Effects of Different Reclamation Years and Modes on Soil Moisture Transport Pathways and Permeability Characteristics in an Open-Pit Mining Area in Guangxi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Experimental Area
2.2. Sample Collection and Determination of Soil Physical and Chemical Properties
2.3. CT Image Scanning and Image Binarization
2.4. Quantification of Soil Pore Characteristics
2.5. Two-Dimensional Pore Size Grading and Three-Dimensional Pore Size Grading
2.6. Simulation and Analysis of Water Fluxes within Soil Pores
2.7. Statistical Analysis
3. Results
3.1. Soil Physical and Chemical Properties
3.2. Two-Dimensional Pore Size Distribution Patterns of Soil Pores under Different Reclamation Years and Reclamation Modes
3.3. Three-Dimensional Pore Distribution Patterns of Soil Pores under Different Reclamation Years and Reclamation Modes
3.4. Characteristics of Soil Pore Rounding Rate under Different Reclamation Years and Reclamation Modes
3.5. Soil Pore Branching Characteristics under Different Reclamation Years and Reclamation Modes
3.6. Three-Dimensional Parameters of Soil Pore Space under Different Reclamation Years and Reclamation Modes
3.7. Three-Dimensional Reconstruction of Soil Pore Space under Different Reclamation Years and Reclamation Modes
3.8. Simulation of Soil Pore Permeability under Different Reclamation Years and Reclamation Modes
3.9. Correlation Analysis of Soil Parameters for Different Reclamation Years and Reclamation Modes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, H.; Ling, K.; Du, S.; Wen, H. Provenance of the Nb-Rich Bauxite and Li-Rich Claystone at the Base of the Heshan Formation in Pingguo, Guangxi, SW China: Constrained by U–Pb Ages and Trace Element Contents of Detrital Zircon. Ore Geol. Rev. 2023, 161, 105633. [Google Scholar] [CrossRef]
- Yuan, D. Environmental geological problems of karst stone mountains in southwest China. World Sci. Technol. Res. Dev. 1997, 41–43. (In Chinese) [Google Scholar] [CrossRef]
- Li, C.; Zhang, C.; Yu, T.; Liu, X.; Xia, X.; Hou, Q.; Yang, Y.; Yang, Z.; Wang, L. Annual Net Input Fluxes of Cadmium in Paddy Soils in Karst and Non-Karst Areas of Guangxi, China. J. Geochem. Explor. 2022, 241, 107072. [Google Scholar] [CrossRef]
- Wang, J.; Qin, Q.; Guo, L.; Feng, Y. Multi-Fractal Characteristics of Three-Dimensional Distribution of Reconstructed Soil Pores at Opencast Coal-Mine Dump Based on High-Precision CT Scanning. Soil Tillage Res. 2018, 182, 144–152. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.-J. Soil Structure as an Indicator of Soil Functions: A Review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Regelink, I.C.; Stoof, C.R.; Rousseva, S.; Weng, L.; Lair, G.J.; Kram, P.; Nikolaidis, N.P.; Kercheva, M.; Banwart, S.; Comans, R.N.J. Linkages between Aggregate Formation, Porosity and Soil Chemical Properties. Geoderma 2015, 247–248, 24–37. [Google Scholar] [CrossRef]
