between them.
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3.3. Partial Analysis of Results

During the test, it was observed that the depth of infiltration varied at different
locations on the slope. The infiltration depth was found to be largest at the foot of the slope,
followed by the middle of the slope, and smallest at the top of the slope. To simplify the
analysis of the slope as a whole, the average depth of infiltration at the top, middle, and
foot of the slope was used as the predicted data. The distribution of slope wetting fronts
under a rainfall intensity of 60 mm/h and rainfall duration of 1 h, 2 h, 4.5 h, and 8 h is
presented in Figure 5.
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To examine the impact of rainfall intensity and duration on the infiltration of Xiashu
loess slopes, an artificial rainfall simulation device was used to apply varying levels of
rainfall. Figure 6 displays a 3D surface plot of the infiltration depth ranging from 32 mm to
77 mm. The plot is based on a 35◦ slope angle, a rainfall intensity ranging from 30 mm/h
to 90 mm/h, and a rainfall duration ranging from 1 h to 8 h. It is evident that the depth
of infiltration generally increases with the increase in both rainfall intensity and duration.
The impact of rainfall with varying intensity and duration on the depth of infiltration is
significant. However, as can be seen from the figure, the increase in rainfall duration is more
significant for the increase in slope infiltration depth than the increase in rainfall intensity.

3.4. Impact Factors and Data Sources

Researchers have continuously analyzed the factors affecting the depth of slope infil-
tration, including soil particle structure, infiltration rate, rainfall, and slope morphology.
However, analyzing intrinsic factors such as soil structure and infiltration rate is compli-
cated, and obtaining real-time parameters inside the soil is difficult. On the other hand,
analyzing slope morphology and rainfall is relatively straightforward and manageable.
This paper analyzes the effect of rainfall intensity, rainfall duration, and slope angle on the
depth of slope infiltration based on field tests. This study found that rainfall duration and
intensity have a positive correlation with slope infiltration depth, while slope angle has a
negative correlation. These factors have a significant impact on slope infiltration depth.

The data presented were obtained through artificial simulated rainfall tests and nu-
merical simulations on a typical Xiashu loess slope in Jurong City. The analysis focused
on the depth of slope infiltration under different rainfall conditions by applying rainfall
of varying intensities and durations to the Xiashu loess slope in the test section. After
the slope-cutting treatment, we analyzed infiltration on slopes with varying angles. The
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soil’s water content at various depths within the slope was used to determine the depth
of infiltration.
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Figure 6. Infiltration depth diagrams for different rainfall intensities and durations.

This article obtained 72 sets of sample data, which were divided into training, valida-
tion, and prediction sets in a certain proportion. Table 1 displays some of the test data.

Table 1. Partial test data.

Serial Number Slope Angle/◦ Rainfall
Intensity/mm·h−1

Rainfall
Duration/h

Infiltration
Depth/cm

1 35 30 2 44
2 30 60 4.5 62
3 40 30 4.5 47
4 40 90 1 33
5 25 30 8 70
6 30 60 1 38
7 35 90 2 50
8 20 60 4.5 69
9 25 30 2 54
10 30 60 2 52

4. Modeling and Validation
4.1. Multiple Nonlinear Regression Modeling and Solution Validation

Based on the previous section, it is evident that changes in rainfall intensity, duration,
and slope angle significantly affect the infiltration results. These results can serve as
an indicator for predicting the depth of slope infiltration using the multiple nonlinear
regression model.

