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Abstract: Seawater Reverse Osmosis (SWRO) desalination is a critical technology for
addressing global water scarcity, yet its performance can be hindered by complex process
dynamics and operational inefficiencies. This study investigates the revolutionary potential
of Physics-Informed Neural Networks (PINNs) for modeling SWRO desalination processes.
PINNs are subsets of machine learning algorithms that incorporate physical information
to help provide physically meaningful neural network models. The proposed approach is
here demonstrated using operating data collected over several months in a Seawater RO
plant. PINN-based models are presented to estimate the effects of operating conditions on
the permeate TDS and pressure drop. The focus is on the feed water temperature variations
and progressive membrane deterioration caused by fouling. Predictive models generated
using PINNs showed high performances with a determination coefficient of 0.96 for the
permeate TDS model and 0.97 for the pressure drop model. Results show that the use of
PINNs significantly enhances the ability to predict membrane fouling and produced water
quality, thereby supporting informed decision-making for RO process control.

Keywords: physics-informed neural networks; reverse osmosis; SWRO desalination;
performance monitoring

1. Introduction
Global demand for freshwater has undergone a sustained increase as a result of eco-

nomic development and increasing population. The UN World Water Development Report
(2023) estimated that a quarter of the world's population lacks access to clean drinking
water [1]. In response to this situation, many countries around the world are increasingly
investing in advanced technologies and infrastructure to secure a sustainable and reliable
supply of freshwater [2]. In this context, technologies for desalination have become a prac-
tical way to deal with the shortage of clean drinking water [3]. The desalination process,
involving the separation of dissolved solids from seawater or brackish water, has become
the primary source of fresh water for both municipal and industrial sectors in some parts
of the world, particularly North Africa and the Middle East [2].

Reverse Osmosis (RO) is currently the most popular desalination technology due
to a lower specific consumption of energy and its reliability compared with other avail-
able technologies [4]. About 70% of desalination procedures used globally are currently
membrane-based. However, monitoring the performance of a full-scale RO process is
challenging. This task requires accurately representing the membrane permeability, selec-
tivity, and fouling behavior. Accurate modeling of the RO process is crucial for inferring
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the basic features that serve for process diagnostic and prognostic tasks [5]. There are, in
contrast, major obstacles to developing accurate and comprehensive deterministic models
describing RO process behavior. Major obstacles include (1) variability in feed composition
and temperature, (2) difficulties in capturing time-dependent factors like fouling, aging,
and chemical cleaning, and (3) difficulties in incorporating accurate representations of
fouling and scaling mechanisms since they are not fully understood [3,6].

As mentioned earlier, the effectiveness of RO desalination plants depends on various
factors, including the chosen technology, operating parameters, and the characteristics
of the feed water. Experimental studies are expensive and time-consuming. Therefore,
developing models to predict and evaluate desalination system performance is highly
valuable. Data-driven approaches, renowned for their ability to model intricate systems,
offer promising solutions for forecasting the performance of desalination units. Recently,
there has been a growing interest in using machine learning (ML) tools to handle intricate
modeling tasks related to RO processes [7]. This was motivated by data availability and
recent advances in computing capabilities. Recent research works showed that ML can be
utilized to optimize the performance of RO plants by real-time monitoring performance,
predicting maintenance requirements, optimizing energy consumption, and providing early
warning about deviations from normal functioning [7–11]. Consequently, ML can help en-
sure the overall efficiency and sustainability of RO plants [12]. In this context, Mohammed
et al. [13] evaluated ensemble and non-ensemble ML models for estimating the performance
of RO membranes. The salt rejection was predicted using 13 input parameters, such as
time-dependent, water characteristics, and operational parameters. Mahadeva et al. [14,15]
proposed a modified Whale Optimization Algorithm (MWOA) hybridized with Artifi-
cial Neural Networks (ANNs) to evaluate the permeate flux in a RO desalination plant.
Essa et al. [16] created a hybrid machine learning model to predict permeate flow and
energy savings of an RO unit using an Artificial Hummingbird Algorithm (AHA)-estimated
Long Short-term Memory (LSTM) neural network. Karimanzira and Rauschenbach [16]
employed Multivariate Temporal Convolutional Neural networks (MTCNs) to predict
membrane fouling utilizing measurable multiple indicators including RO operation data,
membrane characteristics, feed water quality, and Cleaning In Place (CIP). Alhuyi Nazari
et al. [17] presented a comprehensive review of the applications of different data-driven
approaches in the performance modeling of solar-based desalination units.