- An, N.; Zhang, L.; Liu, Y.; Shen, S.; Li, N.; Wu, Z.; Yang, J.; Han, W.; Han, X. Biochar Application with Reduced Chemical Fertilizers Improves Soil Pore Structure and Rice Productivity. Chemosphere 2022, 298, 134304. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Xiao, B.; Li, S.; Yu, X.; Kidron, G.J.; Heitman, J. Direct Evidence and Mechanism for Biocrusts-Induced Improvements in Pore Structure of Dryland Soil and the Hydrological Implications. J. Hydrol. 2023, 623, 129846. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Peprah-Manu, D. Pore Structure Effects on the Water Retention Behaviour of a Compacted Silty Sand Soil Subjected to Drying-Wetting Cycles. Eng. Geol. 2023, 313, 106963. [Google Scholar] [CrossRef]
- Colombi, T.; Braun, S.; Keller, T.; Walter, A. Artificial Macropores Attract Crop Roots and Enhance Plant Productivity on Compacted Soils. Sci. Total Environ. 2017, 574, 1283–1293. [Google Scholar] [CrossRef]
- Dzaklo, C.K.; Rujikiatkamjorn, C.; Indraratna, B.; Kelly, R. Cyclic Behaviour of Compacted Black Soil-Coal Wash Matrix. Eng. Geol. 2021, 294, 106385. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J. Prediction of the Soil Saturated Hydraulic Conductivity in a Mining Area Based on CT Scanning Technology. J. Clean. Prod. 2023, 383, 135364. [Google Scholar] [CrossRef]
- Cai, T.; Huang, H.; Bai, Y.; Wang, X.; Liu, T.; Ma, S. Microstructural Characteristics of Soil Pores at Different 535 Reclamation Years Based on Micro-CT. Coal J. 2018, 43, 3196–3203. (In Chinese) [Google Scholar] [CrossRef]
- Wang, J.M.; Guo, L.L.; Bai, C.K.; Qin, Q.; Lv, C.J. CT-based analysis of the effects of years of reclamation of 538 surface coal mines on the effective pore number and porosity of soils. J. Agric. Eng. 2016, 32, 229–236. (In Chinese) [Google Scholar]
- Back, M.P.; Jefferson, A.J.; Ruhm, C.T.; Blackwood, C.B. Effects of Reclamation and Deep Ripping on Soil Bulk Density and Hydraulic Conductivity at Legacy Surface Mines in Northeast Ohio, USA. Geoderma 2024, 442, 116788. [Google Scholar] [CrossRef]
- Pulido-Moncada, M.; Katuwal, S.; Munkholm, L.J. Characterisation of Soil Pore Structure Anisotropy Caused by the Growth of Bio-Subsoilers—ScienceDirect. Geoderma 2022, 409, 115571. [Google Scholar] [CrossRef]
- Fang, H.; Liu, K.; Li, D.; Peng, X.; Zhang, W.; Zhou, H. Long-Term Effects of Inorganic Fertilizers and Organic Manures on the Structure of a Paddy Soil. Soil Tillage Res. 2021, 213, 105137. [Google Scholar] [CrossRef]
- Hu, X.; Li, X.Y.; Li, Z.C.; Gao, Z.; Wu, X.C.; Wang, P.; Lyu, Y.L.; Liu, L.Y. Linking 3-D Soil Macropores and Root Architecture to near Saturated Hydraulic Conductivity of Typical Meadow Soil Types in the Qinghai Lake Watershed, Northeastern Qinghai–Tibet Plateau—ScienceDirect. Catena 2020, 185, 104287. [Google Scholar] [CrossRef]
- Guo, Y.; Fan, R.; Zhang, X.; Zhang, Y.; Wu, D.; McLaughlin, N.; Zhang, S.; Chen, X.; Jia, S.; Liang, A. Tillage-Induced Effects on SOC through Changes in Aggregate Stability and Soil Pore Structure. Sci. Total Environ. 2020, 703, 134617. [Google Scholar] [CrossRef]
