Advanced Uncertainty Quantification for Flood Inundation Modelling
Highlights
- Proxy modeling and multi-fidelity Monte Carlo (MFMC) methods reduce the computational cost by at least 99.4% over traditional methods with Kriging found to be the most efficient flood hazard uncertainty quantification method tested herein.
- Probabilistic flood hazard assessment accuracy can be increased by using higher-resolution models without increasing computational costs.
Abstract
:1. Introduction
2. Methods
2.1. Uncertainty Quantification Methods
2.1.1. Full Monte Carlo
2.1.2. Multi-Level Monte Carlo (MLMC)
2.1.3. Kriging
2.1.4. Multi-Fidelity Monte Carlo
MFMC Algorithm
- Set a sequence of grid resolutions , fix a number of training samples and the accuracy .
- Starting with , create a Kriging proxy model using samples and check the convergence; if the criteria are met, go to step 3. Otherwise, add more samples.
- Perform samples of the Kriging model at level and compute at every level.
- Update the mean estimator for the variance of the estimator and the cost for each mesh/grid.
- Solve the optimization problem and update the required number of samples . Evaluate extra samples at each level and then check the criteria are met as above. For each level, more samples can be added to satisfy the criteria as necessary.
- Set . Return to step 3.
2.2. Comparing Methods
- A set of realistic commercial time constraints (6 h, 12 h, 24 h, and 48 h) were designed to test statical sampling accuracy.
- For computational cost calculations, the minimum time requirements to achieve a sampling error equivalent to converged results are compared (i.e., as with FMC () [16]) and the speedup over FMC is determined.
- FMC converges with ) [38];
- MLMC and MFMC convergence is a built-in feature of the multi-level method algorithm [29];
- Kriging convergence is dependent upon the training sample sizes and the input–output relationship with convergence once more a built-in feature.
2.3. Study Areas
3. Numerical Modelling: Hydraulic Model: LISFLOOD-FP
3.1. Model Resolution
3.2. Estimating the Uncertain Inflows
4. Results
4.1. Dyce
4.1.1. Dyce: Time Comparisons
4.1.2. Dyce: Comparison of Methods: Required Simulations for Error Convergence
4.2. Inverurie
4.2.1. Inverurie: Time Constraints
4.2.2. Inverurie: Comparison of Methods: Required Simulations for Error Convergence
4.3. Glasgow
4.3.1. Glasgow: Time Constraints
4.3.2. Glasgow: Comparison of Methods: Required simulations for Error Convergence
5. Discussion
6. Conclusions
- Kriging and MFMC significantly reduce the computational costs required for probabilistic modelling. Both methods reduce the computational costs by at least 99.4% and at most 99.99% over FMC across the three different case studies. These case studies are considered to be representative of small–medium-scale flood modelling assessments, and it is thus expected that these results would be transferable to other catchments.
- High-resolution Kriged methods require the lowest computational costs and return the highest degree of accuracy. As few as 10 simulations can accurately replicate the entire output distribution (although the exact number required will vary between locations and is highly dependent upon the inflow–flooded area relationship/topography).
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EM-DAT; CRED/UCLouvain: Brussels, Belgium, 2022. Available online: https://www.emdat.be/ (accessed on 18 March 2024).
- Collet, L.; Formetta, G.; Harrigan, S.; Prudhomme, C.; Beevers, L. Future hot-spots for hydro-hazards in Great Britain: A probabilistic assessment. Hydrol. Earth Syst. Sci. 2018, 22, 5387–5401. [Google Scholar] [CrossRef]
- Visser-Quinn, A.; Beevers, L.; Collet, L.; Formetta, G.; Smith, K.; Wanders, N.; Thober, S.; Pan, M.; Kumar, R. Spatio-temporal analysis of compound hydro-hazard extremes across the UK. Adv. Water Resour. 2019, 130, 77–90. [Google Scholar] [CrossRef]
- Lane, R.A.; Kay, A.L. Climate Change Impact on the Magnitude and Timing of Hydrological Extremes Across Great Britain. Front. Water 2021, 3, 684982. [Google Scholar] [CrossRef]
- Beevers, L.; Collet, L.; Aitken, G.; Maravat, C.; Visser-Quinn, A. The influence of climate model uncertainty on fluvial flood hazard estimation. Nat. Hazards 2020, 104, 2489–2510. [Google Scholar] [CrossRef]
- Aitken, G.; Beevers, L.; Christie, M.A. Multi-Level Monte Carlo Models for Flood Inundation Uncertainty Quantification. Water Resour. Res. 2022, 58, e2022WR032599. [Google Scholar] [CrossRef]
- Cook, J.; Nuccitelli, D.; Green, S.A.; Richardson, M.; Winkler, B.; Painting, R.; Way, R.; Jacobs, P.; Skuce, A. Quantifying the consensus on anthropogenic global warming in the scientific literature. Environ. Res. Lett. 2013, 8, 024024. [Google Scholar] [CrossRef]
- Pianosi, F.; Beven, K.; Freer, J.; Hall, J.; Rougier, J.; Stephenson, D.; Wagener, T. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environ. Model. Softw. 2016, 79, 214–232. [Google Scholar] [CrossRef]
- SEPA. Flood Modelling Guidance for Responsible Authorities, Version 1.1. 2017. Available online: https://www.sepa.org.uk/media/219653/flood_model_guidance_v2.pdf (accessed on 16 April 2024).
