Determining the Relevance of Commonly Used Hydraulic Parameters for Representing the Water Erosive Force in Rock Mass Erosion within Dam Spillways
Abstract
:1. Introduction
- -
- The non-representativeness of is linked to its sensitivity to the problem of non-uniqueness in the erosion process [3].
- -
- The non-representativeness of is linked to its complexity for estimating all probable mechanisms of erosion, including erosion by the dynamic expulsion of rock blocks and the erosion by the fragile failure of the rock mass into smaller pieces because of turbulent flow, a basic physical mechanism of erosion [30].
2. Methods
2.1. Erosive Force Index or Parameter
2.2. Data Set Development
2.3. Data Analysis Methods
2.4. Presentation of the Results Obtained in Graphic Form
3. Results and Discussions
3.1. as a Function of Rock Mass Resistance Index
3.2. as a Function of Rock Mass Resistance Index
3.3. as a Function of Rock Mass Resistance Index
3.4. as a Function of Rock Mass Resistance Index
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Channel width (m). | |
Chezy’s flow resistance coefficient. | |
eGSI | Geological force index for erodibility. |
Darcy’s flow resistance coefficient. | |
GSI | Geological strength index. |
Gravitational acceleration (m s−2). | |
HEC-RAS | Hydrologic engineering centers river analysis system |
Js/Edoa | Relative structure of the block. |
K | Kirsten index. |
Kb | Rock block size. |
Kd | Shear strength of the rock mass joints. |
Ms | Confined compressive strength of the intact rock. |
Manning resistance coefficient. | |
Q | Water flow rate (m3 s−1). |
q | Flow rate per unit length of channel width (m2 s−1). |
Hydraulic radius (m). | |
RMEIB | Rock mass erodibility index. |
S | Flow channel slope. |
Total energy gradient. | |
Average velocity (m s−1). | |
Vb | Block volume (m3). |
Channel’s angle of inclination (°). | |
Water density (kg m−3). |
References
- Alvi Associates, Inc. Case Study: Oroville Dam (California, 2017); Alvi Associates, Inc.: Towson, MD, USA, 2023. [Google Scholar]
- Alvi, I.A.; Alvi, I.S. Why dams fail: A systems perspective and case study. Civ. Eng. Environ. Syst. 2023, 40, 150–175. [Google Scholar] [CrossRef]
- Pells, S.E.; Pells, P.J.; Peirson, W.L.; Douglas, K.; Fell, R. Erosion of Rock in Spillways; University of New South Wales: Kensington, Australia, 2016. [Google Scholar]
- Withers, W.J. Pressure Fluctuations in the Plunge Pool of an Impinging Jet Spillway; University of Glasgow: Glasgow, Scotland, 1991. [Google Scholar]
- Manso, P.F.d.A.; Schleiss, A. The Influence of Pool Geometry and Induced Flow Patterns in Rock Scour by High-Velocity Plunging Jets; EPFL (Lausanne): Lausanne, Switzerland, 2006. [Google Scholar]
- Lesleighter, E.J.; Bollaert, E.F.R.; McPherson, B.L.; Scriven, D.C. Spillway Rock Scour Analysis—Composite of Physical & Numerical Modelling, Paradise Dam, Australia. In Proceedings of the 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, USA, 27–30 June 2016; pp. 343–352. [Google Scholar]
- Gu, S.; Ren, L.; Wang, X.; Xie, H.; Huang, Y.; Wei, J.; Shao, S. SPHysics Simulation of Experimental Spillway Hydraulics. Water 2017, 9, 973. [Google Scholar] [CrossRef]
- Kote, A.S.; Nangare, P.B. Hydraulic Model Investigation on Stepped Spillway’s Plain and Slotted Roller Bucket. Eng. Technol. Appl. Sci. Res. 2019, 9, 4419–4422. [Google Scholar] [CrossRef]
- Sawadogo, O. Scour of Unlined Dam Spillways; Stellenbosch University: Stellenbosch, South Africa, 2010. [Google Scholar]
- Tuna, M.C. Effect of offtake channel base angle of stepped spillway on scour hole. Iran. J. Sci. Technol. Trans. Civ. Eng. 2012, 36, 239–251. [Google Scholar]
- Wilkinson, C.; Harbor, D.J.; Helgans, E.; Kuehner, J.P. Plucking phenomena in nonuniform flow. Geosphere 2018, 14, 2157–2170. [Google Scholar] [CrossRef]