- Ju, X.; Gao, L.; She, D.; Jia, Y.; Pang, Z.; Wang, Y. Impacts of the Soil Pore Structure on Infiltration Characteristics at the Profile Scale in the Red Soil Region. Soil Tillage Res. 2024, 236, 105922. [Google Scholar] [CrossRef]
- Talukder, R.; Plaza-Bonilla, D.; Cantero-Martínez, C.; Wendroth, O.; Lampurlanés, J. Soil Hydraulic Properties and Pore Dynamics under Different Tillage and Irrigated Crop Sequences. Geoderma 2023, 430, 116293. [Google Scholar] [CrossRef]
- Phalempin, M.; Landl, M.; Wu, G.-M.; Schnepf, A.; Vetterlein, D.; Schlüter, S. Maize Root-Induced Biopores Do Not Influence Root Growth of Subsequently Grown Maize Plants in Well Aerated, Fertilized and Repacked Soil Columns. Soil Tillage Res. 2022, 221, 105398. [Google Scholar] [CrossRef]
- Schlüter, S.; Sammartino, S.; Koestel, J. Exploring the Relationship between Soil Structure and Soil Functions via Pore-Scale Imaging. Geoderma 2020, 370, 114370. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, X.; Li, X. Analysis of the Intra-Aggregate Pore Structures in Three Soil Types Using X-ray Computed Tomography. Catena 2020, 193, 104622. [Google Scholar] [CrossRef]
- Soto-Gómez, D.; Pérez-Rodríguez, P.; Vázquez-Juiz, L.; López-Periago, J.E.; Paradelo, M. Linking Pore Network Characteristics Extracted from CT Images to the Transport of Solute and Colloid Tracers in Soils under Different Tillage Managements. Soil Tillage Res. 2018, 177, 145–154. [Google Scholar] [CrossRef]
- de Oliveira, J.A.T.; Cássaro, F.A.M.; Pires, L.F. Estimating Soil Porosity and Pore Size Distribution Changes Due to Wetting-Drying Cycles by Morphometric Image Analysis. Soil Tillage Res. 2021, 205, 104814. [Google Scholar] [CrossRef]
- Budhathoki, S.; Lamba, J.; Srivastava, P.; Williams, C.; Arriaga, F.; Karthikeyan, K.G. Impact of Land Use and Tillage Practice on Soil Macropore Characteristics Inferred from X-ray Computed Tomography. Catena 2022, 210, 105886. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, N.; Yu, K.; Zhao, C. The Effects of Fine Roots and Arbuscular Mycorrhizal Fungi on Soil Macropores. Soil Tillage Res. 2023, 225, 105528. [Google Scholar] [CrossRef]
- Jiang, X.; Zhong, X.; Yu, G.; Zhang, X.; Liu, J. Different Effects of Taproot and Fibrous Root Crops on Pore Structure and Microbial Network in Reclaimed Soil. Sci. Total Environ. 2023, 901, 165996. [Google Scholar] [CrossRef]
- Xie, H.; Tang, Y.; Yu, M.; Geoff Wang, G. The Effects of Afforestation Tree Species Mixing on Soil Organic Carbon Stock, Nutrients Accumulation, and Understory Vegetation Diversity on Reclaimed Coastal Lands in Eastern China. Glob. Ecol. Conserv. 2021, 26, e01478. [Google Scholar] [CrossRef]
- Svensson, D.N.; Messing, I.; Barron, J. An Investigation in Laser Diffraction Soil Particle Size Distribution Analysis to Obtain Compatible Results with Sieve and Pipette Method. Soil Tillage Res. 2022, 223, 105450. [Google Scholar] [CrossRef]
- Pan, L.; Chen, Y.; Xu, Y.; Li, J.; Lu, H. A Model for Soil Moisture Content Prediction Based on the Change in Ultrasonic Velocity and Bulk Density of Tillage Soil under Alternating Drying and Wetting Conditions. Measurement 2022, 189, 110504. [Google Scholar] [CrossRef]
