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University of Athens, 15772 Zographou, Greece; dk@itia.ntua.gr

Abstract: The Nash–Sutcliffe efficiency remains the best metric for measuring the appro-
priateness of a model and reflects a culture developed in hydrology to test models against
reality before using them. This metric is not without problems, and alternative metrics
have been proposed subsequently. Here, the concept of knowable moments is exploited to
provide robust metrics that assess not only the second-order properties of the process of
interest but also high-order moments which provide information for the entire distribution
function of the process of interest. This information may be useful in hydrological tasks, as
most hydrological processes are non-Gaussian. The proposed concepts are illustrated, also
in relationship to existing ones, using a large-scale comparison of climatic model outputs
for precipitation with reality for the last 84 years on hemispheric and continental scales.

Keywords: model efficiency; Nash–Sutcliffe efficiency; reality check; bias; explained
variance; unexplained variation; order statistics; knowable moments

All models are wrong but some are useful (George E. P. Box) [1]

1. Introduction
The aphorism in the epigram is very popular and expresses the fact that models are

only approximations of reality. The first part of the aphorism, “all models are wrong”, is
wrong per se in a rigorous epistemological context. The meaning it purports to express
could perhaps be better formulated as “models differ from reality”. They differ not only
in quantitative terms, e.g., when a real value is six units and a model predicts five units.
Even if a model gives a value identical to the real one (e.g., six units), again it differs from
reality conceptually as the model is a representation (usually mathematical, simplifying
and approximate) of reality, not the physical reality per se [2]. The model differs from
the system it represents even in the case that the latter is a hardware and/or software
implementation of an algorithm [3]. In an era where confusion has prevailed over rigor, it
is essential to clarify the conceptual difference between models and reality, which makes a
model not “wrong” or “right” but different conceptually from reality.

The second part of the aphorism, “some [models] are useful”, is not problematic and is
the subject of this paper. The usefulness of a model needs modeling per se. In other words,
the usefulness needs to be quantified by metrics that describe how good the quantified
approximation of reality is. This quantification is typically based on simulation results by
the model and comparison with observations. The comparison typically uses statistical
or stochastic concepts such as variances and correlation coefficients. This implies that
we have to take an additional modeling step, i.e., to assume that both model simulation
outputs, s, and actual observations, x, are further represented as stochastic variables (or
even stochastic processes), s, x (notice the notational convention to underline stochastic
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variables). This step may not be necessary if the model is deterministic, yet taking it allows
us to use the advanced language and tools of stochastics, which facilitates modeling.

Standard statistical metrics of this type are the correlation coefficient, rsx, between s
and x, and its square, r2

sx, known as the coefficient of determination. These, however, do
not provide a holistic picture of the similarity between s and x as they do not reflect the
similarity (or otherwise) of the marginal distribution. For example, s and x may have a
large rsx, suggesting good model performance, and simultaneously a large difference in
their means, suggesting poor performance because of bias.

The most common metric of a holistic type has been the Nash–Sutcliffe efficiency
(NSE). It was proposed by two famous hydrologists, Nash and Sutcliffe (1970) [4], in
a study that for a long time has been the most cited hydrological paper [5] (currently
about 28,000 citations in Google Scholar and more than 18,000 in Scopus). Its use has
been common beyond hydrology, such as in geophysics, earth sciences, atmospheric
sciences, environmental sciences, statistics, engineering, data science, and computational
intelligence, e.g., [6–17]. As noted by O’Connell et al. [18], the discipline of hydrology
has commonly been an “importer” of ideas, techniques, and theories developed in other
scientific disciplines. A rare exception is Hurst’s work [19], which was “exported” to many
areas of science and technology. The model performance metric proposed by Nash and
Sutcliffe (NSE) is another rare exception of “exportation”.

A different metric that has recently attracted wide attention in hydrology and beyond
is the Kling–Gupta efficiency (KGE) proposed by the hydrologists Kling and Gupta [20,21].
Both metrics, NSE and KGE, are expressed in terms of the first- and second-order classical
moments of the variables s, x or their difference, i.e., the error e. Both are dimensionless
and have an upper bound, the number 1, which corresponds to the perfect agreement of
simulated with observed values. However, they have differences. NSE has a conceptual and
rigorous definition based on the expectation of the squared error. KGE is a rather arbitrary
expression, heuristically combining three indices of agreement. These also appear in NSE if
it is decomposed using stochastic algebra. It is useful that the KGE metric distinguishes the
three separate indicators of agreement, but it is doubtful if their combination in one metric
is useful.

Both NSE and KGE provide useful information for processes that are Gaussian or close
to Gaussian but, as will be shown in the analyses that follow, fail to perform in processes
with behavior far different from Gaussian. On the other hand, most real-world processes
differ from Gaussian. In non-Gaussian processes, a single criterion of a model’s efficiency
may not suffice, and multiple criteria are needed, of which a selection could be made
depending on the users’ needs. For example, in hydrology, forecasting low flows or floods
requires good agreement between modeled and observed discharges across wide ranges.
Therefore, we need some metrics that can (a) provide useful information for non-Gaussian
processes, and especially for the behavior at the distribution tails, and (b) can offer multiple
options that serve different user requirements. Non-Gaussianity, focus on distribution tails,
and a multiplicity of options require information that can hardly be extracted from second-
order statistical properties. On the other hand, high-order moments are unknowable if the
information is extracted from the data [22–26]. Yet, the new concept of knowable moments
or K-moments [23–26] can, on the one hand, replace the classical second-order moments
and, on the other hand, extend the definition of metrics for high orders.