- Montgomery, R.A. Investigations into Rock Erosion by High Velocity Water Flows; Royal Institute of Technology: Stockholm, Sweden, 1984. [Google Scholar]
- Reinius, E. Rock erosion. Int. Water Power Dam Constr. 1986, 38, 43–48. [Google Scholar]
- Annandale, G.; Wittler, R.; Ruff, J.; Lewis, T. Prototype validation of erodibility index for scour in fractured rock media. In Proceedings of the International Water Resources Engineering Conference, Memphis, TN, USA, 3–7 August 1998; pp. 1096–1101. [Google Scholar]
- Liu, P.Q.; Dong, J.R.; Yu, C. Experimental investigation of fluctuation uplift on rock blocks at the bottom of the scour pool downstream of Three-Gorges spillway. J. Hydraul. Res. 1998, 36, 55–68. [Google Scholar] [CrossRef]
- Bollaert, E.; Schleiss, A. Transient Water Pressures in Joints and Formation of Rock Scour Due to High-Velocity Jet Impact; EPFL-LCH: Lausanne, Switzerland, 2002. [Google Scholar]
- Wang, Y.-K.; Jiang, C.-B. Experimental study of drag reduction in flumes and spillway tunnels. Water Sci. Eng. 2010, 3, 200–207. [Google Scholar]
- George, M.; Sitar, N.; Sklar, L. Experimental evaluation of rock erosion in spillway channels. In Proceedings of the 49th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 29 June–1 July 2015. [Google Scholar]
- Moore, J.S.; Temple, D.M.; Kirsten, H.A.D. Headcut advance threshold in earth spillways. Bull. Assoc. Eng. Geol. 1994, 31, 2. [Google Scholar]
- Van Schalkwyk, A.; Jordaan, J.; Dooge, N. Erosion of rock in unlined spillways. Int. Comm. Large Dams 1994, 71, 555–571. [Google Scholar]
- Annandale, G. Erodibility. J. Hydraul. Res. 1995, 33, 471–494. [Google Scholar] [CrossRef]
- Kirsten, H.A.; Moore, J.S.; Kirsten, L.H.; Temple, D.M. Erodibility criterion for auxiliary spillways of dams. Int. J. Sediment Res. 2000, 15, 93–107. [Google Scholar]
- Pells, S.E.; Douglas, K.; Pells, P.J.N.; Fell, R.; Peirson, W.L. Rock Mass Erodibility. J. Hydraul. Eng. 2017, 143, 06016031. [Google Scholar] [CrossRef]
- Hoek, E.; Marinos, P.; Benissi, M. Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation. Bull. Eng. Geol. Environ. 1998, 57, 151–160. [Google Scholar] [CrossRef]
- Koulibaly, A.S.; Saeidi, A.; Rouleau, A.; Quirion, M. A Reduced-Scale Physical Model of a Spillway to Evaluate the Hydraulic Erodibility of a Fractured Rock Mass. Rock Mech. Rock Eng. 2022, 56, 933–951. [Google Scholar] [CrossRef]
- Wisse, M.-H.; Saeidi, A.; Quirion, M.; Nilsson, C.-O. Effects of joint opening and block protrusion on the hydraulic parameters affecting rock block erosion in unlined spillways using a reduced-scale model. Acta Geotech. 2023, 19, 1965–1979. [Google Scholar] [CrossRef]
- Boumaiza, L.; Saeidi, A.; Quirion, M. A method to determine relevant geomechanical parameters for evaluating the hydraulic erodibility of rock. J. Rock Mech. Geotech. Eng. 2019, 11, 1004–1018. [Google Scholar] [CrossRef]
- Boumaiza, L.; Saeidi, A.; Quirion, M. A method to determine the relative importance of geological parameters that control the hydraulic erodibility of rock. Q. J. Eng. Geol. Hydrogeol. 2021, 54, qjegh2020-154. [Google Scholar] [CrossRef]
- Cengel, Y. Heat and Mass Transfer: Fundamentals and Applications; McGraw-Hill Higher Education: New York, NY, USA, 2014. [Google Scholar]
- Bollaert, E.F.; Schleiss, A.J. Physically based model for evaluation of rock scour due to high-velocity jet impact. J. Hydraul. Eng. 2005, 131, 153–165. [Google Scholar] [CrossRef]
- Koulibaly, A.S.; Saeidi, A.; Rouleau, A.; Quirion, M. Identification of hydraulic parameters influencing the hydraulic erodibility of spillway flow channels. Water 2021, 13, 2950. [Google Scholar] [CrossRef]
