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Abstract: Wildfires significantly impact water quality in the Western United States, posing
challenges for water resource management. However, limited research quantifies post-
wildfire stream temperature and turbidity changes across diverse climatic zones. This
study addresses this gap by using Random Forest (RF) and Support Vector Regression
(SVR) models to predict post-wildfire stream temperature and turbidity based on climate,
streamflow, and fire data from the Clackamas and Russian River Watersheds. We se-
lected Random Forest (RF) and Support Vector Regression (SVR) because they handle
non-linear, high-dimensional data, balance accuracy with efficiency, and capture complex
post-wildfire stream temperature and turbidity dynamics with minimal assumptions. The
primary objectives were to evaluate model performance, conduct sensitivity analyses, and
project mid-21st century water quality changes under Representative Concentration Path-
way (RCP) 4.5 and 8.5 scenarios. Sensitivity analyses indicated that 7-day maximum air
temperature and discharge were the most influential predictors. Results show that RF
outperformed SVR, achieving an R2 of 0.98 and root mean square error of 0.88 ◦C for stream
temperature predictions. Post-wildfire turbidity increased up to 70 NTU during storm
events in highly burned subwatersheds. Under RCP 8.5, stream temperatures are projected
to rise by 2.2 ◦C by 2050. RF’s ensemble approach captured non-linear relationships ef-
fectively, while SVR excelled in high-dimensional datasets but struggled with temporal
variability. These findings underscore the importance of using machine learning for under-
standing complex post-fire hydrology. We recommend adaptive reservoir operations and
targeted riparian restoration to mitigate warming trends. This research highlights machine
learning’s utility for predicting post-wildfire impacts and informing climate-resilient water
management strategies.

Keywords: wildfires; stream temperature; turbidity; random forest; support vector regression

1. Introduction
Wildfires have become an increasingly significant environmental concern, particularly

in the Western United States, where they profoundly impact water quality. The removal
of vegetation and organic matter by wildfires exposes soil to erosional forces, leading to
heightened levels of sediment, nutrients, and organic matter in water bodies [1]. Many
forested watersheds in this region provide high-quality drinking water to residents and
are extremely vulnerable to unprecedented wildfires that have occurred in recent decades.
Changes in wildfire frequency, size, and burn area have altered watershed hydrology by
increasing runoff, decreasing infiltration, and raising the risks of debris flows, ultimately
deteriorating water quality [2,3]. These post-wildfire impacts on hydrology can be exacer-
bated by atmospheric rivers, peak flows, and subsequent re-burns [4,5]. The cumulative
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effects necessitate a comprehensive approach to water quality monitoring and management
in wildfire-prone regions.

Increased stream temperature and turbidity are among the most critical consequences
of wildfires, posing severe challenges for aquatic ecosystems and water treatment pro-
cesses [1]. Elevated stream temperatures, resulting from increased solar radiation due to the
loss of canopy cover, can reduce dissolved oxygen levels, stressing aquatic life and altering
ecosystem functions [6]. These temperature increases can disrupt the metabolic rates of
fish and other aquatic organisms, leading to decreased populations of sensitive species [2].
Riparian shading is a critical control on stream temperature, as it limits direct solar radiation
and helps maintain cooler water conditions essential for aquatic ecosystem health [1]. In
wildfire-affected watersheds, the degree of riparian vegetation loss can lead to increased
stream temperatures, especially in reaches where high burn severity reduces canopy cover.
Burn severity classes and riparian buffer burn areas are often examined to quantify shading
loss, recognizing that the impacts on stream temperature are spatially dependent. Localized
increases in temperature can be significant in heavily burned areas, but downstream effects
are often muted unless a substantial portion of the riparian zone across the watershed is
affected. Additionally, post-fire hydrology can exacerbate turbidity levels due to increased
sediment transport during storm events, as documented in studies of Western U.S. rivers [3].
By including burn severity metrics, our analysis captures how riparian loss and watershed-
scale burn dynamics interact to influence post-fire stream thermal regimes and sediment
fluxes, emphasizing the need for spatially explicit water resource management strategies
to mitigate post-fire water quality degradation. Furthermore, the influx of ash, sediments,
and organic debris significantly raises turbidity levels [7], necessitating more extensive
filtration and chemical treatments in drinking water plants, increasing operational costs
and complicating efforts to maintain water quality standards [8,9]. These changes have
significant implications for both aquatic health and drinking water treatment, underscoring
the need for effective management strategies in wildfire-affected areas.

Predicting stream temperature and turbidity and assessing their relationships with
explanatory variables such as climatic and streamflow variables has traditionally relied on
empirical and deterministic models. Empirical models often use statistical techniques to
correlate stream temperature and turbidity with air temperature, precipitation, and dis-
charge rates [10]. Linear regression models, for instance, have been widely used due to their
simplicity and ease of interpretation, allowing researchers to establish direct relationships
between environmental variables and stream conditions [11]. However, these models may
struggle with non-linear relationships and interactions among predictors.