This is attempted in this study, after re-examining the NSE and KGE metrics, which
are based on classical moments, and locating their strengths and weaknesses (Section 2).
An alternative framework based on K-moments is proposed, and some synthetic examples
are used to illustrate the properties of both the existing and the proposed frameworks
(Section 3). In addition, an application to real-world processes, namely the precipitation
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process, is presented, where the real system is assumed to be described by reanalysis
data for precipitation, while the models are assumed to be some popular climate models
(Section 4).

2. Revisiting the Existing Framework
2.1. Nash–Sutcliffe Efficiency

The error between the simulated and actual processes is defined as

e := s − x (1)

Based on this, the Nash–Sutcliffe efficiency is defined as

NSE := 1 −
E
[
e2]

var[x]
(2)

The error can be decomposed as

E
[
e2
]
= var[e] + E[e]2 = σ2

e + µ2
e (3)

with σ2
e := var[e], µe := E[e]. Hence, the NSE can be decomposed as

NSE = EV − RB2 (4)

where EV and RB are the explained variance and the relative bias, respectively:

EV = 1 −
σ2

e

σ2
x

, RB :=
µe

σx
=

µs − µx

σx
(5)

Alternatively, in the decomposition, we can substitute the statistics of s for those of e
and find

E
[
e2
]
= σ2

s + σ2
x − 2rsxσsσx + µ2

e (6)

Hence,

EV = 2rsx
σs

σx
−

σ2
s

σ2
x

, NSE = 2rsx
σs

σx
−

σ2
s

σ2
x
−
(

µs − µx

σx

)2
(7)

It follows directly that, when µs = µx, the metrics EV = NSE are maximized for

σs =

{
rsxσx, rsx ≥ 0

0, rsx ≤ 0
(8)

and their maximum value is

EVmax = NSEmax =

{
r2

sx, rsx ≥ 0
0, rsx ≤ 0

(9)

Notably, the maximum value is not achieved when σs = σx. Rather, the value that corre-
sponds to the latter case is

EV = NSE = 2rsx − 1 ≤ r2
sx (10)
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2.2. Kling–Gupta Efficiency and Its Relationship with the Nash–Sutcliffe Efficiency

The Kling–Gupta efficiency is defined as

KGE = 1 −

√
(1 − rsx)

2 +

(
1 − σs

σx

)2
+

(
1 − µs

µx

)2
(11)

The definition is heuristic, and thus KGE does not represent a formal statistic. The last term
is pathological as it is often the case that µx = 0 (e.g., when departures from the mean,
usually called “anomalies”, are modeled), in which KGE becomes −∞. If we exclude the
pathological last term, KGE becomes equivalent, but not equal, to EV in the sense that both
express second-order properties.

For fixed rsx, the maximum value of KGE is achieved for µs = µx, σs = σx and is

KGEmax = rsx (12)

For µs = µx, σs ̸= σx, after algebraic operations, we find that KGE and EV are related by

KGE = 1 −

√√√√(1 −
EV + σ2

s /σ2
x

2σs/σx

)2

+

(
1 − σs

σx

)2
(13)

In the limiting case that rsx = 1 (and µs = µx), we find

KGE =
σs

σx
, EV = 2

σs

σx
−

σ2
s

σ2
x
= 2KGE − KGE2 ⇔ KGE = 1 −

√
1 − EV (14)

Equations (13) and (14) are illustrated in Figure 1, where it can be seen that (a) when
the explained variance EV = NSE is high, say > 0.5, the value of KGE is smaller than EV; (b)
when EV = NSE is 0, the value of KGE can be as high as 0.5 (for σs/σx = 1); (c) when the
EV is negative, the KGE value is less negative; (d) in general, KGE tends to decrease, in
absolute value, the effectiveness metric that is provided by the EV = NSE; (e) this is further
verified from the curve corresponding to σs/σx, which has a slope of 1/2 instead of 1. In
brief, KGE is a less sensitive metric than NSE.
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Figure 1. Relationship of KGE and NSE for µs = µx and the indicated values of σs/σx. LC stands for
the limiting curve corresponding to rsx = 1, for which KGE = 1 −

√
1 − EV. Nb., for rsx = −1 KGE

is −1 (precisely when EV = −3 or somewhat smaller for different EV values).
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All in all, the heuristic character, the smaller sensitivity, and the problematic division
by the mean, which can be zero, do not favor the use of KGE, and thus it will not be used
in this paper. A substitute with some mathematical meaning, namely the absolute error
efficiency (AEE) (rather than the squared error in NSE), is the following, computed in
Appendix A:

AEE ≈ 1 −

√(
1 − σs

σx

)2
+ 2

σs

σx
(1 − rsx) +

π

2

(
µs − µx

σx

)2
(15)

Notice that the quantity (1 − rsx) is not squared, as it is in KGE; actually, squaring is not
necessary from a mathematical point of view as it is always non-negative. Assuming
that µs = µx, σs = σx, the resulting AEE is 1 −

√
2(1 − rsx), which takes a zero value for

rsx = 0.5. Like in the NSE case, when µs = µx, AEE is maximized with respect to σs not
when σs = σx but when σs satisfies Equation (8).