In most cases, these previous studies used conventional ML algorithms to train predic-
tive models for the RO process based only on collected data at specific RO plants. Though
largely employed in many engineering fields, purely data-driven models may suffer from a
lack of generality [18]. In many cases, ML-based models may be exploitable only within
the narrow domains from which the training data were sourced, which may not adequately
capture the complexity of real-world systems. To accommodate the modeling of complex
systems effectively, a balanced strategy that incorporates both data-driven and physics-
based models is essential [19]. To fill in this scientific gap, a novel ML methodology called
Physics-Informed Neural Networks was proposed by Raissi et al. [20]. Neural networks
known as PINNs use model equations as part of their internal structure. It is assumed that
informing the network of physical principles can amplify the information content of the
data used by the learning algorithm, allowing it to achieve more accurate predictions even
when only a few training examples are available [19,21,22].

Although PINNs have been used for a wide range of applications, their application in
RO desalination process modeling remains underexplored. To address these issues, this
paper explores the use of PINNs for the estimation of the RO procedure, which represents
the main novelty of the proposed study. The proposed methodology integrates data and
mathematical models and implements them through neural networks. More specifically,
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the solution–diffusion model equations describing the RO process behavior are embedded
directly into the neural network’s loss function. This ensures that the neural network
predictions not only fit the input training data but also obey the mathematical equations
governing the RO process. The proposed PINN framework is showcased using operation
data collected at a seawater RO desalination plant. The studied RO plant was instrumented
to monitor the quality, flow, pressure, and temperature of feed water, permeate, and
concentrate. The hybrid approach integrating the solution–diffusion equations is used to
train a predictive model for the studied RO process. The study results reveal that the use of
PINNs offers promising solutions for forecasting the performance of RO desalination units
paving the way for an optimized management of such plants.

The remainder of this paper begins with a description of the RO desalination model
based on the solution–diffusion equations. This section is followed by a general description
of the PINN approach and how it integrates the RO model equations. A case study is
presented in Section 4. The collected data and the trained PINN model are presented.
Section 4 presents and analyzes the case study’s findings, which are followed by some
concluding thoughts in Section 5.

2. RO Desalination Model
The mathematical modeling of the seawater RO desalination process is mainly based

on solution–diffusion transport equations [23]. Amongst all other modeling alternatives,
solution–diffusion equations are widely employed to model the transport of solvent and
solute across an RO membrane. In the subsequent paragraphs, we briefly summarize the
model's basic equations and refer the reader to [24–28] for a more detailed presentation of
the model.

The diffusion of water across a semi-permeable RO membrane can be represented by
the following equation, which is based on the solution–diffusion model.

Jw = Aw(∆P − ∆π) (1)

In Equation (1), Jw is the permeate flux, Aw is the membrane permeability coefficient
at operating temperature, ∆P is the pressure difference between the two sides of the
membrane, and ∆π is the osmotic pressure difference across the surface of the membrane.

The permeate flow rate Qp is obtained by adding up the flow contributions from all
membrane elements taking into consideration the total membrane area Sm (Equation (2))

Qp = SmJW (2)

The solute transport equation is formulated as follows:

Js = Bs
(
Cf − Cp

)
= CpJw (3)

where Js is the solute flux through the membrane and Bs is the solute permeability coefficient
of the membrane. Cf is the solute concentration in the feed stream and Cp is the solute
concentration in the permeate stream.

The water permeability constant Aw (Equation (1)) is one of the main factors influenc-
ing the performance of the RO process. It depends on temperature, and it is also affected
by membrane fouling. At a specified temperature, this coefficient can be determined by
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applying a temperature correction factor to the permeate intrinsic permeability constant,
A25, as specified by Equation (4) [24].