Deterministic models, such as those based on heat budget calculations, simulate the
physical processes influencing stream temperature by accounting for energy exchanges
between the stream and its environment [12,13]. These models are often more accurate
but require extensive data and detailed parameterization, which can be challenging to
obtain and validate. Additionally, models like the Soil and Water Assessment Tool (SWAT)
and River Basin Model (RBM) integrate hydrological and meteorological data to predict
streamflow and associated water quality parameters, including turbidity [14,15]. While
these models provide comprehensive and detailed predictions, their complexity and data
requirements can be major drawbacks, often necessitating substantial resources for data
collection, calibration, and validation.

In recent years, machine learning techniques, such as Random Forest (RF) and Support
Vector Regression (SVR), have emerged as powerful tools for assessing the relationships
between climatic variables and water quality parameters when sufficient pre- and post-fire
data are available. For instance, Kang et al. (2024) [16] utilized Random Forest models
to explore the impacts of wildfires on streamflow in Western Oregon, demonstrating the
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importance of burn severity as a predictor variable. Similarly, Rajesh and Rehana (2021) [17]
employed SVR to predict water quality parameters in response to varying climatic condi-
tions, highlighting the adaptability and robustness of these models in handling complex
environmental data. Wade et al. (2023) [18] employ Random Forest models to identify
the primary controls on river water temperature regimes in 410 watersheds spanning the
conterminous United States, revealing that antecedent weather conditions, river discharge,
and riparian vegetation significantly influence thermal dynamics. In contrast, Feigl et al.
(2021) [19] compare various machine-learning methods, including support vector machines,
random forests, and gradient boosting machines, finding that gradient boosting machines
generally outperform others in predicting stream water temperatures. These models are
capable of handling large, complex datasets and uncovering non-linear relationships that
traditional methods might overlook [20–22]. These advanced models have demonstrated
superior performance in various hydrological studies, marking a significant advancement
over traditional empirical and deterministic approaches. Specifically, in the context of
wildfire-affected watersheds, machine learning models can predict post-fire stream tem-
perature and turbidity based on climatic factors such as air temperature, discharge, and
precipitation [23].

This study’s unique approach lies in its examination of two pairs of nested watersheds
located in distinct geographical and climatic zones in Oregon and Northern California. By
applying RF and SVR models across these diverse environments, we aim to understand the
extent to which stream temperature and turbidity are associated with climatic variables such
as air temperature, precipitation, and discharge. By comparing the performance of the two
machine learning models, we can identify the most effective approach to projecting water
quality changes. The performance of these models will provide critical insights into the
dependency of stream temperature and turbidity on climatic factors. If the models perform
poorly, it may indicate that other factors, such as landscape characteristics, vegetation cover,
and soil types, have a more significant influence on stream conditions.

Objective 1 of our study is to assess the impact of air temperature, precipitation, and
discharge on stream temperature and turbidity using RF and SVR models. By evaluating
these relationships, we aim to determine the accuracy and reliability of these models in
reflecting post-fire watershed conditions. Objective 2 is to apply these models to down-
scaled future climate data and project future stream temperature in mid-century climate
scenarios under two Representative Concentration Pathways (RCPs). Integrating machine
learning models with downscaled climate projections offers valuable insights into future
water quality scenarios in wildfire-prone regions. By simulating the effects of climatic
changes on stream temperature, these models can inform long-term water management
strategies and help adapt to the impacts of climate change on water resources [24].

This study addresses the critical need for advanced predictive models capable of
handling the complex non-linear interactions between multiple climatic and environmental
variables influencing water quality in post-wildfire scenarios. By utilizing machine learning
techniques, we aim to enhance the accuracy and reliability of water quality predictions,
ultimately aiding in developing more resilient water management practices in regions
susceptible to wildfires [20,23]. Furthermore, this research contributes to a broader under-
standing of the interconnectedness between climate change and increased wildfire activity,
providing valuable insights for future environmental and water resource planning [25,26].
This holistic approach is essential for preparing and adapting to the evolving challenges
posed by climate change and the rising frequency and intensity of wildfires [5,24].
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2. Data and Methods
2.1. Study Site

For our study sites, we chose the Clackamas River Watershed in Oregon and the
Russian River Watershed in Sonoma County, Northern California (Table 1). These two
watersheds were chosen because they contain nested watersheds with different degrees
of burning from recent wildfires. Additionally, these two watersheds provide primary
drinking water resources to local communities. Finally, future climate change is likely
to change the hydrology of these watersheds affecting stream temperature and turbidity,
which will have negative impacts on aquatic ecosystems and human consumption of water.

Table 1. Study site, wildfire data summary, and major land cover types.