3. Proposed Framework
3.1. A Summary of K-Moments

The methodologies discussed in Section 2 are based on first- and second-order distri-
butional properties, while the framework of classical moments cannot serve the estimation
of higher-order moments [22,23,26]. However, the concept of knowable moments or K-
moments [23–26] can work for high-order moments.

The K-moments are defined as follows. We consider a sample of a stochastic variable
x, i.e., a number p of independent copies of the stochastic variable x, i.e., x1, x2, . . . , xp. If
we arrange the variables in ascending order, the ith smallest, denoted as x(i:p), i = 1, . . . , p
is termed the ith order statistic. The largest (pth) order statistic is

x(p) := x(p:p) = max
(

x1, x2, . . . , xp

)
(16)

and the smallest (first) is
x(1:p) = min

(
x1, x2, . . . , xp

)
(17)

Now, we define the upper knowable moment (K-moment) of order p as the expectation of
the largest of the p variables x(p):

K′
p := E

[
x(p)

]
= E

[
max

(
x1, x2, . . . , xp

)]
(18)

where E[ ] denotes expectation, and the lower knowable moment (K-moment) of order p as the
expectation of the smallest of the p variables x(1:p):

K′
p := E

[
x(1:p)

]
= E

[
min

(
x1, x2, . . . , xp

)]
(19)

An important property, directly resulting from their definition, is that the K-moments
are ordered as follows:

K′
p ≤ · · · ≤ K′

2 ≤ K′
1 = K′

1 = µ ≤ K′
2 ≤ · · · ≤ K′

p (20)

These moments are noncentral, and we can also define central moments as

Kp := K′
p − K′

1, Kp := K′
1 − K′

p, Kp, Kp ≥ 0 (21)
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As shown in [26] (chapter 6), for a stochastic variable x of continuous type, the upper
K-moment of order p of x is theoretically calculated as follows:

K′
p = pE

[
(F(x))p−1x

]
= p

∞∫
−∞

(F(x))p−1x f (x)dx = p
1∫

0

x(F)Fp−1dF (22)

Likewise, the lower K-moment of order p is theoretically calculated as follows:

K′
p = pE

[(
F(x)

)p−1x
]
= p

∞∫
−∞

(
F(x)

)p−1x f (x)dx = p
1∫

0

x
(

F
)

Fp−1dF (23)

In these equations, F(x) is the distribution function of x, F(x) := 1 − F(x) is its
tail function, and f (x) := dF(x)/dx is its probability density function. Equations (22)
and (23) allow for the extension of the evaluation of K-moments for non-integer order p
for a stochastic variable x of continuous type. For discrete-type variables as well as for
generalizations of K-moments, the interested reader is referred to [25,26].

The unbiased estimator of the upper K-moment K′
p from a sample of size n is

K̂′
p =

n

∑
i=1

binp x(i:n) (24)

and that of the lower K-moment is

K̂
′
p =

n

∑
i=1

binp x(n−i+1:n) =
n

∑
i=1

bn−i+1,n,p x(i:n) (25)

where

binp =

0, i < p

p Γ(n−p+1)
Γ(n+1)

Γ(i)
Γ(i−p+1) , i ≥ p ≥ 0

(26)

and Γ( ) is the gamma function. For integer moment order p and i ≥ p ≥ 0, this simplifies to

binp =

(
i − 1
p − 1

)
/

(
n
p

)
(27)

Based on the K-moments, we define the location (or central tendency) parameter of order
p, Cp, the dispersion parameter of order p, Dp, and the (dimensionless) central-tendency-to-
dispersion ratio of order p, Rp, as follows:

Cp :=
K′

p + K′
p

2
, Dp :=

K′
p − K′

p

2
, Rp :=

Cp

Dp
=

K′
p + K′

p

K′
p − K′

p
(28)

where Dp ≥ 0. The least-order meaningful values thereof are

C1 = K′
1 = K′

1 = µ, D2 =
K′

2 − K′
2

2
= K2 = K2, R2 =

K′
1

K2
=

K′
1

K2
(29)

Note that as D1 = 0, R1 = ∞. Also, as K′
2 = 2K′

1 − K′
2 [26], we have C2 =

(1/2)
(

K′
2 + K′

2

)
= K′

1 = C1, i.e., the first- and second-order central tendency parameters
are equal to each other and equal to the mean. Hence, the central-tendency-to-dispersion
ratio of order 2, R2, is the mean, standardized by the dispersion parameter of order 2, and
is therefore similar to the quantity µ/σ used in classical statistics.
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3.2. K-Moments Based Metrics of Efficiency