- Nelson, D.W. Total Carbon, Organic Carbon, and Organic Matter; American Society of Agronomy, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Shwetha, P.; Varija, K. Soil Water Retention Curve from Saturated Hydraulic Conductivity for Sandy Loam and Loamy Sand Textured Soils. Aquat. Procedia 2015, 4, 1142–1149. [Google Scholar] [CrossRef]
- Nakajima, M. Advanced Digital Image Processing: Basic Theories and Application[III]: Introduction on 3 Dimensional Digital Image Processing. J. Inst. Electron. Inf. Commun. Eng. 1998, 18, 68. [Google Scholar]
- Fanfeng, Z.; Wei, F. Hole Filling Algorithm Based on Contours Information. In Proceedings of the International Conference on Information Science & Engineering, Hangzhou, China, 4–6 December 2010; pp. 3741–3743. [Google Scholar]
- Zhou, H.; Li, W.; Zhang, Z.; Peng, X. Study of multiscale soil structure using X-ray CT. J. Soil Sci. 2013, 50, 1226–1230. (In Chinese) [Google Scholar]
- Vogel, H.J. Morphological Determination of Pore Connectivity as a Function of Pore Size Using Serial Sections. Eur. J. Soil Sci. 2008, 48, 365–377. [Google Scholar] [CrossRef]
- Dal Ferro, N.; Charrier, P.; Morari, F. Dual-Scale Micro-CT Assessment of Soil Structure in a Long-Term Fertilization Experiment. Geoderma 2013, 204–205, 84–93. [Google Scholar] [CrossRef]
- Yu, W.-W.; He, F.; Xi, P. A Rapid 3D Seed-Filling Algorithm Based on Scan Slice. Comput. Graph. 2010, 34, 449–459. [Google Scholar] [CrossRef]
- Qi, Y.; Ju, Y.; Huang, C.; Zhu, H.; Bao, Y.; Wu, J.; Meng, S.; Chen, W. Influences of Organic Matter and Kaolinite on Pore Structures of Transitional Organic-Rich Mudstone with an Emphasis on S2 Controlling Specific Surface Area. Fuel 2019, 237, 860–873. [Google Scholar] [CrossRef]
- Wen, T.; Chen, X.; Luo, Y.; Shao, L.; Niu, G. Three-Dimensional Pore Structure Characteristics of Granite Residual Soil and Their Relationship with Hydraulic Properties under Different Particle Gradation by X-ray Computed Tomography. J. Hydrol. 2023, 618, 129230. [Google Scholar] [CrossRef]
- Jarvis, N.; Larsbo, M.; Koestel, J. Connectivity and Percolation of Structural Pore Networks in a Cultivated Silt Loam Soil Quantified by X-ray Tomography. Geoderma 2017, 287, 71–79. [Google Scholar] [CrossRef]
- Noyan, A.A.; Leontiev, A.P.; Yakovlev, M.V.; Roslyakov, I.V.; Tsirlina, G.A.; Napolskii, K.S. Electrochemical Growth of Nanowires in Anodic Alumina Templates: The Role of Pore Branching. Electrochim. Acta 2017, 226, 60–68. [Google Scholar] [CrossRef]
- Lamandé, M.; Labouriau, R.; Holmstrup, M.; Torp, S.B.; Greve, M.H.; Heckrath, G.; Iversen, B.V.; De Jonge, L.W.; Moldrup, P.; Jacobsen, O.H. Density of Macropores as Related to Soil and Earthworm Community Parameters in Cultivated Grasslands. Geoderma 2011, 162, 319–326. [Google Scholar] [CrossRef]
- Luxmoore, R.J. Micro-, Meso-, and Macroporosity of Soil. Soil Sci. Soc. Am. J. 1981, 45, 671. [Google Scholar] [CrossRef]