USGS
Gauge

ID

Drainage
Area
(km2)

Gauge Name
Pre-Fire

Data
Period

Post-Fire
Data

Period
Fire
Date

Percent
Watershed

Burned
%

Urban
% Agri-
cultural

%
Forest

% Shrub/
Grassland

14210000 1738 CLACKAMAS RIVER
AT ESTACADA, OR

2007–
2020

2020–
2024 2020 20 1.1 0.5 92 5.4

14211010 2435
CLACKAMAS RIVER

NEAR OREGON
CITY, OR

2007–
2020

2020–
2024 2020 17 4.3 6.8 81.7 5.8

11462500 938 RUSSIAN R NR
HOPLAND CA

2007–
2017

2018–
2024

2017,
2018 14.4 7.7 4.2 29.8 57.2

11467000 3465
RUSSIAN R A

HACIENDA BRIDGE
NR GUERNEVILLE

CA

2007–
2019

2021–
2024

2019,
2021 9.4 11.4 7.2 32.4 47.6

The Clackamas River Watershed, located in Northwest Oregon, covers an area of
approximately 2435 km2. It is characterized by a diverse climate with mild, wet winters and
warm, dry summers, resulting in a significant amount of annual precipitation, particularly
during the winter months. This precipitation pattern is crucial for the region’s hydrology,
contributing to the river’s flow and the overall water availability in the watershed. The
Clackamas River is a vital water source for local communities, providing drinking water
for over 300,000 residents. Hydrologically, the Clackamas River Watershed includes several
tributaries and features a range of elevations and geologic features, from lowland areas
to mountainous regions in the Cascade Range. This topographical and geologic variation
influences the watershed’s hydrological processes, including runoff, infiltration, groundwa-
ter recharge, and sediment transport. Unlike higher-elevation watersheds in the Cascade
Range that are influenced by glacial melt or perennial snowfields, the Clackamas River
Watershed does not receive contributions from glaciers or consistent snowpack. Instead, its
hydrology is driven primarily by rainfall, with only transient snow accumulation during
winter months at higher elevations. As a result, the watershed’s seasonal flow patterns
are more sensitive to variations in precipitation and temperature rather than snowmelt or
glacial dynamics.

The Clackamas River’s baseflow is significantly influenced by the geology of its
watershed, with substantial contributions from subsurface flow that help sustain streamflow
during the dry summer months [27,28]. The Baseflow Index (BFI), which quantifies the
proportion of streamflow derived from groundwater, reflects this groundwater influence,
with the Estacada gauge showing a BFI of 71 and the Oregon City gauge reporting a
slightly lower BFI of 66. These values indicate that a substantial portion of the river’s flow
originates from underground recharge, particularly from the highly permeable volcanic
and sedimentary formations present in the upper watershed. Seasonal recharge patterns
are governed by winter precipitation infiltrating through porous soils and recharging
aquifers, which gradually release cooler water to the river during summer, helping to
moderate stream temperatures. The land cover in the watershed is predominantly forested,
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with coniferous forests, mixed woodlands, and riparian vegetation playing key roles in
maintaining ecological balance. The watershed is heavily managed and houses several
water reservoirs on the mainstem. The watershed is home to a diverse array of aquatic
species, including threatened and endangered species such as the coho salmon, spring
Chinook, and winter steelhead. These species rely on the river’s cold, clear waters and
healthy riparian habitats. Climate change is expected to alter streamflow patterns and
increase water temperatures, potentially exacerbating stress on these sensitive species and
further challenging water management strategies in the Clackamas River Watershed [27,28].

In September 2020, the Riverside Fire burned the southwestern edge of the upper
watershed, growing to over 100,000 acres before being contained (Figure 1a). According to
data obtained from the Monitoring Trends in Burn Severity (MTBS) database, the Riverside
Fire burned at high severity for 37%, moderate severity for 20%, and low severity for
30%, with parts of the Clackamas River corridor and surrounding hillsides experiencing
high fire intensity and impacts. The September fire has somewhat nuanced effects on
hydrology, with no significant increases in runoff ratios and peak flows during the post-fire
period [17,29].
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Figure 1. Study area map with USGS stream gage locations, watershed boundary and MTBS wildfire
burn severity map for the Clackamas River Watershed (a) and Russian River Watershed (b).

Our second study site the Russian River Watershed, located in Northern California,
spans approximately 3846 km2, covering urban, agricultural, and forested lands in Sonoma
and Mendocino counties. It experiences a Mediterranean climate with mild, wet winters
and hot, dry summers, and the annual rainfall ranges from 730 to 1800 mm, primarily
from large atmospheric river events [30]. This climate pattern substantially influences
the watershed’s hydrology, leading to both droughts and floods. The mainstem of the
Russian River Watershed is characterized by alluvial valleys underlain by extensive bedrock
of the Franciscan Complex, making it one of California’s most flood-prone regions [31].
Land cover includes agricultural areas, evergreen forests, scrub/shrub, and grasslands,
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supporting diverse habitats [32,33]. Significant water management infrastructure, such as
Lake Mendocino and Lake Sonoma, is crucial for water supply and flood control, serving a
population of 650,000.