A perfect model will have all central tendency and dispersion parameters of the error
e equal to zero: Cp[e] = Dp[e] = 0 for any p. A good model will have nonzero but not large
values. Based on the dispersion parameters, Dp, we can define quantities analogous to the
explained variance. We define the K-unexplained variation of order p and its difference from
1; the K-explained variation of order p is as follows:

KUVp =
Dp[e]
Dp[x]

=
K′

p[e]− K′
p[e]

K′
p[x]− K′

p[x]
, KEVp = 1 − KUVp = 1 −

Dp[e]
Dp[x]

(30)

Their least-order meaningful values are

KUV2 =
D2[e]
D2[x]

=
K′

2[e]− K′
2[e]

K′
2[x]− K′

2[x]
=

K2[e]
K2[x]

, KEV2 = 1 − KUV2 = 1 − K2[e]
K2[x]

(31)

The minimum and maximum possible values are, respectively, KUVp = 0 and KEVp = 1
and correspond to Dp[e] = 0. For a model that equates any s with a mean of x, Kp[e] = Kp[x]
for any p ≥ 2 and KUVp = 1, KEVp = 0. Models worse than that have KUVp higher than
1 and negative values of KEVp.

For a normal distribution, K2[e]/K2[x] = σe/σx and hence the K-moments-based
metrics are related to the classical explained variance by

KUV2 =
√

1 − EV, KEV2 = 1 −
√

1 − EV (32)

Remembering that for rsx = 1, KGE = 1 −
√

1 − EV (see Figure 1), we notice the identity
of KEV2 and KGE (as functions of EV) for this case and further observe that Equation (32)
holds for any rsx for normal distribution, while that for KGE only holds for rsx = 1.

The bias is a separate characteristic, and it would be better dealt with based on a
different statistic. The ratio Rp is an appropriate metric for it. Alternatively, and in an
analogous manner to KUVp, we can define the K-bias of order p as

KBp =
K′

p[e] + K′
p[e]

K′
p[x]− K′

p[x]
(33)

with a special case for p = 2

KB2 =
K′

2[e] + K′
2[e]

K′
2[x]− K′

2[x]
=

K′
1[e]

K2[x]
(34)

It appears more natural for the two quantities describing dispersion and bias to be
thought of as small as possible in order for a model to be regarded as good. To fulfil this
desideratum, the metrics of choice would be the KUVp and KBp. However, as the aim of
this paper is to provide metrics with behaviour similar to the existing ones, in what follows
we use KEVp rather than the more intuitive KUVp. When the unexplained variation and
bias are to be combined, a relevant expression, called the K-moment-based absolute error
efficiency and derived in Appendix A, is as follows:

KAEE ≈ 1 −

√(
K2[e]
K2[x]

)2
+

1
2

(
K′

1[e]
K2[x]

)2

= 1 −
√

KUV2
2 +

1
2

KB2
2 (35)
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3.3. Possible Transformations of Data

Figure 2 (upper) compares two synthetic time series consisting of 1000 data values, an
original xi, and a simulated si. These synthetic series were constructed as follows. First, a
series vi was generated from the Hurst–Kolmogorov model [26] with a Hurst parameter
of 0.95 and normal distribution N(0,1). Then, the series vi was smoothed by a linear filter
with a triangular shape with a peak value of 1 and values equal to 0 at times 10 and
20 time steps before and after the time of the peak, respectively, thus producing a series yi.
Subsequently, a series zi was generated by adding to yi a series ui again generated from
the Hurst–Kolmogorov model with a Hurst parameter of 0.95 and normal distribution
N(0,

√
2σy), where σy is the standard deviation of yi. Finally, the two latter series were

exponentiated, xi = exp(azi − µz), si = exp(ayi − µy), with a = 0.3, and taken as original
and simulated series after rounding to one decimal point. Both xi and si exhibit long-range
dependence and are log-normally distributed. The former is rough, due to the component
ui, while the latter is smooth.

From the visual depiction of Figure 2 (upper), it turns out that the model performance
is very poor. This is also reflected in all performance metrics (see Table 2, first row, below).
However, the poor performance is mostly due to the log-normal distribution of xi, which
yields frequent high peaks. The simulated series si does not capture these peaks. If we take
the logarithmic transformations of both xi and si, then, as seen in Figure 2 (middle), there is
some resemblance of the original to simulated series, which is also reflected in the metrics
for the log-transformed series (see Table 2 below).

Is a model that has this behavior, i.e., very poor performance in original values but
very improved performance in transformed values, useless? An affirmative reply to this
question is justified as the end-user is ultimately concerned with the original values and
the model agreement with them. The reply supported here is different: a model that in a
transformed space performs well is not useless. Undoubtedly, the metrics for the original
series are important, but the metrics for a transformed space also have some value, given
the general setting of this study, according to which multiple criteria and metrics are useful
to consider.

The logarithmic transformation on which Figure 2 (middle) is based may not be
appropriate for all cases and also has a problem, namely the fact that it diverges to minus
infinity when the original value is zero. In our example, due to the rounding of the original
and simulated values to one decimal point, 24% of the points have at least one of the two
coordinates equal to zero; these were removed in the depictions (Figure 2, middle) and in
the calculations (see Table 2 below).