To analyze the nonlinear effect of each factor on the depth of slope infiltration, we used
experimental data to establish a regression model in SPSS 22 software. The model included
the three aforementioned factors as independent variables and the depth of infiltration as
the dependent variable. This paper adopts the type I nonlinear mathematical model due to
the complexity of the type II model, making it difficult to accurately determine its form.
The model considers the interaction between the independent variables and linearizes
the nonlinear term through substitution, converting the nonlinear problem into a linear
problem for analysis and solution. Because the multivariate nonlinear regression model
does not have a unique solution, this paper first analyzes a single factor and then considers
the impact of all factors. After several trial calculations, the ENTER analysis method of
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regression analysis is used for linear regression to exclude terms with collinearity and
obtain the mathematical expression of the regression model. The fitting results are as
follows:

y = 49.99 − 0.96 ∗ X1 + 0.088 ∗ X2 + 9.19 ∗ X3 + 0.005 ∗ X2
1

−0.539 ∗ X2
3 − 0.028 ∗ X1 ∗ X3 + 0.021 ∗ X2 ∗ X3,

(11)

where X1 is the slope angle; X2 is the rainfall intensity; X3 is the rainfall duration; and y is
the depth of infiltration.

The regression equation shows that rainfall duration has the greatest impact on infil-
tration depth, followed by slope angle and then rainfall intensity. Based on the regression
equation, the slope infiltration depth can be estimated by rainfall duration, rainfall intensity,
and slope angle, and the results of this study can also be applied to the assessment of
landslide damage depth.

The equation analysis results of the regression model are shown in Table 2. ANOVA
and significance tests give D − W = 2.669, indicating that the data satisfy the independence
requirement. The significance test for the nonlinear mathematical model F resulted in
F = 250.308, which is much larger than F0.05(8,63) =2.79, with a p-value of 0.000, indicating
that the model is statistically significant at the 0.05 test level. Therefore, it can be determined
that the multivariate nonlinear regression equations are valid. At the same time, R2 = 0.936,
which is closer to 1. It indicates that the strong linear relationship between y and x in the
equation accurately reflects the actual change pattern, and the fitting effectiveness of the
nonlinear regression equation is superior.

Table 2. Equation analysis of regression models.

Project Sum of Squares Free Degree Mean Square F Value p

Model 15,760.152 8 1970.019 250.308 0.000
Error 1008.650 63 16.010 - -
Total 16,768.802 71 - - -

The depth of slope infiltration was analyzed using the established multivariate nonlin-
ear regression equation, which was validated through testing 10 additional sets of field data
selected at random. The regression equation was used to calculate the slope infiltration
depth by substituting the input parameters into Equation (11). The relative error was
analyzed by comparing the calculated values with the test data, as presented in Table 3.
Table 3 shows that the nonlinear regression model has a minimum relative error of 1.68%, a
maximum relative error of 9.82%, and an average relative error of 6.13%. Therefore, this
model is suitable for prediction.

Table 3. Nonlinear regression model test results.

Serial Number Infiltration Depth Obtained
from the Experiment/cm

Model Calculation of
Infiltration Depth/cm Error

1 50 54.11 8.22%
2 58 61.45 5.95%
3 34 36.35 6.92%
4 49 44.19 −9.82%
5 56 59.07 5.48%
6 71 68.58 −3.41%
7 36 39.14 8.73%
8 51 47.60 −6.67%
9 67 64.02 −4.44%
10 77 75.71 −1.68%
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4.2. PSO-BP Neural Network Modeling and Solution Validation

The information from 72 data sets was used to create a predictive model. Totals of
50 sets were used for training, 11 for validation, and 11 for testing. This means that 70% of
the total data were used for training and 30% for testing and validation.

The PSO-BP neural network modeling process begins by importing the predicted data
into Matlab R2018b. The data are then randomly disrupted and divided into training and
test sets, followed by normalization. The neural network structure consists of three layers:
three input nodes, one output node, and a hidden layer with three nodes. The number of
hidden-layer nodes was determined through Matlab program training experiments using
Equation (10). This structure was found to be optimal. The parameters of the particle
swarm were set as follows: the population size was 10, the number of population iterations
was set to 50, the learning factor was C1 = C2 = 4.494, and the particle flight speed range
was [−1, 1]. The population iterates until optimal weights and thresholds are achieved,
which are then assigned to the BP neural network for training. Training continues until
preset conditions are met.