- Harvey, D.; Hubert, P. 3D Topology Optimization of Sandwich Structures with Anisotropic Shells. Compos. Struct. 2022, 285, 115237. [Google Scholar] [CrossRef]
- Asare, S.N.; Rudra, R.P.; Dickinson, W.T.; Fenster, A. SW—Soil and Water: Soil Macroporosity Distribution and Trends in a No-till Plot Using a Volume Computer Tomography Scanner. J. Agric. Eng. Res. 2001, 78, 437–447. [Google Scholar] [CrossRef]
- Wang, J.; Qin, Q.; Bai, Z. Characterizing the Effects of Opencast Coal-Mining and Land Reclamation on Soil Macropore Distribution Characteristics Using 3D CT Scanning. Catena 2018, 171, 212–221. [Google Scholar] [CrossRef]
- Zhen, Q.; Zheng, J.; Zhang, X. Changes of Solute Transport Characteristics in Soil Profile after Mining at an Opencast Coal Mine Site on the Loess Plateau, China. Sci. Total Environ. 2019, 665, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, W.; Fu, L. Soil Macropore Characteristics Following Conversion of Native Desert Soils to Irrigated Croplands in a Desert-Oasis Ecotone, Northwest China. Soil Tillage Res. 2017, 168, 176–186. [Google Scholar] [CrossRef]
- Liu, B.; Fan, H.; Jiang, Y.; Ma, R. Evaluation of Soil Macro-Aggregate Characteristics in Response to Soil Macropore Characteristics Investigated by X-ray Computed Tomography under Freeze-Thaw Effects. Soil Tillage Res. 2023, 225, 105559. [Google Scholar] [CrossRef]
- Souza, L.F.T.; Hirmas, D.R.; Sullivan, P.L.; Reuman, D.C.; Kirk, M.F.; Li, L.; Ajami, H.; Wen, H.; Sarto, M.V.M.; Loecke, T.D.; et al. Root Distributions, Precipitation, and Soil Structure Converge to Govern Soil Organic Carbon Depth Distributions. Geoderma 2023, 437, 116569. [Google Scholar] [CrossRef]
- Muhammad, N.; Per, M.; Schaap, M.G.; Markus, T.; Ramaprasad, K.; Hans-J?Rg, V.; Lis, W.D.J. Prediction of Biopore- and Matrix-Dominated Flow from X-ray CT-Derived Macropore Network Characteristics. Hydrol. Earth Syst. Ences Discuss. 2016, 20, 4017–4030. [Google Scholar] [CrossRef]
- Gharedaghloo, B.; Price, J.S.; Rezanezhad, F.; Quinton, W.L. Evaluating the Hydraulic and Transport Properties of Peat Soil Using Pore Network Modeling and X-ray Micro Computed Tomography. J. Hydrol. 2018, 561, 494–508. [Google Scholar] [CrossRef]
- Faloye, O.T.; Ajayi, E.A.; Rostek, J.; Schroeren, V.; Babalola, T.; Fashina, A.; Horn, R. Hydraulic and Pore Functions of Differently Textured Soils Modified by Biochar from Different Parts of the Mango Plant. Soil Tillage Res. 2024, 236, 105944. [Google Scholar] [CrossRef]
- Wang, J.; Guo, L.; Bai, Z.; Yang, L. Using Computed Tomography (CT) Images and Multi-Fractal Theory to Quantify the Pore Distribution of Reconstructed Soils during Ecological Restoration in Opencast Coal-Mine. Ecol. Eng. 2016, 92, 148–157. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, S.; Udawatta, R.P.; Anderson, S.H.; de Jonge, L.W.; Katuwal, S. X-ray Micro-Computed Tomography Characterized Soil Pore Network as Influenced by Long-Term Application of Manure and Fertilizer. Geoderma 2021, 385, 114872. [Google Scholar] [CrossRef]