A proper transformation that remedies these problems, by being general and free of
ad hoc considerations, is the following [26] (Section 2.10), which we denote as the lambda
(λ) transformation:

x∗i := λ ln(1 + xi/λ) (36)

and likewise for si. For low values of xi ≪ λ, including xi = 0, this maps xi to itself, while
for large xi, it maps it to a linear function of ln xi. Parameter λ is assumed to be the same for
both xi and si. We can estimate it numerically by maximizing one of the model efficiency
metrics.

To illustrate the features of this transformation, we use the following example, noting
that the original values in Figure 2 (middle) span four orders of magnitude from 0.1 to 1000,
something that would not happen if the distribution were normal but happens quite often
if the distribution is log-normal, as in our example (and even more so if the distribution is
heavy tailed, e.g., Pareto). The illustration is provided in Table 1 for five cases (#1–#5) of
different couples of (x, s). One would assert that the first two cases #1 and #2 (x = 0, s = 0.1
and x = 0.1, s = 0.2) reflect good model performance with an error of 0.1 only, if measured



Water 2025, 17, 264 9 of 22

by the Euclidean distance or by the λ distance. However, if the logarithmic distance is
used, these errors are very high, even ∞ in the former case. Now, if the actual value is
x = 100, and we wish to tell which of the cases #3–#5 (s = 100.1, 110, 200) is as good
as #2 (x = 0.1, s = 0.2), the answer depends on the distance metric used. According to
the Euclidean distance, the answer would be s = 100.1, while according to the logarithmic
distance, it would be as high as s = 200. The λ distance with λ = 1 gives an intermediate
reply, s = 110. From a practical point of view, the latter looks reasonable: a distance of
10, corresponding to a 10% error, when x = 100 is equally good as a distance of 0.1 when
x = 0.1; it would be too strict to demand a distance of 0.1 when x = 100.

Table 1. Illustration of the different distances (metrics for error).

# x, s Euclidean Distance Logarithmic Distance λ Distance for λ = 1

1 x = 0, s = 0.1 0.1 − 0 = 0.1 ln 0.1 − ln 0 = ∞ ln 1.1 − ln 1 = 0.10
2 x = 0.1, s = 0.2 0.2 − 0.1 = 0.1 ln 0.2 − ln 0.1 = 0.69 ln 1.2 − ln 1.1 = 0.09
3 x = 100, s = 100.1 100.1 − 100 = 0.1 ln 100.1 − ln 100 = 0.001 ln 101.1 − ln 101 = 0.001
4 x = 100, s = 110 110 − 100 = 10 ln 110 − ln 100 = 0.10 ln 111 − ln 101 = 0.09
5 x = 100, s = 200 200 − 100 = 100 ln 200 − ln 100 = 0.69 ln 201 − ln 101 = 0.69

It is noted that in hydrology, the Box–Cox transformation (x∗∗i :=
(

xa
i − 1

)
/a for

a > 0, reducing to the logarithmic transformation, x∗∗i = ln xi, when a = 0) has been more
common than the above λ transformation. However, this is not appropriate for the task
being discussed as it does not behave differently for different ranges of the variable. By
choosing a = 1 and a = 0, we precisely recover the Euclidean and logarithmic distances,
respectively, but either of these behaviors apply to the entire range of the variable.

Adopting the λ transformation, we may give it some more degrees of freedom for
the simulated series. Specifically, unless the model is physically based and its simulation
results have some physical meaning, we may use the additional parameters α and β to
adapt the transformation as follows:

s∗∗i := α + βλ ln(1 + si/λ) (37)

with default values α = 0, β = 1. Again, these are obtained by optimization together with
the optimization of λ, noting that λ applies to both xi and si, but α and β apply to si only.
Table 2 gives the optimized values of λ for our example and for the default values of α and
β, as well as the optimized values of all three parameters, and the resulting optimal metrics
of model efficiency. Figure 2 (lower) shows the transformed time series x∗i and s∗∗i , where a
good agreement between the two is seen, in contrast to the upper panel of the same figure.

Table 2. Model efficiency metrics and fitted parameters of transformations for the example depicted
on Figure 2.

Site λ α β r EV RB NSE KGE KEV2 KB2 AEE

Untransformed 0.364 0.049 −0.167 0.022 −0.371 0.040 −0.921 −0.160
Log-transformed 0.571 0.299 −0.179 0.277 0.398 0.165 −0.315 0.136
λ-transformed 0.044 0 1 0.708 0.486 −0.131 0.477 0.656 0.292 −0.233 0.273
λ-transformed 0.024 −0.005 1.057 0.714 0.504 −0.019 0.504 0.649 0.302 −0.033 0.301
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Figure 2. An example illustrating a case in which the poor performance of a model improves
substantially after transformation of the variables: (upper) original series on a decimal plot; (middle)
original series on a logarithmic plot; and (lower) λ-transformed series with parameters shown in
Table 2 (last row).