The Russian River Watershed’s hydrology is influenced by climatic variability, human
activities, and land use, with the inter-basin transfer of water from the Eel River via the
Potter Valley Project augmenting water availability during the dry season. Unlike snow-
fed watersheds, the Russian River Watershed relies on seasonal rainfall, leading to high
flows and elevated turbidity during winter storms and low flows with warmer stream
temperatures in summer. Without snowmelt to sustain baseflows, summer flows depend on
stored water and inter-basin transfers, making the watershed more vulnerable to drought
and wildfire impacts on sediment loads and stream temperatures. The Russian River’s
baseflow is notably lower compared to the Clackamas River, reflecting the watershed’s
geology and seasonal hydrological patterns. The Baseflow Index (BFI) at the Hopland gauge
is 36, while the Guerneville gauge has a slightly lower BFI of 34, indicating that groundwater
contributions to streamflow are relatively limited. This is consistent with the region’s
geology, which is characterized by less permeable bedrock from the Franciscan Complex
and alluvial deposits in the valleys that store and release water more episodically. Seasonal
recharge primarily occurs during winter storms, but the watershed’s Mediterranean climate
and limited groundwater storage capacity result in reduced subsurface contributions during
the dry summer months. Consequently, streamflow during the summer is more reliant on
surface water and reservoir releases, contributing to warmer stream temperatures.

Recent wildfires have impacted the watershed, affecting sediment loads and water
quality [11,34]. Management and restoration efforts focus on maintaining ecological and
water supply resilience amidst these challenges [35]. Understanding these interactions is
essential for developing effective water management and conservation strategies to ensure
the resilience of this critical watershed. Between 2017 and 2020, four major wildfires burned
in the Russian River Watershed, covering an area of over 1000 km2 and roughly 28% of
the total watershed area (Figure 1b). These wildfires occurred during a prolonged drought
period, leading to widespread destruction of vegetation, increased sediment loads, and
altered hydrological dynamics within the watershed [35].

2.2. Data Collection

We collected daily streamflow, stream temperature, and turbidity data from two long-
term USGS National Water Information Systems (NWIS) streamgages within the Clackamas
Watershed: one near Oregon City (#14211010) at the confluence with the Willamette River,
and the other upstream at Estacada (#14210000), covering the period from October 2007 to
June 2024. For the Russian River Watershed, we acquired long-term streamflow, turbid-
ity, and stream temperature data from two USGS streamgages: one at Hacienda Bridge
near Guerneville (#11467000) and one in a nested headwater sub-basin near Hopland
(#11462500), covering the same period. Associated daily air temperature and precipitation
data for both watersheds were obtained from Oregon State University’s PRISM dataset [36].
All datasets were screened to ensure continuous data availability with no more than
30 days missing, requiring at least 10 years of pre-fire data and 3 years of post-fire data. In
addition to climatic and hydrological variables, we included the percent of the watershed
burned at different severity levels (low, moderate, and high) and percent burn area from the
MTBS dataset to capture the potential impacts of wildfire on stream temperature and tur-
bidity. Additionally, we collected the Multivariate Adaptive Constructed Analogs (MACA)
downscaled climate dataset for the study area, which provides high-resolution climate
projections by statistically downscaling global climate models to a spatial resolution of
4 km, offering detailed and regionally specific climate information [37].



Water 2025, 17, 359 7 of 29

2.3. Predictor Variables

Air temperature significantly impacts stream temperature, with increased air temper-
atures leading to higher stream temperatures, adversely affecting aquatic ecosystems by
reducing dissolved oxygen levels and stressing aquatic life [38,39]. This relationship high-
lights the importance of including air temperature as a key variable in predictive models to
forecast stream temperature changes accurately, particularly in post-wildfire scenarios [40].
To enhance our predictions’ accuracy and relevance, we tested several air temperature
metrics for sensitivity in our machine learning models, as shown in Table 2. These metrics
include mean daily temperature and its moving averages, which capture immediate and
short-term impacts, while longer moving averages (7 days, 14 days) account for cumulative
effects and thermal inertia, crucial for understanding stream temperature dynamics over
time [11,40]. Additionally, maximum air temperature metrics help capture extreme condi-
tions that may significantly influence stream temperatures [41]. By testing these metrics,
we aim to identify the most influential air temperature predictors, improving the model’s
sensitivity and accuracy in forecasting post-wildfire stream temperature variations.

Table 2. Summary of explanatory variables metrics and response variables.