- Iaccarino, G.; Pecnik, R.; Glimm, J.; Sharp, D. A QMU approach for characterizing the operability limits of air-breathing hypersonic vehicles. Reliab. Eng. Syst. Saf. 2011, 96, 1150–1160. [Google Scholar] [CrossRef]
- Wallstrom, T. Quantification of margins and uncertainties: A probabilistic framework. Reliab. Eng. Syst. Saf. 2011, 96, 1053–1062. [Google Scholar] [CrossRef]
- Vernon IGoldstein, M.; Bower, R. Galaxy Formation: Bayesian History Matching for the Observable Universe. Statist. Sci. 2014, 29, 81–90. [Google Scholar] [CrossRef]
- Vidal, J.-P.; Hingray, B.; Magand, C.; Sauquet, E.; Ducharne, A. Hierarchy of climate and hydrological uncertainties in transient low-flow projections. Hydrol. Earth Syst. Sci. 2016, 20, 3651–3672. [Google Scholar] [CrossRef]
- Belote, R.T.; Carroll, C.; Martinuzzi, S.; Michalak, J.; Williams, J.W.; Williamson, M.A.; Aplet, G.H. Assessing agreement among alternative climate change projections to inform conservation recommendations in the contiguous United States. Sci. Rep. 2018, 8, 9441. [Google Scholar] [CrossRef] [PubMed]
- Willis, T.; Wright, N.; Sleigh, A. Systematic analysis of uncertainty in 2D flood inundation models. Environ. Model. Softw. 2019, 122, 104520. [Google Scholar] [CrossRef]
- Mundform, D.J.; Schaffer, J.; Kim, M.-J.; Shaw, D.; Thongteeraparp, A.; Supawan, P. Number of Replications Required in Monte Carlo Simulation Studies: A Synthesis of Four Studies. J. Mod. Appl. Stat. Methods 2011, 10, 4. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.M.; Stein, A. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 2004, 120, 75–93. [Google Scholar] [CrossRef]
- Archfield, S.A.; Pugliese, A.; Castellarin, A.; Skøien, J.O.; Kiang, J.E. Topological and canonical kriging for design flood prediction in ungauged catchments: An improvement over a traditional regional regression approach? Hydrol. Earth Syst. Sci. 2013, 17, 1575–1588. [Google Scholar] [CrossRef]
- Khan, N.K.J.; Elsheikh, A.H. A Machine Learning Based Hybrid Multi-Fidelity Multi-Level Monte Carlo Method for Uncertainty Quantification. Front. Environ. Sci. 2019, 7, 105. [Google Scholar] [CrossRef]
- Gruber, A.; Gunzburger, M.; Ju, L.; Lan, R.; Wang, Z. Multifidelity Monte Carlo Estimation for Efficient Uncertainty Quantification in Climate-Related Modeling. EGUsphere 2022. preprint. [Google Scholar] [CrossRef]
- Collet, L.; Beevers, L.; Prudhomme, C. Assessing the impact of climate change on extreme flows across Great Britain. Water 2017, 9, 103. [Google Scholar] [CrossRef]
- Christie, M.; Glimm, J.; Grove, J.W.; Higdon, D.; Sharp, D.; Wood-Schultz, M. Error analysis and simulations of complex phenomena. Los Alamos Sci. 2005, 29, 6–29. [Google Scholar]
- Jung, Y.; Merwade, V. Uncertainty Quantification in Flood Inundation Mapping Using Generalized Likelihood Uncertainty Estimate and Sensitivity Analysis. J. Hydrol. Eng. 2012, 17, 507–520. [Google Scholar] [CrossRef]
- Apel, H.; Thieken, A.H.; Merz, B.; Blöschl, G. Flood risk assessment and associated uncertainty. Nat. Hazards Earth Syst. Sci. 2004, 4, 295–308. [Google Scholar] [CrossRef]
- Apel, H.; Merz, B.; Thieken, A.H. Quantification of uncertainties in flood risk assessments. J. River Basin Manag. 2008, 6, 149–162. [Google Scholar] [CrossRef]
- Pappenberger, F.; Matgen, P.; Beven, K.J.; Henry, J.B.; Pfister, L.; Fraipont, P. Influence of uncertain boundary conditions and model structure on flood inundation predictions. Adv. Water Resour. 2005, 29, 1430–1449. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Schumann, G.; Bates, P.; Freer, J.; Beven, K. Flood-plain mapping: A critical discussion of deterministic and probabilistic approaches. Hydrol. Sci. J. 2010, 55, 364–376. [Google Scholar] [CrossRef]
- Giles, M. Multi-level Monte Carlo Methods. Acta Numer. 2015, 24, 259–328. [Google Scholar] [CrossRef]
- Elsakout, D.M.A.; Christie, M.A.; Lord, G.J. Multilevel Markov Chain Monte Carlo (MLMCMC) For Uncertainty Quantification. In Proceedings of the SPE North Africa Technical Conference and Exhibition, Cairo, Egypt, 14–16 September 2015; Society of Petroleum Engineers: Richardson, TX, USA, 2015. [Google Scholar] [CrossRef]
- Andrianakis, Y.; Challenor, P. Parameter Estimation and Prediction Using Gaussian Processes; MUCM Technical report 09/05; Computer Science, Mathematics, Southampton, 2009; Available online: https://api.semanticscholar.org/CorpusID:14543258 (accessed on 22 April 2024).