Aw = A25 × e[0.0343(T−25)] for T < 25 ◦C
Aw = A25 × e[0.0307(T−25)] for T > 25 ◦C

(4)

Fouling negatively impacts membrane performance as the deposition and accumu-
lation of foulants on the membrane surface leads to a reduction in the permeate flux and
significantly alters permeability [29]. Ruiz Garca and Nuez [28] investigated the progressive
deterioration of membrane permeability caused by fouling. They proposed a correction
flow factor applied to water permeability constant Aw. The approach proposed in [28]
is adopted in this study. The solute permeability coefficient Bs is also dependent on the
temperature of the feedwater. A correction factor should be utilized to the intrinsic so-
lute permeability coefficient B25 to yield the value corresponding to the desired specified
temperature (Equation (5)).

Bs = B25 × e[1+0.05(T−25)] for T < 25 ◦C
Bs = B25 × e[1+0.08(T−25)] for T > 25 ◦C

(5)

The change in the osmotic pressure ∆π in Equation (1) is calculated as formulated in
Equation (6).

∆π = πm − πp (6)

where πm is the osmotic pressure at the surface of the active layer of the membrane and πp

is the RO permeate osmotic pressure [26].
The net applied hydraulic pressure ∆P in Equation (1) is given by Equation (7).

∆P = Pf −
(

∆Pfb
2

)
(7)

where Pf is the feedwater pressure in the RO system and ∆Pfb is the pressure drop at the
feed side of membrane elements [30].

The percentage of feedwater that is converted into clean, usable water (permeate) is
the recovery rate R expressed in Equation (8). Recovery is a crucial factor that significantly
impacts the efficiency and cost-effectiveness of the desalination process.

R =
Qp

Qf
(8)

In Equation (8), Qf is the RO feedwater flow rate.

3. Physics-Informed Neural Networks
The aim of a neural network is to obtain an estimate of the mapping from the input x

to the output y:
y = N (x ; θ) (9)

In Equation (9), N (§ ; θ) is a neural network with weights θ. Through a training phase,
the network weights are determined by solving an optimization problem that minimizes a
loss function L0. The goal of the loss function is to match the neural network output with
the training input data.

L0(x ; θ) = ⟨y∗ − N (x ; θ)⟩ (10)
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If the physics of the system can be estimated, the loss function can be augmented to
embed a physics-informed term LPhys (Equation (2)).

LPhys(x ; θ) = ⟨y∗ −F (x ; y ; θs)⟩ (11)

In Equation (11), the function F (x ; y ; θs) describes the physics of the system through
a mathematical model, allowing the determination of an estimate of the response based on
the input data. For the present study, the function F is built based on the solution–diffusion
model equations describing the reverse osmosis process (Equations (1)–(8)). Figure 1 shows
the schematic diagram of the PINN approach including a data fitness loss function (L0)
and a physics-informed loss function (LPhys).

Figure 1. Schematic diagram of the PINN. The diagram shows a physics-informed loss function
embedded into a typical data-driven neural network scheme.

4. Case Study
The PINN framework described in Section 3 is showcased in this section using op-

eration data collected at a seawater desalination plant using RO technology. The studied
RO plant was instrumented to monitor the quality, flow, pressure, and temperature of
feed water, permeate, and concentrate. Collected data is here used to train a predictive
ML model using PINN. The following paragraphs present the studied SWRO plant, the
collected data, and the trained PINN model.