Explanatory Variables

Mean_Ppt Mean precipitation mm
CUM1_Ppt Antecedent cumulative precipitation over 1 day. mm
CUM3_Ppt Antecedent cumulative precipitation over 3 days. mm
CUM7_Ppt Antecedent cumulative precipitation over 7 days. mm
CUM14_Ppt Antecedent cumulative precipitation over 14 days. mm
Mean_Tmean Mean daily temperature Celsius
MA1_Tmean 1-day moving average of the antecedent mean daily temperature Celsius
MA3_Tmean 3-day moving average of the antecedent mean daily temperature Celsius
MA7_Tmean 7-day moving average of the antecedent mean daily temperature Celsius
MA14_Tmean 14-day moving average of the mean daily temperature Celsius
7dAD_Tmean 7-day moving average daily mean air temperature Celsius
Mean_Tmax Mean daily maximum air temperature Celsius
MA1_Tmax 1-day moving average of the antecedent mean daily maximum air temperature Celsius
MA3_Tmax 3-day moving average of the antecedent mean daily maximum air temperature Celsius
MA7_Tmax 7-day moving average of the antecedent mean daily maximum air temperature Celsius
MA14_Tmax 14-day moving average of the antecedent mean daily maximum air temperature Celsius
7dAD_Tmax 7-day moving average daily maximum air temperature Celsius
Mean_Discharge Mean stream discharge CFS
ANT1D_Mean_Discharge 1-day antecedent mean discharge CFS
ANT3D_Mean_Discharge 3-day antecedent mean discharge CFS
ANT7D_Mean_Discharge 7-day antecedent mean discharge CFS
ANT14D_Mean_Discharge 14-day antecedent mean discharge CFS
Julian_Date Julian Date of Calendar Year Numerical
Pct_Burn Percent of Watershed Area Burned Percentage
Pct_High Percent of Watershed Area Burned at High Severity Percentage
Pct_Mod Percent of Watershed Area Burned at Moderate Severity Percentage
Pct_Low Percent of Watershed Area Burned at Low Severity Percentage
Response Variables

StreamTemp_7dADM 7-day moving average daily maximum stream temperature Celsius
Mean_Turbidity Mean turbidity (in NTU—Nephelometric Turbidity Units) NTU

Precipitation and discharge are critical factors influencing turbidity in streams and
rivers, especially in post-wildfire scenarios [6]. To capture the variability and impacts of
precipitation and discharge on turbidity, we derived several key metrics for our analysis
based on historically observed daily precipitation and discharge data (Table 2). These met-
rics help us understand both immediate and lagged effects of precipitation and discharge
on turbidity [6,42–45]. High-intensity rainfall events can lead to increased surface runoff,
carrying sediment, ash, and organic debris into water bodies, significantly raising turbidity
levels. Meanwhile, cumulative precipitation metrics account for delayed responses and
the impact of successive rainfall events [43,46–48]. Similarly, discharge metrics capture the
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erosive force of streamflow, which mobilizes sediments from the streambed and banks,
elevating turbidity levels [49,50]. By incorporating these metrics, our models effectively
capture the dynamic interactions between precipitation, discharge, and turbidity, enhancing
our ability to predict post-wildfire water quality impacts and develop targeted management
strategies [9,51]. Sensitivity analysis will be conducted to narrow down a list of the top five
most influential predictors variables for each mode.

2.4. Sensitivity Analysis

To ensure the robustness and reliability of our predictive models, we employed
several sensitivity analysis (SA) methods, including the Random Forest sensitivity test,
Sobol sensitivity test, and Morris sensitivity test to test for variable sensitivity on our
response variables—7 Day Moving Average of Daily Maximum Stream Temperature
(StreamTemp_7dADM) and Mean Turbidity (Table 2). These tests are essential for un-
derstanding the influence of various parameters on the model’s predictions, particularly in
complex hydrologic and water quality models. The Random Forest sensitivity test uses
feature importance scores to quantify the impact of each predictor variable on the model’s
output, helping to identify the most critical factors affecting stream temperature and turbid-
ity in post-wildfire scenarios [52,53]. However, a key limitation of this method is that it may
overlook variable interactions and can be biased toward predictors with more variability or
higher cardinality. The Sobol sensitivity analysis is a method that helps explain how much
each input variable and their interactions affect the variation in the model’s results. This ap-
proach provides a clear and detailed understanding of which factors play the biggest roles,
making it especially useful for identifying important variables in complex systems [54].
This makes it particularly useful for capturing complex, non-linear interactions among
variables. However, it is computationally expensive and requires a large number of model
evaluations, which can be a drawback for resource-intensive models. The Morris sensitivity
test, a screening method, evaluates the effect of input variables on the model output by
calculating elementary effects, which helps in identifying non-influential variables and
understanding the model’s response to parameter changes [55]. It is computationally less
demanding compared to Sobol and can effectively filter out irrelevant predictors. However,
its main limitation is that it provides less detailed information about variable interactions
and may be less precise for highly complex models.

Sensitivity analysis plays a vital role in hydrologic and water quality modeling, where
the interplay between spatiotemporal variability, model complexity, and parameter uncer-
tainty demands careful evaluation. The complexity of these models, driven by the diverse
interactions between climatic variables, land use, and topographic features, necessitates
a thorough examination of how different parameters impact the model outcomes [56,57].
By using these sensitivity analysis methods, we can better understand the robustness of
our predictions and identify key drivers of water quality changes as inputs for the machine
learning models [57,58]. The top five most sensitive explanatory metrics were used to build
the machine learning models. We used Random Forest (RF) and Support Vector Regression
(SVR) because they effectively handle non-linear relationships and high-dimensional data,
which are characteristic of post-wildfire stream temperature and turbidity dynamics. RF
was chosen for its ability to capture complex interactions and provide feature importance
insights, while SVR excels in modeling intricate patterns in noisy datasets. These methods
strike a balance between predictive accuracy and computational efficiency, making them
practical for capturing complex scenarios with minimal assumptions. A detailed study
design framework is shown in Figure 2.
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2.5. Random Forest Model