The metrics optimized for the two λ-transformed series of Table 2 are the KEV2 when
the default values α = 0, β = 1 are used and the KAEE otherwise. These are not the only
options as high-order metrics could also have been chosen to be optimized. The higher-
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order metrics when the KEV2 is optimized are shown in Figure 3 (left), also in comparison
to those of the untransformed and the logarithmically transformed series. As seen in the
figure, the performance deteriorates with the increase in the moment order.
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Figure 3. Performance metrics for the original, the logarithmically transformed, and the final λ-

transformed series (as seen in Figure 2), namely K-explained variation, KEV(κ)
p , as a function of (left)

order p for time scale κ = 1; (right) time scale κ for order p = 2.

Figure 3 does not give any information about the model bias. This is provided in
Figure 4 in terms of both the ratio Rp and the K-bias KBp. As seen in the graphs, both
indices practically provide the same information, and there is no substantial variation in the
bias metrics with order p. However, the λ transformation reduces the bias of the original
series substantially.
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Figure 4. Model bias metrics for the original, the logarithmically transformed, and the final λ-
transformed series (Figure 2), as a function of order p for time scale κ = 1: (left) ratio Rp; (right)
K-bias KBp.

With the above methodology, we may find increased performance measures in cases
that the range of the variable spans several orders of magnitude. The increase cannot
be arbitrary but has an upper bound, determined by optimization. If the distribution is
normal, or close to it, no increase at all is expected.

It should be noted that there are cases on the contrary, where the standard metrics are
artificially inflated and need to be reduced. Specifically, when processes have a periodic
component (as most hydrological processes have at a sub-annual scale), then capturing the
periodicity alone results in high performance metrics, even if the model is fully unable to
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simulate the deviations from the periodic signal. Again, we may deal with this issue using
a transformation. In this case, the common transformation is the standardization of the time
series, x̃τ = (xτ − µτ)/στ , where the mean µτ and the standard deviation στ are periodic
functions of time τ. Examples of this technique can be seen in Koutsoyiannis et al. [27]
(their Table 1), where the NSE of some modes is as high as 0.85 for the original series but
become negative after standardization by monthly means and standard deviations.

An additional transformation which may be useful in assessing the usefulness of
models is the change in the time scale. A model may be poor in, say, a fine time scale,
but when aggregated to a coarser scale, its performance may improve (or vice versa).
Therefore, it may be useful to assess the model in multiple time scales. The change from
time scale 1 (xτ) to time scale κ (x(κ)τ ) is easily made by averaging the time series, i.e.,
x(κ)τ :=

(
x(τ−1)κ+1 + . . . + xτκ

)
/κ (and likewise for s(κ)τ ). An example is shown in Figure 3

(right) (for the time series of Figure 2), which shows that the performance improves in
terms of the KEV2 metric, when the time scale increases.

4. Real-World Case Study
To present a large-scale case study of hydrological interest, we use the results of

climate models for precipitation, which have been very popular and widely used in so-
called climate impact studies, but without proper testing to see whether they are useful or
not. The climate models (also known as global circulation models—GCM) that are used
belong to the last-generation Coupled Model Intercomparison Project (CMIP6), and their
outputs for precipitation were retrieved from the Koninklijk Nederlands Meteorologisch
Instituut (KNMI) Climate Explorer [28,29]. The outputs from the 37 models listed in Table 3
were available on a monthly scale and were aggregated to annual and over-annual scales.

Table 3. The CMIP6 climate models (GCMs) whose results are used in this study.

# CMIP6 GCM # CMIP6 GCM # CMIP6 GCM # CMIP6 GCM

1 ACCESS-CM2 11 CIESM 21 GFDL-CM4 31 MPI-ESM1-2-HR
2 ACCESS-ESM1-5 12 CMCC-CM2-SR5 22 GFDL-ESM4 32 MPI-ESM1-2-LR
3 AWI-CM-1-1-MR 13 CNRM-CM6-1 f2 23 GISS-E2-1-G-p3 33 MRI-ESM2-0
4 BCC-CSM2-MR 14 CNRM-CM6-1-HR f2 24 HadGEM3-GC31-LL f3 34 NESM3
5 CAMS-CSM1-0 15 CNRM-ESM2-1-f2 25 INM-CM4-8 35 NorESM2-LM
6 CanESM5 p2 16 EC-Earth3 26 INM-CM5-0 36 NorESM2-MM
7 CanESM5-CanOE p2 17 EC-Earth3-Veg 27 IPSL-CM6A-LR 37 UKESM1-0-LL f2
8 CanESM5-p1 18 FGOALS-f3-L 28 KACE-1-0-G
9 CESM2 19 FGOALS-g3 29 MIROC6
10 CESM2-WACCM 20 FIO-ESM-2-0 30 MIROC-ES2L f2

To make time series that represent reality, the gridded data of the ERA5 reanalysis were
used [30,31]. This is the fifth-generation atmospheric reanalysis of the European Centre
for Medium-Range Weather Forecasts (ECMWF), where the name ERA refers to ECMWF
ReAnalysis. ERA5 has been produced as an operational service, and its fields compare well
with the ECMWF operational analyses. It combines vast amounts of historical observations
into global estimates using advanced modeling and data assimilation systems. The data are
available for the period 1940–now at a spatial resolution of 0.5◦ globally and were retrieved
using the Web-based Reanalyses Intercomparison Tools (WRIT) [32], made available by the
USA National Oceanic and Atmospheric Administration (NOAA).