- Liu, Y.F.; Jeng, D.-S. Pore Scale Study of the Influence of Particle Geometry on Soil Permeability. Adv. Water Resour. 2019, 129, 232–249. [Google Scholar] [CrossRef]
- Liu, J.; Lu, S. Amendment of Different Biochars Changed Pore Characteristics and Permeability of Ultisol Macroaggregates Identified by X-ray Computed Tomography (CT). Geoderma 2023, 434, 116470. [Google Scholar] [CrossRef]
- Qian, Y.; Yang, X.; Zhang, Z.; Li, X.; Zheng, J.; Peng, X. Estimating the Permeability of Soils under Different Tillage Practices and Cropping Systems: Roles of the Three Percolating Pore Radii Derived from X-ray CT. Soil Tillage Res. 2024, 235, 105903. [Google Scholar] [CrossRef]
- Ferreira, T.R.; Archilha, N.L.; Cássaro, F.A.M.; Pires, L.F. How Can Pore Characteristics of Soil Aggregates from Contrasting Tillage Systems Affect Their Intrinsic Permeability and Hydraulic Conductivity? Soil Tillage Res. 2023, 230, 105704. [Google Scholar] [CrossRef]
- Yuan, W.; Fan, W. Quantitative Study on the Microstructure of Loess Soils at Micrometer Scale via X-ray Computed Tomography. Powder Technol. 2022, 408, 117712. [Google Scholar] [CrossRef]
- Snoussi, G.; Nasri, B.; Hamdi, E.; Fouché-Grobla, O. Reuse of Tunisian Excavated Material into Composite Soil for Rainwater Infiltration within Urban Green Infrastructure. Geoderma Reg. 2024, 36, e00748. [Google Scholar] [CrossRef]
- Papatheodorou, E.M.; Papapostolou, A.; Monokrousos, N.; Jones, D.-W.; Scullion, J.; Stamou, G.P. Crust Cover and Prior Soil Moisture Status Affect the Response of Soil Microbial Community and Function to Extreme Rain Events in an Arid Area. Eur. J. Soil Biol. 2020, 101, 103243. [Google Scholar] [CrossRef]
- Ben Hassena, A.; Zouari, M.; Labrousse, P.; Decou, R.; Soua, N.; Khabou, W.; Zouari, N. Effect of Arbuscular Myccorhizal Fungi on Soil Properties, Mineral Nutrition and Antioxidant Enzymes of Olive Plants under Treated Wastewater Irrigation. S. Afr. J. Bot. 2022, 148, 710–719. [Google Scholar] [CrossRef]
- Bottinelli, N.; Zhou, H.; Boivin, P.; Zhang, Z.B.; Jouquet, P.; Hartmann, C.; Peng, X. Macropores Generated during Shrinkage in Two Paddy Soils Using X-ray Micro-Computed Tomography. Geoderma 2016, 265, 78–86. [Google Scholar] [CrossRef]
- Xu, L.Y.; Wang, M.Y.; Shi, X.Z.; Yu, Q.B.; Shi, Y.J.; Xu, S.X.; Sun, W.X. Effect of Long-Term Organic Fertilization on the Soil Pore Characteristics of Greenhouse Vegetable Fields Converted from Rice-Wheat Rotation Fields. Sci. Total Environ. 2018, 631–632, 1243–1250. [Google Scholar] [CrossRef]
Treatment | Depth (cm) | BD (g·cm−3) | SOM (g·kg−1) | Ks (mm·h−1) | Clay (%) | Silt (%) | Sand (%) |
---|---|---|---|---|---|---|---|
RG2a | 0–10 | 1.16 | 9.21 | 432.92 | 14.30 | 40.83 | 43.07 |
10–20 | 1.09 | 10.44 | 213.18 | 18.09 | 47.86 | 31.68 | |
20–30 | 1.16 | 7.22 | 313.21 | 14.29 | 52.47 | 32.75 | |
Average Value | 1.14 ± 0.04 c | 8.96 ± 1.62 ab | 319.77 ± 110.02 a | 15.56 ± 2.19 a | 47.05 ± 2.19 a | 35.83 ± 6.29 a | |
RG10a | 0–10 | 1.23 | 18.57 | 439.37 | 20.58 | 46.24 | 33.13 |
10–20 | 1.31 | 11.31 | 377.00 | 21.03 | 51.77 | 25.52 | |