In this study, the RF model was employed to predict post-wildfire stream temperature
and turbidity in four burned watersheds in Oregon and Northern California. The Random
Forest (RF) model combines multiple decision trees to make predictions while reducing the
risk of overfitting. By averaging the outputs of individual decision trees in regression tasks,
the RF model enhances prediction accuracy and reliability. This method was chosen for
its ability to handle large datasets and model complex, non-linear relationships between
multiple predictors and response variables. Climatic and environmental variables, such as
air temperature, precipitation, and discharge, were used as input features. The RF model
was trained on pre-fire data to establish a baseline and then applied to post-fire data to
predict changes in stream temperature and turbidity.

Past studies have successfully utilized RF models to investigate various aspects of post-
fire hydrology. For example, [59] demonstrated the effectiveness of RF models in capturing
the complex interactions between fire-induced changes in land cover and subsequent
hydrological responses. Similarly, [60] used RF models to predict soil erosion in post-
fire environments, highlighting the model’s robustness in handling diverse and complex
datasets. However, gaps remain in understanding the specific impacts of climatic variables
on post-fire water quality parameters such as stream temperature and turbidity. Our study
addresses these gaps by analyzing feature importance scores generated by the RF model
to identify the most influential variables affecting these water quality parameters in the
post-wildfire environment. This approach not only enhances predictive accuracy but also
improves our understanding of key drivers of water quality changes, providing crucial
insights for developing targeted water management strategies and mitigating the adverse
effects of wildfires on water quality [50,61].

2.6. Support Vector Regression Model

Support Vector Regression (SVR) is a powerful machine learning model designed to
handle non-linear relationships and high-dimensional data by finding a hyperplane that
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best fits the data while minimizing error. Several studies have utilized SVR in hydrological
and environmental modeling due to its robustness. For instance, Lin et al. (2006) [62] used
SVR for daily river flow predictions with high accuracy, while Asefa et al. (2006) [63] ap-
plied SVR to model reservoir inflow, effectively capturing complex non-linear relationships
between variables. These examples demonstrate SVR’s capability to model intricate hydro-
logical processes, making it a suitable choice for predicting turbidity levels in post-wildfire
scenarios where multiple interacting factors are present.

In water quality modeling, SVR has also shown significant effectiveness. Khan and
Coulibaly (2006) [64] successfully used SVR to predict water quality indices, outperforming
traditional linear models. Additionally, Yu et al. (2016) [65] applied SVR to forecast daily
water temperature, effectively handling temporal dependencies and non-linearities in
environmental data. These studies underscore SVR’s relevance and potential in modeling
turbidity in burned watersheds, where post-wildfire conditions create complex interactions
between precipitation, discharge, and sediment transport. Employing SVR alongside
Random Forest models leverages the strengths of both techniques, enhancing the accuracy
and reliability of post-wildfire turbidity predictions.

Several studies have effectively utilized both Random Forest (RF) and Support Vector
Regression (SVR) models in hydrological and environmental contexts, underscoring their
complementary strengths. For instance, Abrahart et al. (2012) [66]) compared RF and SVR
for river flow forecasting, finding that RF captured non-linear relationships well, while
SVR excelled in handling high-dimensional data. Similarly, Chen et al. (2013) [67] applied
both models to predict groundwater levels, concluding that RF was superior in terms of
interpretability and robustness, whereas SVR provided higher accuracy for specific datasets.
By comparing RF and SVR, these studies highlighted the distinct advantages of each
method in different scenarios. RF is known for its ability to handle complex interactions
and provide insights into variable importance, which is crucial for understanding the
multifaceted impacts of wildfires on water quality. SVR, on the other hand, is adept
at managing non-linear relationships and high-dimensional data, which are common in
environmental datasets. By employing both models, we aim to leverage their respective
strengths to achieve more reliable and comprehensive predictions, ultimately enhancing
our understanding of post-fire water quality impacts.

2.7. Model Training, Testing, and Performance Evaluation

In this study, we built individual machine models for each watershed and response
variables, we the most recent two years as testing period (2022–2024) and a combination of
pre-fire and immediate post-fire years (2007–2021) as training data to evaluate the predictive
performance of Random Forest (RF) and Support Vector Regression (SVR) models on stream
temperature and turbidity. To capture the timing of wildfires during the training periods,
we incorporated the percent watershed burn data and the percent burn at each severity
level as time series data, setting pre-fire percent burn values to zero prior to the ignition
date. Including post-fire data in the training period is beneficial because it allows the model
to learn the changes in watershed characteristics and their impacts on streamflow, stream
temperature, and turbidity due to wildfires. This inclusion helps improve the model’s
accuracy and robustness by enabling it to account for the effects of burn severity and extent
on hydrological responses.