Several studies have evaluated the reliability of ERA5 precipitation data. Koutsoyian-
nis [33] conducted a global comparison with other datasets, including the Global Precipita-
tion Climatology Project (GPCP) dataset, which integrates gauge and satellite precipitation
data over a global grid. His analysis revealed that ERA5 precipitation data closely align
with GPCP observations on an annual scale across land, sea, and the entire globe. Simi-
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larly, Hassler and Lauer [34] observed good agreement between ERA5 and satellite-based
observations in Central Europe and the South Asian Monsoon region, although ERA5
underestimated very low precipitation rates in tropical regions. Bandhauer et al. [35] found
that while ERA5 shows qualitative agreement with reference datasets, it overestimates
mean precipitation in all regions due to an excessive number of wet days. In contrast,
Longo-Minnolo et al. [36] analyzed ERA5-Land precipitation data at the catchment scale
in Sicily (Italy) and identified an underestimation, highlighting the need for adjustments
to address local microclimatic conditions. The ERA5 precipitation was used as a bench-
mark by Cavalleri et al. [37] to validate other high-resolution regional reanalyses over Italy.
Improvements in the ERA5 precipitation estimates are discussed by Lavers et al. [38].

Comparisons of models and reality, represented by ERA5, were made for the period
1940–2023 (84 years), separately for the North Hemisphere (NH) and the South Hemisphere
(SH). A visual comparison of the time series is presented using spaghetti graphs in Figure 5
on the annual scale (annual precipitation rate averaged over a hemisphere) and Figure 6
on an 8-year scale (8-year average of the annual series). The latter was selected as the
maximum climatic scale that allows 10 data points, so that statistics can be estimated with
some reliability.
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Figure 5. Spaghetti graphs of modeled annual average precipitation (thin lines) by the 37 CMIP6
GCMs in comparison to the ERA5 reanalysis data (thick line) for (left) NH and (right) SH.

A prominent characteristic seen in the spaghetti graphs is the large bias of models,
which is mostly negative for the NH and mostly positive for the SH. Different models
have largely different biases, which in most of them are very large. The large bias in
precipitation certainly reflects the inappropriate modeling of the physical processes related
to the hydrological cycle, starting with latent heat and evaporation.

Nonetheless, Figure 7 shows that on a hemispheric basis, there is a correlation between
models and reality, with an average of 0.31 for the NH and 0.11 for the SH. An interesting
property is that each model’s precipitation at the NH is negatively correlated to that of
the same model for the SH, with an average correlation of −0.61 for zero lag. This model
property, however, does not correspond to reality: if this correlation is estimated from the
ERA5 data, it is practically zero (−0.03). If we take cross-correlations lagged by one year,
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their values are close to zero for the models in both directions of lagging (one is shown in
the rightmost panel of Figure 7) but slightly positive (0.29) for the ERA5 data.
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Figure 6. Spaghetti graphs of modeled 8-year average precipitation (thin lines) by the 37 CMIP6
GCMs in comparison to the ERA5 reanalysis data (thick line) for (left) NH and (right) SH.
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Figure 7. Box plots of the correlation coefficients between annual time series of (left two panels)
GCM models and ERA5 reanalysis for NH and SH, respectively, and (right two panels) the same
GCM models for NH and SH for lags 0 (concurrent values for NH and SH) and 1 (SH lagged 1 year
after NH). Data points are marked with “◦” and their mean value is marked with “✕”.

These correlations are not enough to suggest the usefulness of the models in terms
of the explained variance. As seen in Figure 8, both classical and K-explained variation
are mostly negative on an annual scale. Yet, positive values appear on the 8-year scale.
However, if we also consider the bias, which is shown in Figure 9, the total efficiency
metrics, NSE and KAEE, take highly negative values, which prevent the climate models
from being at all useful for hydrological purposes.
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Figure 8. Box plots of (upper) explained variance, EV, and (lower) K-explained variation, KEV2, for
the indicated cases (NH/SH; annual/8-year scales).

The most relevant question is whether or not some of the models have relatively good
performance in general. To study this question, we first assess which of the models have
the best performance, in a Pareto optimality sense, for both hemispheres. To this aim, we
plot in Figure 10 the cross-performance of the GCMs for both hemispheres in terms of the
K-explained variation, KEV2, on annual and 8-year time scales. On the annual scale, the
models show mostly negative explained variation, that is, poor performance. On the 8-year
scale, the performance is improved. The two models with the least poor performance
appear to be CMCC-CM2-SR5 and FGOALS-f3-L.
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Figure 10. Cross-performance at both hemispheres of the GCMs, in terms of K-explained variation,
KEV2, at time scales (left) annual and (right) 8-year.