4.1. Description of the Studied SWRO Plant

The studied SWRO desalination plant is schematically illustrated in Figure 2. The
feed water is driven by a high-pressure pump through the RO train designed as a two-pass
configuration. The first pass has a unique stage with 285 Presser Vessels (PVs) operated in
parallel. The second pass is organized in two stages. The first stage has 66 PVs while the
second stage has only 27 parallel PVs. In each PV, a series of seven spiral wound elements
is installed. The RO elements are composed of Dow FILMTEC® membranes, Minneapolis,
MN, USA (Model: SW30HR-440). The concentrate from the second pass is mixed with
seawater and again driven to the first pass. In the second pass, the concentrate of the first
PV stage is fed to the second stage with no additional pressure. The permeate from both
PV stages of the second pass is collected and piped for further processing. The concentrate
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is driven to an evaporation pond. The RO plant operates at 42% recovery under a constant
flow rate. The feed water had a Total Dissolved Solids (TDS) level of over 42g/L and was
mainly composed of Sodium (Na), Chlorine (Cl), and Sulfate (SO4). Small quantities of
other components are also present, including Magnesium (Mg), Calcium (Ca), Potassium
(K), and Fluorine (F). The RO target is to produce freshwater with a TDS not exceeding
100 mg/L. To sustain such a performance level, the water quality parameters and RO plant
operation data were continuously monitored. Some of the monitoring data were made
available by the plant owners. This dataset is the starting point of the work presented in
the subsequent paragraphs.

Figure 2. Schematic of the studied SWRO plant. The process comprises two-pass RO units. The first
pass includes a unique stage whereas the second pass is organized in two stages.

4.2. Collected Data

The monitoring dataset includes measurements undertaken for 760 operating days
during which two membrane cleaning (MC) operations were performed. The first MC
was performed at 260 days and the second at 580 days. The feed water was sampled and
analyzed to explore major ion composition and characteristics. TDS was converted from
electrical conductivity. In addition to TDS, the data comprise the flow rate, pressure, and
temperature of the feed water, whereas output operation parameters are the permeate TDS,
flow rate, and pressure (including interstage pressure). Some statistical details about the
gathered dataset variables are displayed in Table 1.

Table 1. Statistics of the dataset variables.

Variable Min Max Median Mean Std Dev

Temperature (◦C) 12.6 29.4 21.1 21.1 5.1
Feed TDS (mg/L) 41,270.5 44,085.1 42,565.0 42,526.8 544.1

Feed Flow (m3/day) 68,135.8 75,447.6 72,496.7 72,356.4 1643.4
Feed Pressure (105 Pa) 68.0 74.18 71.45 71.33 1.04
Permeate TDS (mg/L) 57.13 105.57 77.46 76.67 10.47
Pressure drop (105 Pa) 6.3 10.2 7.9 7.9 1.0

The variations in the feed water temperature during the monitoring period are dis-
played in Figure 3. Feed water temperature changed drastically following seasonal varia-
tions. Temperatures ranged between 12 ◦C and 22 ◦C during the cold season (November
to February). However, plant records showed that the temperature ranged between 24 ◦C
to 30 ◦C during the hot season (May to October). Inevitably, temperature variations affect
permeate quality since permeate TDS is significantly dependent on feed water tempera-
ture. Under constant operating flow and pressure, high temperatures increase salt passage
through RO membranes, leading to higher TDS. This makes feed temperature one of the
major operating parameters to closely monitor in an RO plant.
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Figure 3. Variations in the feed water temperature during the monitoring period. Temperature
variations are seasonal variations.

Feed water TDS variations with respect to operating time are displayed in Figure 4. As
shown in the figure, feed water TDS remained quite stable with a less than 5.0% variation
around the mean value (46 412 mg/L) over the monitoring period.

Figure 4. Variations in the feed water TDS during the monitoring period.

Feed water flow rate and pressure are displayed in Figures 5 and 6. The feed flow rate
slightly varies around its average value (72,356 m3/day). This is expected since the RO
facility was operated at constant flux. Feed pressure also remained stable with a less than
5.0% variation around the mean value (71.2 bar).
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Figure 5. Variations in the feed flow rate during the monitoring period.

Figure 6. Variations in the feed water pressure during the monitoring period.

A larger variation is noticed when the permeate TDS is considered (Figure 7). Data
showed that the permeate TDS greatly varied. This could be related to the variations in the
feed water temperature. It is known that high temperatures increase membrane salt passage,
which inevitably leads to augmented TDS for the permeate. Membrane fouling can also
increase the permeate TDS concentration. This is because the foulants can act as a barrier
to the passage of water molecules, but they allow salt ions to pass through more easily. As
a result, salt rejection by the membrane decreases, and the permeate TDS concentration
increases. This phenomenon is evidenced by the decrease in permeate TDS after each
membrane cleaning (MC) event. A few weeks after membrane cleaning, membranes start to
be progressively fouled, causing the permeate TDS to peak again. In Figure 7, the permeate
TDS starts to increase progressively from a value approaching 56 mg/L (at 100 days) to
reach a value of 92 mg/L (at 255 days). The membrane cleaning performed at 260 days
caused the permeate TDS to progressively decrease before it increased again after 120 days.
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Figure 7. Evolution of the permeate TDS during the monitoring period. Membrane cleaning events
are marked in the figure.