We employed five performance metrics to evaluate the RF and SVR models: Mean
Squared Error (MSE), Coefficient of Determination (R2), Root Mean Squared Error (RMSE),
Percent Bias (PBIAS), and Nash–Sutcliffe Efficiency (NSE). These metrics provide com-
prehensive insights into model accuracy, bias, and overall predictive capability. MSE and
RMSE measure prediction accuracy and error magnitude, while R2 indicates the explained
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variance. PBIAS assesses systematic prediction bias, and NSE evaluates the predictive
power of the models. Together, these metrics offer a robust framework for understanding
model strengths and limitations in predicting post-fire hydrological conditions, thereby
informing resilient water management strategies [16,21,22].

2.8. Stream Temperature Projection with Downscaled Climate Models

Following performance metrics assessment of the RF and SVR models, we project
stream temperature using downscaled climate models, specifically the CMIP5 downscaled
MACA data [37]. To consider a range of potential future climates, we selected three models
that represent warm, cool, and average air temperature scenarios (Table 3) for the mid-
century period (2030 to 2059). These models were applied under two scenarios, RCP 4.5 and
RCP 8.5, representing medium and high emission scenarios. We integrated the downscaled
MACA data into our RF and SVR models to predict stream temperature across four distinct
watersheds and compare absolute future changes with MACA-simulated historic periods
(1970–1999). The projected stream temperatures were analyzed to understand the potential
impacts of climate change on stream conditions. Similar approaches have been employed
in previous studies. For instance, ref. [41] examined regional climate trends and their
effects on stream temperature in the Pacific Northwest using downscaled climate models,
while [38] studied the impacts of climate change on stream and river temperatures across
the Northwest U.S. using historical climate data. To assess the changes in stream tempera-
ture, particularly the summer maximum 7-day average daily maximum (7dADM) stream
temperature, we employed the t-test. This statistical test was used to compare the projected
stream temperature data from 2024 to 2030 with the simulated historical data, aiming to
identify significant differences in stream temperature across different climate scenarios and
RCPs, thereby providing range of potential future changes in stream ecosystems.

Table 3. Summary of identified downscaled climate scenarios for each watershed.

MACA Mid-Century Climate Models
Scenario RCP 4.5 RCP 8.5 Source

Clackamas River Warm Can-ESM2 Can-ESM2 Canadian Centre for Climate Modelling and Analysis
Cool MRI-CGCM3 MRI-CGCM3 Meteorological Research Institute, Japan
Average GFDL-ESM2-G GFDL-ESM2-G Geophysical Fluid Dynamics Laboratory, USA

Russian River Warm Miroc-ESM-CHEM Miroc-ESM-CHEM Japan Agency for Marine-Earth Science and
Technology

Cool MRI-CGCM3 MRI-CGCM3 Meteorological Research Institute, Japan

Average Bcc-csm1-1 Bcc-csm1-1 Beijing Climate Center, China Meteorological
Administration

3. Results and Discussion
3.1. Sensitivity Analysis and Key Predictors

The sensitivity analysis for stream temperature models (Table 4 and Figure 3) revealed
key variables influencing predictions across the Clackamas and Russian River Watersheds.
In Clackamas River sites, MA14_Tmean and 7dAD_Tmean were the most influential
variables, indicating the importance of short-term temperature averages. Julian Date
also emerged as a significant predictor, underscoring seasonal impacts. For the Russian
River, 7dADM_Tmean consistently ranked highest, highlighting the role of maximum
temperature events. MA14_Tmean and MA7_Tmean were also important, suggesting that
both short-term and longer-term temperature trends are critical [38,41,68].

For turbidity models (Table 5), Mean_Discharge was the most influential variable
across all sites, emphasizing the role of streamflow in turbidity. In the Clackamas River,
Mean_Ppt and cumulative precipitation (CUM1_Ppt) were significant, highlighting the
impact of precipitation events. Antecedent discharge metrics (ANT1D_Mean_Discharge)
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further stressed the importance of previous discharge conditions. In the Russian River,
CUM1_Ppt and Mean_Ppt were similarly important, with antecedent discharge metrics
(ANT14D_Mean_Discharge and ANT7D_Mean_Discharge) underscoring the role of histor-
ical discharge patterns [6,45].

Table 4. Stream temperature sensitivity analysis results with top five most impactful metrics.

Stream Temperature Model Sensitivity

Clackamas River Russian River
Rank 14211010 Estacada 14210000 Oregon City 11462500 Hopland 11467000 Guerneville
1st MA14_Tmean MA14_Tmean 7dADM_Tmean 7dADM_Tmean
2nd Julian Date 7dAD_Tmean Julian Date MA14_Tmean
3rd MA7_Tmean Julian Date MA14_Tmean Julian Date
4th 7dADM_Tmean MA14_Tmax 7dADM_Tmax 7dADM_Tmax
5th 7dADM_Tmax MA7_Tmean MA7_Tmean MA7_Tmean

Table 5. Turbidity sensitivity analysis results with top five most impactful metrics.