- Chilès, J.P.; Desassis, N. Fifty Years of Kriging. In Handbook of Mathematical Geosciences; Daya Sagar, B., Cheng, Q., Agterberg, F., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Razavi, S.; Tolson, B.A.; Burn, D.H. Review of surrogate modelling in water resources. Water Resour. Res. 2012, 48, W07401. [Google Scholar] [CrossRef]
- Kleijnen, J.P.C. Regression and Kriging metamodels with their experimental designs in simulation: A review. Eur. J. Oper. Res. 2017, 256, 1–16. [Google Scholar] [CrossRef]
- Szatmári, G.; Pásztor, L. Comparison of various uncertainty modelling approaches based on geostatistics and machine learning algorithms. Geoderma 2019, 337, 1329–1340. [Google Scholar] [CrossRef]
- Bart-Beielstein, T. SPOT, v2.1.8. Available online: https://cran.r-project.org/web/packages/SPOT/ (accessed on 15 May 2023).
- Forrester, A.I.J.; Sobester, A.; Keane, A.J. Engineering Design via Surrogate Modelling—A Practical Guide; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Ng, L.W.-T. Multifidelity Approaches for Design under Uncertainty. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2013. [Google Scholar]
- Caflisch, R. Monte Carlo and quasi-Monte Carlo methods. Acta Numer. 1998, 7, 1–49. [Google Scholar] [CrossRef]
- Bates, P.D.; De Roo, A.P.J. A simple raster-based model for flood inundation simulation. J. Hydrol. 2000, 236, 54–77. [Google Scholar] [CrossRef]
- Bates, P.D.; Horritt, M.S.; Fewtrell, T.J. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J. Hydrol. 2010, 387, 33–45. [Google Scholar] [CrossRef]
- SEPA. Provision of Numerical Model. Personal Communication; SEPA: Stirling, Scotland, 2015. [Google Scholar]
- Neelz, S.; Pender, G. Grid resolution dependency in inundation modelling. In Flood Risk Management: Research and Practice; CRC Press: Boca Raton, FL, USA, 2008; pp. 109–117. [Google Scholar] [CrossRef]
- Ali, M.A.; Solomatine, D.; Di Baldassarre, G. Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods. Hydrol. Earth Syst. Sci. 2015, 19, 631–643. [Google Scholar] [CrossRef]
- Gov.uk. 2022 Flood Risk and Coastal Change Policy. Flood Risk and Coastal Change—GOV.UK. Available online: www.gov.uk (accessed on 6 April 2024).
- CEH: Centre for Ecology & Hydrology. Flood Estimation Handbook; Centre for Ecology & Hydrology: Wallingford, UK, 1999; Volumes 1–5. [Google Scholar]
- Esteves, L.S. Consequences to flood management of using different probability distributions to estimate extreme rainfall. J. Environ. Manag. 2013, 115, 98–105. [Google Scholar] [CrossRef]
- Salinas, J.L.; Castellarin, A.; Viglione, A.; Kohnová, S.; Kjeldsen, T.R. Regional parent flood frequency distributions in Europe–Part 1: Is the GEV model suitable as a pan-European parent? Hydrol. Earth Syst. Sci. 2014, 18, 4381–4389. [Google Scholar] [CrossRef]
- Hosking, J.R.M. Fortran Routines for Use with the Method of L-Moments. (Version 3.04). 1996. Available online: http://lib.stat.cmu.edu/general/lmoments (accessed on 16 April 2024).