The evolution of the pressure drop with respect to operating time is displayed in
Figure 8. Similar to the permeate TDS, the pressure drop shows variations that can be
correlated with the membrane cleaning events. However, the variations in the pressure
drop are less pronounced when compared with those in the permeate TDS. Physically,
fouling reduces the membrane’s permeability, which decreases the permeate flow rate and
increases the pressure drop.

Figure 8. Evolution of the pressure drop during the monitoring period.

4.3. PINN Training and Testing

The PINN approach described in Section 3 is employed to predict the performance of
the studied SWRO desalination process. The experimental dataset including measurements
undertaken for 760 operating days is employed to build a prediction model for the produced
water quality and quantity. For all training cases, k-fold cross-validation is employed with
k = 5. Following this validation method, the training set is split into k equal parts (called
folds). In each training iteration, (k − 1) folds are used for training while the remaining fold
is used as the test set. This procedure is repeated until all folds are used. After k iterations,
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the model is validated on every fold, which is assumed to give more stable and trustworthy
results since training and testing are performed on several different parts of the dataset.

For the evaluation of the created ML models, three metrics are employed: the determi-
nation coefficient (R2), the mean absolute error (MAE), and the root mean squared error
(RMSE). Generally, lower values are the target for MAE and RMSE. For the determination
coefficient, values close to one indicate better model performance. These performance
criteria are expressed in Equations (12)–(14).

R2 = 1 −
∑N

i=1
(
yi,p − yi,o

)2

∑N
i=1(yi,o − yo,m)

2 (12)

MAE =
1
N ∑N

i=1

∣∣yi,p − yi,o
∣∣ (13)

RMSE =

√
∑N

i=1
(
yi,p − yi,o

)2

N
(14)

where yi,p, yi,o, and yo,m are predicted, observed, and average observed values, and N is the
total number of data points.

The best predictive model is exported as a Matlab® (version 2021a) function to be used
to generate predicted responses for new input data.

5. Results and Discussion
Two operation parameters are chosen to showcase the effectiveness of the proposed

PINN-based modeling methodology: the predicted values of the permeate TDS and the
pressure drop. These predicted values are displayed with respect to the actual measured
values in Figure 9. Figure 9a shows predicted and experimental values of the permeate
TDS. The results indicate that the predicted values obtained using PINN exhibited a
strong correlation, as evidenced by a determination coefficient of 0.96. In Figure 9b, the
predicted values of the pressure drop are compared with the measured values at the SWRO
plant. Again, the displayed results show a strong correlation between the measured and
predicted values.

Figure 9. Comparing PINN model prediction with experimental operating data for (a) the permeate
TDS and (b) the pressure drop.
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The performances of the studied PINN in modeling the permeate TDS and the pressure
drop in the studied RO plant were assessed and the results are presented in Table 2.
It can be concluded from the performance results in Table 2 that the two PINN-based
models have high prediction performance associated with strong generalization potential.
These prediction models offer great opportunities to be used as the basis for performance
optimization avoiding expensive and time-consuming experimental investigations as well
as inaccuracies that could be associated with analytical formulations.

Table 2. Performances of the PINN models.

Output Parameter
Metrics

RMSE R2 MAE

Permeate TDS 2.0773 0.96 1.5538
Pressure drop 0.1417 0.97 0.1009

The comparison between measured and predicted permeate TDS with respect to
operating time is shown in Figure 10. The PINN model shows good consistency with the
experimental results, which means that the PINN model can predict the permeate TDS
accurately. The evolution of the pressure drop with respect to operating time is displayed
in Figure 11. The trend is similar to that in Figure 10. The PINN model shows good
consistency with the measured values. These results confirm that PINN-based models have
high prediction performance associated with strong generalization potential.