20–30 | 1.24 | 9.99 | 727.12 | 18.02 | 52.57 | 28.16 | |
Average Value | 1.26 ± 0.04 b | 13.29 ± 4.62 a | 514.50 ± 186.76 a | 19.88 ± 1.62 a | 50.19 ± 1.62 a | 28.94 ± 3.86 a | |
RW2a | 0–10 | 1.22 | 8.56 | 409.88 | 12.21 | 42.74 | 44.97 |
10–20 | 1.14 | 6.72 | 291.80 | 9.75 | 49.99 | 40.22 | |
20–30 | 1.24 | 4.42 | 103.71 | 19.50 | 46.48 | 33.80 | |
Average Value | 1.20 ± 0.05 bc | 6.57 ± 2.07 b | 268.46 ± 154.41 a | 13.82 ± 5.07 a | 46.40 ± 5.07 a | 39.66 ± 5.61 a | |
RW10a | 0–10 | 1.46 | 9.06 | 571.40 | 7.40 | 49.49 | 43.96 |
10–20 | 1.39 | 9.86 | 161.91 | 21.22 | 50.99 | 28.75 | |
20–30 | 1.34 | 9.95 | 195.64 | 18.50 | 48.44 | 33.52 | |
Average Value | 1.40 ± 0.06 a | 9.62 ± 0.49 ab | 309.65 ± 227.31 a | 15.71 ± 7.32 a | 49.64 ± 7.32 a | 35.41 ± 7.78 a |
Treatment | Porosity | Ssa | Curvature | Connectivity | FD |
---|---|---|---|---|---|
RG2a-1 | 7.02 | 4.69 | 1.50 | 0.50 | 1.92 |
RG2a-2 | 3.62 | 3.59 | 1.48 | 0.39 | 1.96 |
RG2a-3 | 3.92 | 4.61 | 1.47 | 0.29 | 1.99 |
Average Value | 4.85 ± 1.88 | 4.30 ± 0.61 | 1.48 ± 0.02 | 0.39 ± 0.11 | 1.96 ± 0.04 |
RG10a-1 | 3.47 | 3.21 | 1.46 | 0.40 | 1.97 |
RG10a-2 | 7.58 | 3.90 | 1.50 | 0.57 | 1.99 |
RG10a-3 | 3.86 | 4.23 | 1.45 | 0.36 | 1.97 |
Average Value | 4.97 ± 2.27 | 3.78 ± 0.52 | 1.47 ± 0.03 | 0.44 ± 0.11 | 1.98 ± 0.01 |
RW2a-1 | 1.77 | 5.64 | 1.53 | 0.10 | 1.91 |
RW2a-2 | 9.10 | 4.28 | 1.50 | 0.63 | 1.97 |
RW2a-3 | 3.43 | 5.11 | 1.53 | 0.30 | 1.96 |
Average Value | 4.77 ± 3.84 | 5.01 ± 0.69 | 1.52 ± 0.02 | 0.34 ± 0.27 | 1.95 ± 0.03 |
RW10a-1 | 1.37 | 4.72 | 1.48 | 0.23 | 1.95 |
RW10a-2 | 5.61 | 3.55 | 1.52 | 0.50 | 1.94 |
RW10a-3 | 3.09 | 4.61 | 1.52 | 0.32 | 1.90 |
Average Value | 3.36 ± 2.13 | 4.29 ± 0.65 | 1.51 ± 0.02 | 0.35 ± 0.14 | 1.93 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Gan, L.; Zhang, Y.; Gao, Z.; Luo, Z.; Zhou, H.; Zhang, H.; Zhang, H.; Huang, T. Effects of Different Reclamation Years and Modes on Soil Moisture Transport Pathways and Permeability Characteristics in an Open-Pit Mining Area in Guangxi. Water 2024, 16, 1307. https://doi.org/10.3390/w16091307
Wang S, Gan L, Zhang Y, Gao Z, Luo Z, Zhou H, Zhang H, Zhang H, Huang T. Effects of Different Reclamation Years and Modes on Soil Moisture Transport Pathways and Permeability Characteristics in an Open-Pit Mining Area in Guangxi. Water. 2024; 16(9):1307. https://doi.org/10.3390/w16091307
Chicago/Turabian StyleWang, Song, Lei Gan, Yu Zhang, Zhibo Gao, Zhenhong Luo, Haojie Zhou, Hang Zhang, Hongxia Zhang, and Taiqing Huang. 2024. "Effects of Different Reclamation Years and Modes on Soil Moisture Transport Pathways and Permeability Characteristics in an Open-Pit Mining Area in Guangxi" Water 16, no. 9: 1307. https://doi.org/10.3390/w16091307
APA StyleWang, S., Gan, L., Zhang, Y., Gao, Z., Luo, Z., Zhou, H., Zhang, H., Zhang, H., & Huang, T. (2024). Effects of Different Reclamation Years and Modes on Soil Moisture Transport Pathways and Permeability Characteristics in an Open-Pit Mining Area in Guangxi. Water, 16(9), 1307. https://doi.org/10.3390/w16091307