The neural network is trained using the Sigmoid function as the transfer function,
and the lattice training function uses the BP algorithm training function Trainlm of L-M.
The maximum number of lattice training times is 1000, the learning rate is 0.01, and the
target error is 1 × 10−6. The number of nodes in the hidden layer and the target error is
constantly varied and trained in different combinations. To demonstrate the impact of the
particle swarm optimization algorithm, we compared the training results of the PSO-BP
neural network with those of the BP neural network. Figures 7 and 8 display the training
results of the BP neural network and PSO-BP neural network, respectively. The figures
show that the R2 of the prediction model trained by the BP neural network is 0.943, while
the R2 of the prediction model trained by the PSO-BP neural network is 0.997. Compared
to the multiple nonlinear regression model, both models are closer to 1 and have a better
fitting effect.
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The depth of infiltration of the Xiashu loess slope was calculated through iterative
optimization and compared with the BP neural network using the PSO-BP neural network
algorithm. Figures 9 and 10 display the time and value of the optimal variance occurrence
calculated by the BP neural network algorithm and the PSO-BP neural network algorithm
for iterative optimization search. The BP neural network achieved its optimal mean square
error of 0.0044243 after the 37th iteration, while the PSO-BP neural network achieved its
optimal mean square error of 0.0003304 after the 19th iteration.
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The accuracy of the model is measured using relative error and average relative error.
To compare the predicted depth of infiltration with the actual depth of infiltration, other
experimental data are randomly substituted into the PSO-BP neural network prediction
model. The results of the relative error comparison are shown in Table 4. The figure
illustrates that the PSO-BP neural network model has a minimum relative error of 0.10%,
a maximum relative error of 1.68%, and an average relative error of 0.78%. The results
indicate that the BP neural network model optimized by the particle swarm algorithm has
achieved the expected goal with good prediction accuracy.
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Table 4. PSO-BP neural network model test results.

Serial Number Infiltration Depth Obtained
from the Experiment/cm

Model Calculation of
Infiltration Depth/cm Error

1 72 73.12 1.56%
2 30 30.50 1.68%
3 54 54.32 0.59%
4 71 71.29 0.41%
5 56 55.69 −0.55%
6 83 83.09 0.10%
7 51 51.19 0.38%
8 38 37.77 −0.60%
9 49 49.17 0.36%
10 42 42.64 1.52%

After obtaining prediction results from the multivariate nonlinear regression model
and the PSO-BP neural network model, the experimental data were trained for prediction
using the unoptimized BP neural network model. The prediction accuracies of the three
models were then comprehensively compared. Table 5 displays the coefficients of determi-
nation (R2) and mean absolute percentage error (MAPE) for the three models. The formula
for calculating the two is as follows:

R2 = 1 − ∑n
i=1

(
yi − ŷi)

2

∑n
i=1(yi − y)2 , (12)

MAPE =
1
n

n

∑
i=1

[
|ŷi − yi|

ŷi

]
× 100%, (13)

where n is the predicted sample size, yi is the i-th measured value, ŷi is the i-th predicted
value, and y is the sample mean.

Table 5. Comparison of three models.

Model Multiple Nonlinear
Regression BP Neural Network PSO-BP Neural

Network

R2 0.936 0.943 0.997
MAPE 6.13% 5.29% 0.78%

Table 5 shows that all three models predicted the infiltration depth of the Xiashu
loess slope well. However, the PSO-BP neural network model had the highest predic-
tion accuracy compared to the other two models. The prediction accuracies of the three
models were ranked as follows: PSO-BP neural network model > BP neural network
model > multivariate nonlinear regression model.

To verify the applicability of the developed PSO-BP neural network model, it was
applied to other slopes for infiltration prediction. The infiltration of other slopes in the
area after experiencing natural rainfall was monitored during the test. The angle of the
monitored slopes was about 33◦, and the rainfall intensity and duration of natural rainfall
were obtained by monitoring with a test instrument. The predicted values were compared
with the real monitoring values using the established model, and the comparison results
are shown in Figure 11. This confirms the validity of the model.