Figure 10. Comparing PINN model prediction with experimental operating data for the perme-
ate TDS.

In order to showcase the prediction potential of the PINN-based models, hand-
generated data for feed water temperature, feed water TDS, and feed flow rate are used as
input for the prediction model. Feed water temperature values were generated according
to the seasonal variation trend (Figure 3), whereas feed water TDS and feed water flow
rate were randomly generated around their mean values using a fixed variation level of
5%. A fictitious membrane cleaning event was also simulated (day 820). Two hundred new
records were hand-generated in this way and fed to the PINN models. A sample output is
displayed in Figure 12, where the permeate TDS is predicted for the new data (from day
750 to day 949). Results show that the model can predict the evolution of the permeate TDS,
which could help in scheduling operation maintenance tasks such as membrane cleaning.
Using the developed model it is also possible to monitor the behavior of the RO process in
real time. Monitoring the process behavior allows deviations from baseline operation to be
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detected before they reach a critical level, thus preventing expensive maintenance measures.
It is important to note that the proposed methodology could be a step toward achieving
efficient and physically meaningful modeling for RO plants. Even if the presented results
are firmly related to the specific RO desalination plant where the data were collected, it is
important to note that the methodology itself is scalable and simply applicable in any other
RO plant if enough operating data is available.

Figure 11. Comparing PINN model prediction with experimental operating data for pressure drop.

Figure 12. Predicted permeate TDS based on the PINN model.

6. Conclusions
In this paper, physics-informed neural network models are proposed to predict some

operating parameters of a full-scale RO plant. The proposed models are trained to predict
the effects of operating conditions on the permeate TDS and pressure drop. The tested
PINN showed high performance with a determination coefficient of 0.96 for the permeate
TDS model and 0.97 for the pressure drop model.

The preliminary results obtained in this study emphasize the potential of using PINNs
for modeling the RO desalination process. Data-driven models can be employed at little to
no cost, avoiding expensive and time-consuming experimental investigations. Furthermore,
PINNs that incorporate physical information can provide interpretable and physically
meaningful neural network models that are obviously more accurate and general than
models that are created based on data only. This makes PINNs well-suited for modeling
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complex processes such as RO. Furthermore, prediction models created using PINNs are
also able to learn the process characteristics that affect its overall performance and can help
RO plant operators adapt to changes in operating conditions.

Finally, the PINN modeling approach proposed here for some RO operating param-
eters can be adapted to be efficiently used for other process parameters such as recovery
and specific energy consumption (SEC) in order to overcome the limitations related to
experimentally extracting physical quantities and the inaccuracies generally associated
with simple analytical models. Further research is needed to improve the prediction models
created using PINNs and to use them for operation optimization and aiding decision-
making. It is also important to tackle specific aspects such as the intermittency of RO plant
operations. The authors believe that the described PINN-based methodology is promising
and could be part of future endeavors.
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of the manuscript.
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Nomenclature
Acronyms
Permeate flux Jw

Membrane permeability coefficient Aw

Permeate flow rate Qp

Total membrane area Sm

Solute flux Js

Solute permeability coefficient Bs

Solute concentration in the feed Cf

Solute concentration in the permeate Cp

Osmotic pressure of the membrane πm

Permeate osmotic pressure πp

Feed water pressure Pf

Pressure drop at the feed side of the membrane ∆Pfb

Recovery rate R
Feed water flow rate Qf

Total Dissolved Solids TDS
Mean absolute error MAE
Root mean squared error RMSE
Physics-Informed Neural Networks
Neural network with N (x ; θ)

Weights θ

Loss function L0

Physics-informed term LPhys

References
1. Engin, K.; Richard, C. The United Nations World Water Development Report 2023: Partnerships and Cooperation for Water; UN-

ESCO: Paris, France, 2023.
2. Baggio, G.; Qadir, M.; Smakhtin, V. Freshwater availability status across countries for human and ecosystem needs. Sci. Total