The change in the performance with the moment order and time scale for the CMCC-
CM2-SR5 model is shown in Figure 11, where it is seen that for small time scales, the
performance is not good in either hemisphere. Figure 12 shows that the performance at the
annual scale can be slightly improved by applying the transformation of Equation (37), but
this is accompanied by a worsening of the performance at large time scales. Interestingly,
the improvement at the annual scale is due to the linear part of the transformation, namely
on the parameter β = 0.41 ̸= 1, and not due to the logarithmic part.
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p , as a function of (left) order p for time scale κ = 1; (right) time scale κ for

order p = 2.
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Figure 12. Performance metrics of the CMCC-CM2-SR5 model for the NH and for the original and
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The next step is to choose an area smaller than an entire hemisphere and assess the
performance of the two “least poor” models in this area. Given that ERA5 is developed in
Europe and hence expected to be more accurate in this area, we chose a spherical rectangle
that contains Europe, namely that defined by the coordinates 11◦ W, 40◦ E, 34◦ N, and
71◦ N. The time series of the two models in question, integrated over this area, are shown
in Figure 13, in comparison with the ERA5 time series. The visual comparison is not
encouraging in terms of the agreement of the models with reality.
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Figure 13. Evolution of the precipitation in the wider area of Europe, defined by the coordinates 11◦

W 40◦ E, 34◦ N, and 71◦ N at (left) annual and (right) 8-year time scale in comparison to the GCMs
with the least poor performance, namely CMCC-CM2-SR5 and FGOALS-f3-L.

Even without considering the bias, which is substantial, i.e., by only considering the
explained variation, the results are rather disappointing, with KEV(κ)

2 not exceeding 0.1 at
any scale κ (Figure 14).
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5. Discussion and Conclusions
The classical Nash–Sutcliffe efficiency appears to be a good metric of the appropriate-

ness of a model. Yet its fusion of two different characteristics, the explained variance and
the bias, is not always useful. The bias could be a very important characteristic to consider
for a physically based model, where the bias reflects a violation of a physical law (e.g.,
conservation of mass or energy). In such cases, a large bias would be a sufficient reason to
reject a model, even if it captures the variation patterns.

In other cases, in which the model is of a conceptual or statistical, rather than physical,
type, the bias can be easily removed by a shift in the origin. In such cases, a nonlinear
transformation of the observed and modeled series, accompanied by a linear transformation
of the simulated series (Equations (36) and (37)), can potentially improve the agreement
between the model and reality. It is suggested that in such cases, the quantified assessment
of model usefulness be based on the metrics of both the original and the transformed series.

The typical metrics that are currently used to assess model performance are based
on classical statistics up to a second order. This is not a problem when the processes are
Gaussian, but most hydrological processes are non-Gaussian. The concept of knowable
moments (K-moments) offers us a basis for extending the performance metrics to high
orders, up to the sample size. The two metrics proposed, the K-unexplained variation,
KUVp, and the K-bias, KBp, both based on K-moments of the model error, provide ideal
means to assess the agreement of models with reality; the closer to zero they are, the better
the agreement. The lowest order on which they are evaluated is p = 2, which represents
second-order properties, but also using higher orders gives useful information on the
agreement of the entire distribution functions.

The real-world application presented is a large-scale comparison of climatic model
outputs for precipitation with reality over the last 84 years. It turns out that the precipitation
simulated by the climate models does not agree with reality on the annual scale, but there
is some improvement on larger time scales on a hemispheric basis. However, when the
areal scale is decreased from hemispheric to continental, i.e., when Europe is examined, the
model performance is poor even at large time scales. Therefore, the usefulness of climate
model results for hydrological purposes is doubtful.
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Appendix A
To find a holistic metric of efficiency based on K-moments, we assume a normal

distribution of x and s (and hence of e) and we find the expectation of the absolute error,
which, after algebraic calculations, turns out to be

E[|e|] =
√

2
π

σee
− µ2

e
2σ2

e + µeerf

(
µe√
2σe

)
(A1)

When we estimate x from the mean value µx, so that the expected estimation error be
zero and have standard deviation σx, then the absolute error has the following expectation:

E[|x − µx|] =
√

2
π

σx (A2)

Hence, we may formulate an efficiency metric based on the absolute error as

AEE = 1 − E[|e|]
E[|x − µx|]

= 1 −

 σe

σx
e
− µ2

e
2σ2

e +

√
π

2
µe

σx
erf

(
µe√
2σe

) (A3)

As µe → 0 , the expression in the big parentheses tends to σe/σx, and its derivative with
respect to µe tends to 0. As µe → ±∞ , the same expression tends to

√
π/2

∣∣µe/σx
∣∣. The

same behaviour is shared by the following approximation

AEE ≈ 1 −

√(
σe

σx

)2
+

(√
π

2
µe

σx

)2

(A4)

This was devised after noting that the square of the absolute error can be approximated
by its second-order Taylor expression, i.e., (E[|e|])2 = (2/π)

(
σ2

e + µ2
e
)
+ O[µe]

3. Figure A1
shows that the approximation is meaningful. We can also express AEE using the joint
distribution characteristics of s and x instead of those of e and x. In this case, after algebraic
operations, we obtain Equation (15). Furthermore, we can substitute K-moments for
classical moments, noting that µ = K′

1, and for the normal distribution, σ =
√
πK2 [26]

(Table 6.3).
In this case, we obtain

AEE ≈ 1 −

√(
K2[e]
K2[x]

)2
+

1
2

(
K′

1[e]
K2[x]

)2

(A5)

which can be written in the form of Equation (35).
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