The PSO-BP neural network model predicts these three sets of data with an average
relative error of 1.04%, which is higher than the other two models. This suggests that the
model is applicable to other slopes in the region with good applicability.
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5. Discussion

To mitigate the risks of landslides in the Xiashu loess during rainfall, it is essential
to promptly evaluate the depth of infiltration of the Xiashu loess slopes. This assessment
can roughly determine the extent of landslide damage and provide a new approach for the
early warning and hazard assessment of landslides.

During the test, it was observed that the Xiashu loess slope suffered damage after 8 h
of rainfall with a slope angle of 40◦ and a rainfall intensity of 90 mm/h. The diagram in
Figure 12 shows the Xiashu loess landslide. The depth of the landslide is approximately
0.55 m, while the depth of infiltration is around 0.7 m. The depth of the landslide damage is
about 0.8 times the depth of infiltration. Slopes undergo localized damage at the foot of the
slope in the form of a circular arc, which is related to the fact that the depth of infiltration at
the foot of the slope is greater than the depth of infiltration at the top of the slope and in
the middle of the slope.
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The Xiashu loess exhibits high water sensitivity, with its shear strength significantly
impacted by water content. The angle of internal friction and cohesion decreases rapidly
as the water content of the soil increases. During the rainfall process, the wetting front in
the slope constantly moves forward, causing the thickness of the softened soil inside the
slope to increase. This, in turn, leads to a dramatic decrease in the shear strength of the
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soil within the depth range of the wetting front, significantly increasing the probability of
landslides occurring in the infiltration depth range of the soil. When the shear strength
decreases to a certain threshold, it is not enough to support the force that causes the slope
to slide. This leads to damage under the Xiashu loess slope, which is why most landslides
occur at a certain depth of infiltration.

In a numerical simulation study of slope stability, it was found that the depth of
infiltration has a significant effect on the slope stability coefficient. Particularly at the
start of rainfall, an increase in infiltration depth results in a sharp decrease in the slope
stability coefficient. The relationship between the depth of infiltration and the slope stability
coefficient can be established, and the slope stability coefficient can be predicted based on
the depth of infiltration.

As only one landslide occurred during the field test, it was not possible to establish a
clear relationship between the depth of landslide damage and the depth of slope infiltration.
Further tests can be conducted in future studies to explore this connection. The PSO-BP
neural network-based slope infiltration depth prediction model presented in this paper
offers a novel approach for determining the infiltration depth of Xiashu loess slopes. This
lays the foundation for predicting the depth of Xiashu loess landslides and provides a new
index for evaluating the stability of Xiashu loess slopes.

6. Conclusions

(1) This paper presents a prediction model for the infiltration depth of the Xiashu
loess slope. The prediction data were obtained through field tests, using rainfall intensity,
rainfall duration, and slope angle as input parameters, and infiltration depth as the output
parameter. The particle swarm algorithm (PSO) was used to optimize the BP neural
network, resulting in a model with improved convergence speed and generalization ability.

(2) The infiltration depth regression model for the Xiashu loess slope was expressed
mathematically using the Class I nonlinear mathematical model. The model considered
the interaction between independent variables, and the test results were predicted using
the regression expression. The predicted results had an error range controlled within 10%,
indicating that the nonlinear regression model was reasonable. This model provides a fast
calculation method for determining the infiltration depth of the Xiashu loess slope.

(3) After comparing the slope infiltration depth prediction model established by
the PSO-BP neural network with the multivariate nonlinear regression model and the
traditional BP neural network model, it was found that all three methods have a good
fitting effect and prediction ability. However, the PSO-BP neural network prediction model
has a higher prediction accuracy than the other two models. The three models’ prediction
accuracy is ranked as follows: PSO-BP neural network model > BP neural network model >
multivariate nonlinear regression model. This ranking fully demonstrates the effectiveness
of the PSO-BP neural network model in predicting the depth of infiltration of the Xiashu
loess slope.

Due to the limitations of the test, the established prediction model only considered
three factors: rainfall duration, rainfall intensity, and slope angle. To improve the model’s
completeness, the effects of other factors should be further considered in subsequent tests.
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