Environ. 2021, 792, 148230. [CrossRef] [PubMed]

https://doi.org/10.1016/j.scitotenv.2021.148230
https://www.ncbi.nlm.nih.gov/pubmed/34147805


Water 2025, 17, 297 14 of 15

3. Ayaz, M.; Namazi, M.; Din, M.A.U.; Ershath, M.M.; Mansour, A.; Aggoune, E.-H.M. Sustainable seawater desalination: Current
status, environmental implications and future expectations. Desalination 2022, 540, 116022. [CrossRef]

4. Curto, D.; Franzitta, V.; Guercio, A. A Review of the Water Desalination Technologies. Appl. Sci. 2021, 11, 670. [CrossRef]
5. Jeong, K.; Park, M.; Ki, S.J.; Kim, J.H. A systematic optimization of Internally Staged Design (ISD) for a full-scale reverse osmosis

process. J. Membr. Sci. 2017, 540, 285–296. [CrossRef]
6. Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review. Desalination 2019,

459, 59–104. [CrossRef]
7. Jawad, J.; Hawari, A.H.; Zaidi, S.J. Artificial neural network modeling of wastewater treatment and desalination using membrane

processes: A review. Chem. Eng. J. 2021, 419, 129540. [CrossRef]
8. Srivastava, A.; Nair, A.; Ram, S.; Agarwal, S.; Ali, J.; Singh, R.; Garg, M.C. Response surface methodology and artificial neural

network modelling for the performance evaluation of pilot-scale hybrid nanofiltration (NF) & reverse osmosis (RO) membrane
system for the treatment of brackish ground water. J. Environ. Manag. 2020, 278, 111497. [CrossRef]

9. Niu, C.; Li, X.; Dai, R.; Wang, Z. Artificial intelligence-incorporated membrane fouling prediction for membrane-based processes
in the past 20 years: A critical review. Water Res. 2022, 216, 118299. [CrossRef]

10. Choi, Y.; Lee, Y.; Shin, K.; Park, Y.; Lee, S. Analysis of long-term performance of full-scale reverse osmosis desalination plant
using artificial neural network and tree model. Environ. Eng. Res. 2019, 25, 763–770. [CrossRef]

11. Yang, Y.; Wang, C.; Wang, S.; Xiao, Y.; Ma, Q.; Tian, X.; Zhou, C.; Li, J. Performance prediction model for desalination plants using
modified grey wolf optimizer based artificial neural network approach. Desalination Water Treat. 2024, 319, 100411. [CrossRef]

12. Bonny, T.; Kashkash, M.; Ahmed, F. An efficient deep reinforcement machine learning-based control reverse osmosis system for
water desalination. Desalination 2022, 522, 115443. [CrossRef]

13. Mohammed, A.; Alshraideh, H.; Alsuwaidi, F. A holistic framework for improving the prediction of reverse osmosis membrane
performance using machine learning. Desalination 2023, 574, 117253. [CrossRef]

14. Mahadeva, R.; Kumar, M.; Gupta, V.; Manik, G.; Gupta, V.; Alawatugoda, J.; Manik, H.; Patole, S.P.; Gupta, V. Water desalination
using PSO-ANN techniques: A critical review. Digit. Chem. Eng. 2023, 9, 100128. [CrossRef]

15. Mahadeva, R.; Kumar, M.; Gupta, V.; Manik, G.; Patole, S.P. Modified Whale Optimization Algorithm based ANN: A novel
predictive model for RO desalination plant. Sci. Rep. 2023, 13, 2901. [CrossRef]

16. Karimanzira, D.; Rauschenbach, T. Performance Prediction of a Reverse Osmosis Desalination System Using Machine Learning. J.
Geosci. Environ. Prot. 2021, 9, 46–61. [CrossRef]

17. Nazari, M.A.; Salem, M.; Mahariq, I.; Younes, K.; Maqableh, B.B. Utilization of Data-Driven Methods in Solar Desalination
Systems: A Comprehensive Review. Front. Energy Res. 2021, 9, 742615. [CrossRef]

18. Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific Machine Learning Through Physics–Informed
Neural Networks: Where we are and What’s Next. J. Sci. Comput. 2022, 92, 88. [CrossRef]