- Ilinca, C.; Anghel, C.G. Flood-Frequency Analysis for Dams in Romania. Water 2022, 14, 2884. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Q.; Gielen, G.G. A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems. IEEE Trans. Evol. Comput. 2014, 18, 180–192. [Google Scholar] [CrossRef]
- Kamal, A.S.M.M.; Hossain, F.; Ahmed, B.; Rahman, M.Z.; Sammonds, P. Assessing the effectiveness of landslide slope stability by analysing structural mitigation measures and community risk perception. Nat. Hazards 2023, 117, 2393–2418. [Google Scholar] [CrossRef]
- Rafiei Sardooi, E.; Azareh, A.; Mesbahzadeh, T.; Sardoo, F.S.; Parteli, E.J.R.; Pradhan, B. A hybrid model using data mining and multi-criteria decision-making methods for landslide risk mapping at Golestan Province, Iran. Environ. Earth Sci. 2021, 80, 487. [Google Scholar] [CrossRef]
- Aitken, G.; Beevers, L.; Christie, M. Multi-Level Monte Carlo Models for Flood Inundation Uncertainty Quantification–Dataset; Zenodo: Genève, Switzerland, 2022. [Google Scholar] [CrossRef]
Model | Domain Size (km2) | Computational Cost (mins) | Upstream Boundary (NRFA ID) | |||
---|---|---|---|---|---|---|
20 m | 10 m | 5 m | 2.5 m | |||
Dyce | 7.98 | 0.5 | 3 | 30 | 372 | Parkhill (11001) |
Inverurie | 22.47 | 2.5 | 9 | 58 | 530 | Haughton (11002) |
Glasgow | 81.58 | 16 | 40 | 72 | 690 | Blairston (84005) |
METHOD | REQUIRED SAMPLE SIZE | COST (CORE H) | STATS | SPEED UP OVER FMC | SPEED UP OVER MLMC | |||
---|---|---|---|---|---|---|---|---|
5 m | 10 m | 20 m | MAAPE | K-S D | ||||
FMC | 10,000 | - | - | 5000 | 1 | - | ||
MLMC | 72 | 95 | 130 | 41.8 | 1.99 | 0.054 | 119.1 | 1 |
KRIGING | 59 | - | - | 29.5 | 0.21 | 0.029 | 169.5 | 1.42 |
MFMC | 55 | 74 | 92 | 31.9 | 0.19 | 0.027 | 156.4 | 1.31 |
METHOD | REQUIRED SAMPLE SIZE | COST (CORE H) | STATS | SPEED UP OVER FMC | SPEED UP OVER MLMC | |||
---|---|---|---|---|---|---|---|---|
5 m | 10 m | 20 m | MAAPE | K-S | ||||
FMC | 10,000 | - | - | 9666.7 | - | - | 1 | - |
MLMC | 40 | 55 | 120 | 51.9 | 0.35 | 0.066 | 186.2 | 1 |
KRIGING | 14 | - | - | 13.5 | 7.5 × 10−4 | 7 × 10−4 | 714.3 | 3.8 |
MFMC | 20 | 42 | 75 | 28.8 | 0.0024 | 0.010 | 336.1 | 1.8 |
METHOD | REQUIRED SAMPLE SIZE | COST (CORE H) | STATS | SPEED UP OVER FMC | SPEED UP OVER MLMC | |||
---|---|---|---|---|---|---|---|---|
5 m | 10 m | 20 m | MAAPE | K-S | ||||
FMC | 10,000 | - | - | 12,000 | - | - | 1 | - |
MLMC | 35 | 62 | 80 | 104.7 | 0.58 | 0.09 | 114.6 | 1 |
KRIGING | 10 | - | - | 12 | 0.04 | 0.02 | 1000 | 8.7 |
MFMC | 8 | 10 | 12 | 19.4 | 0.05 | 0.03 | 616.4 | 5.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aitken, G.; Beevers, L.; Christie, M.A. Advanced Uncertainty Quantification for Flood Inundation Modelling. Water 2024, 16, 1309. https://doi.org/10.3390/w16091309
Aitken G, Beevers L, Christie MA. Advanced Uncertainty Quantification for Flood Inundation Modelling. Water. 2024; 16(9):1309. https://doi.org/10.3390/w16091309
Chicago/Turabian StyleAitken, Gordon, Lindsay Beevers, and Mike A. Christie. 2024. "Advanced Uncertainty Quantification for Flood Inundation Modelling" Water 16, no. 9: 1309. https://doi.org/10.3390/w16091309
APA StyleAitken, G., Beevers, L., & Christie, M. A. (2024). Advanced Uncertainty Quantification for Flood Inundation Modelling. Water, 16(9), 1309. https://doi.org/10.3390/w16091309