- Annandale, G.W. Current Technology to Predict Scour of Rock. In Proceedings of the Golden Rocks 2006, the 41st U.S. Symposium on Rock Mechanics (USRMS), Golden, CO, USA, 17–21 June 2006; p. 11. [Google Scholar]
- Koulibaly, A.S. Conception d’un Modèle de Laboratoire d’un Évacuateur de crue pour Étudier L’érosion des Masses Rocheuses; Université du Québec à Chicoutimi: Chicoutimi, QC, Canada, 2021. [Google Scholar]
Method | Correlation Parameters | ||
---|---|---|---|
Reference | Type | Erosive Force | Resistance of the Rock Mass |
Moore [19], Van Schalkwyk [20], Annandale [21], Kirsten [22] | Empirical methods | in kW·m−2) | Kirsten’s index (K) |
Pells [3,23] | Geological strength index for erodibility (eGSI) | ||
Erodibility index of the rock mass (RMEIB) |
Rock Mass Class (eGSI) | ||
---|---|---|
1 | Very poor | <20 |
2 | Poor | 21–40 |
3 | Moderate | 41–60 |
4 | Good | 61–80 |
5 | Very good | 81–100 |
Max Depth (m) | General Extent m3 per 100 m2 | Class | Descriptor |
---|---|---|---|
<0.3 | <10 | I | Negligible |
0.3–1 | 10–30 | II | Minor |
1–2 | 30–100 | III | Moderate |
2–7 | 100–350 | IV | Large |
>7 | >350 | V | Extensive |
Rock Mass Index Class eGSI | (m·s−1) | Dam ID | Erosion Level | |||
---|---|---|---|---|---|---|
Class 2 21< eGSI < 40 | 25 | 13.3 | Cop.6 | Extensive | 27 | 17 |
25 | 21.2 | Cop.10 | ||||
32 | 15.5 | Cop.5 | ||||
32 | 10.1 | Pin.4 | Large | 34 | 16 | |
32 | 12 | Cop.4 | ||||
32 | 18.8 | Cop.9 | ||||
40 | 25 | Bur.4 | ||||
23 | 6.8 | Kli.2 | Minor | 27 | 11 | |
23 | 7.2 | Kli.5 | ||||
23 | 12.6 | Gar.2 | ||||
23 | 15.1 | Gar.5 | ||||
32 | 9.1 | Kam.5 | ||||
35 | 12.2 | Cop.11 | ||||
23 | 8.5 | Kli.3 | Moderate | 31 | 11 | |
31 | 15,6 | Goe.2 | ||||
31 | 15.6 | Goe.4 | ||||
31 | 12.3 | Goe.5 | ||||
31 | 13.2 | Hart.2 | ||||
31 | 10 | Kam.3 | ||||
31 | 5.1 | Pin.2 | ||||
32 | 14.5 | Cop.7 | ||||
35 | 6.8 | Cop.1 | ||||
25 | 5.2 | Gar.1 | Negligible | 25 | 6 | |
25 | 6.8 | Gar.4 |
Rock Mass Class According to eGSI | Erosion Class | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Negligible | Minor | Moderate | Large | Extensive | ||||||||
eGSI | eGSI | eGSI | eGSI | eGSI | ||||||||
1 | Very poor | <20 | – | – | – | – | 9 | 9 | 10 | 10 | 20 | 11 |
2 | Poor | 21–40 | 6 | 25 | 11 | 27 | 11 | 31 | 16 | 34 | 17 | 27 |
3 | Moderate | 41–60 | 4 | 46 | 6 | 51 | 11 | 50 | 10 | 55 | – | – |
4 | Good | 61–80 | 9 | 70 | 11 | 70 | 15 | 69 | 22 | 72 | – | – |
5 | Very good | 81–100 | – | – | – | – | – | – | – | – | – | – |
Methods | Logical Sequence | R2 |
---|---|---|
No | 0.53 | |
Yes | 0.32 | |
No | 0.52 | |
No | 0.60 | |
No | 0.65 | |
No | 0.72 | |
No | 0.61 | |
No | 0.43 | |
No | 0.47 | |
No | 0.49 | |
Yes | 0.60 | |
No | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koulibaly, A.S.; Saeidi, A.; Rouleau, A.; Quirion, M. Determining the Relevance of Commonly Used Hydraulic Parameters for Representing the Water Erosive Force in Rock Mass Erosion within Dam Spillways. Water 2024, 16, 1261. https://doi.org/10.3390/w16091261
Koulibaly AS, Saeidi A, Rouleau A, Quirion M. Determining the Relevance of Commonly Used Hydraulic Parameters for Representing the Water Erosive Force in Rock Mass Erosion within Dam Spillways. Water. 2024; 16(9):1261. https://doi.org/10.3390/w16091261
Chicago/Turabian StyleKoulibaly, Aboubacar Sidiki, Ali Saeidi, Alain Rouleau, and Marco Quirion. 2024. "Determining the Relevance of Commonly Used Hydraulic Parameters for Representing the Water Erosive Force in Rock Mass Erosion within Dam Spillways" Water 16, no. 9: 1261. https://doi.org/10.3390/w16091261
APA StyleKoulibaly, A. S., Saeidi, A., Rouleau, A., & Quirion, M. (2024). Determining the Relevance of Commonly Used Hydraulic Parameters for Representing the Water Erosive Force in Rock Mass Erosion within Dam Spillways. Water, 16(9), 1261. https://doi.org/10.3390/w16091261