19. Kim, D.; Lee, J. A Review of Physics Informed Neural Networks for Multiscale Analysis and Inverse Problems. Multiscale Sci.
Eng. 2024, 6, 1–11. [CrossRef]

20. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]

21. Habib, A.; AL Houri, A.; Junaid, M.T.; Barakat, S. A systematic and bibliometric review on physics-based neural networks
applications as a solution for structural engineering partial differential equations. Structures 2024, 69, 107361. [CrossRef]

22. Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys.
2021, 3, 422–440. [CrossRef]

23. Al-Obaidi, M.; Kara-Zaitri, C.; Mujtaba, I. Scope and limitations of the irreversible thermodynamics and the solution diffusion
models for the separation of binary and multi-component systems in reverse osmosis process. Comput. Chem. Eng. 2017, 100,
48–79. [CrossRef]

24. Al-Obaidi, M.; Alsarayreh, A.; Al-Hroub, A.; Alsadaie, S.; Mujtaba, I. Performance analysis of a medium-sized industrial reverse
osmosis brackish water desalination plant. Desalination 2018, 443, 272–284. [CrossRef]

25. Ruiz-García, A.; Nuez-Pestana, I.d.l. A computational tool for designing BWRO systems with spiral wound modules. Desalination
2018, 426, 69–77. [CrossRef]

26. Sayyad, S.; Kamthe, N.; Sarvade, S. Design and simulation of reverse osmosis process in a hybrid forward osmosis-reverse
osmosis system. Chem. Eng. Res. Des. 2022, 183, 210–220. [CrossRef]

27. Saeed, A.; Alhawaj, M. Mathematical modeling of reverse osmosis system design and performance. Water Pract. Technol. 2024, 19,
2681–2692. [CrossRef]

28. Ruiz-García, A.; Nuez, I. Long-term performance decline in a brackish water reverse osmosis desalination plant. Predictive model
for the water permeability coefficient. Desalination 2016, 397, 101–107. [CrossRef]

https://doi.org/10.1016/j.desal.2022.116022
https://doi.org/10.3390/app11020670
https://doi.org/10.1016/j.memsci.2017.06.066
https://doi.org/10.1016/j.desal.2019.02.008
https://doi.org/10.1016/j.cej.2021.129540
https://doi.org/10.1016/j.jenvman.2020.111497
https://doi.org/10.1016/j.watres.2022.118299
https://doi.org/10.4491/eer.2019.324
https://doi.org/10.1016/j.dwt.2024.100411
https://doi.org/10.1016/j.desal.2021.115443
https://doi.org/10.1016/j.desal.2023.117253
https://doi.org/10.1016/j.dche.2023.100128
https://doi.org/10.1038/s41598-023-30099-9
https://doi.org/10.4236/gep.2021.97004
https://doi.org/10.3389/fenrg.2021.742615
https://doi.org/10.1007/s10915-022-01939-z
https://doi.org/10.1007/s42493-024-00106-w
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.istruc.2024.107361
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1016/j.compchemeng.2017.02.001
https://doi.org/10.1016/j.desal.2018.06.010
https://doi.org/10.1016/j.desal.2017.10.040
https://doi.org/10.1016/j.cherd.2022.05.002
https://doi.org/10.2166/wpt.2024.141
https://doi.org/10.1016/j.desal.2016.06.027


Water 2025, 17, 297 15 of 15

29. AlSawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G. A Comprehensive Review on Membrane Fouling: Mathematical
Modelling, Prediction, Diagnosis, and Mitigation. Water 2021, 13, 1327. [CrossRef]

30. Jiang, A.; Ding, Q.; Wang, J.; Jiangzhou, S.; Cheng, W.; Xing, C. Mathematical Modeling and Simulation of SWRO Process Based
on Simultaneous Method. J. Appl. Math. 2014, 2014, 908569. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/w13091327
https://doi.org/10.1155/2014/908569

	Introduction 
	RO Desalination Model 
	Physics-Informed Neural Networks 
	Case Study 
	Description of the Studied SWRO Plant 
	Collected Data 
	PINN Training and Testing 

	Results and Discussion 
	Conclusions 
	References