Turbidity Model Sensitivity

Clackamas River Russian River
Rank 14211010 Estacada 14210000 Oregon City 11462500 Hopland 11467000 Guerneville
1st Mean_Discharge Mean_Discharge Mean_Discharge Mean_Discharge
2nd ANT1D_Mean_Discharge Mean_Ppt CUM1_Ppt Mean_Ppt
3rd CUM1_Ppt CUM1_Ppt Mean_Ppt CUM1_Ppt
4th CUM3_Ppt Julian Date ANT14D_Mean_Discharge ANT14D_Mean_Discharge
5th Julian Date ANT1D_Mean_Discharge ANT7D_Mean_Discharge ANT7D_Mean_Discharge
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For both stream temperature and turbidity, the percent watershed burned and percent
burned at each severity level were not significant predictors and did not have major impacts
on model sensitivity. This result can be attributed to the fact that all four of our studied wa-
tersheds burned less than or equal to 20% of the watershed area in each fire event (Table 1).
This finding is also consistent with prior research results where significant hydrological
responses may be absent in watersheds with less than 20% area burned [35,69,70]. These
results emphasize that the extent of watershed burning plays a crucial role in determining
hydrological impacts and highlights the importance of incorporating both climatic and
hydrological factors in stream temperature and turbidity models for accurate predictions
and effective water resource management in the context of climate change.

Less important variables that did not significantly influence model outcomes were
excluded from the final model inputs. This decision was guided by the results of the
sensitivity analysis, which highlighted the key predictors driving the model’s performance.
By excluding these less influential variables, the models were streamlined to focus on
the most relevant variables, reducing the potential for overfitting and improving overall
model accuracy. Notably, the Random Forest and Support Vector Regression models used
in this study are less impacted by multicollinearity compared to traditional regression
models [71,72]. This inherent robustness allows these machine learning methods to handle
correlated variables more effectively, further supporting the decision to prioritize key
variables while excluding those with minimal impact.

3.2. Stream Temperature Model Performance
3.2.1. Clackamas River Watershed

The results, shown in Figures 4 and 5 and Table 6, highlight the models’ accuracy
during the entire testing period (ALL) and the summer months (June–September). At
the Clackamas River at Estacada, The RF model generally outperforms the SVR model,
particularly when considering the entire dataset, with higher R2 (0.98 vs. 0.97) and lower
RMSE (0.88 vs. 1.09), indicating better overall explanatory power and more accurate
predictions. However, during the summer months, both models perform similarly, with
identical MSE and NSE values, indicating comparable capability in capturing seasonal
variations. The higher MSE and RMSE values in summer suggest greater variability and
challenges in accurate prediction during this period. The increased PBIAS (3.20) for summer
models indicate a systematic overestimation of stream temperature, likely due to elevated
temperatures and reduced flow rates, amplifying prediction errors. At the Clackamas
River in Oregon City, both RF and SVR models show high predictive accuracy, with R2

values close to 0.97 for the all-season models. However, during the summer, the predictive
power decreases, particularly for the RF model, which drops to an R2 of 0.85. Despite
this, the summer-specific SVR model maintains relatively high accuracy, demonstrating its
robustness across different seasons.

Reservoirs in the Clackamas River basin, including those managed by Portland General
Electric, play a significant role in moderating downstream water temperatures. These
reservoirs release cooler water from their lower depths during summer, which can help
mitigate temperature spikes. At Estacada, forest land cover is higher and the Riverside Fire
in 2020 burned 20% of the watershed (Table 1), which may have reduced canopy cover and
increased solar radiation reaching the river, leading to higher summer temperatures and
greater prediction challenges for the models. The combination of natural and fire-induced
changes in canopy cover and shading likely influences the summer temperature dynamics
and the higher MSE and RMSE values observed. In contrast, Oregon City, located further
downstream, benefits more from the moderating effects of upstream reservoirs.
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Table 6. Stream temperature RF and SVR model performance summary.

Stream Temperature MSE R2 RMSE PBIAS NSE

14210000 Clackamas River at Estacada
RF_All 0.77 0.98 0.88 3.20 0.97
RF_Summer 0.96 0.90 0.98 3.20 0.86
SVR_All 1.19 0.97 1.09 4.90 0.95
SVR_Summer 1.29 0.88 1.13 4.30 0.81

14211010 Clackamas River at Oregon City
RF_All 1.12 0.97 1.06 1.40 0.97
RF_Summer 1.50 0.85 1.22 0.00 0.83
SVR_All 1.41 0.97 1.19 3.80 0.96
SVR_Summer 1.14 0.89 1.07 1.90 0.87

11462500 Russian River at Hopland
RF_All 3.38 0.77 1.84 5.20 0.70
RF_Summer 6.37 0.09 2.52 5.40 −0.07
SVR_All 3.36 0.77 1.83 5.50 0.70
SVR_Summer 5.94 0.11 2.44 4.60 0.00

11467000 Russian River at Guerneville
RF_All 1.02 0.97 1.01 1.70 0.96
RF_Summer 0.92 0.74 0.96 −1.40 0.69
SVR_All 1.49 0.95 1.22 2.30 0.94
SVR_Summer 1.28 0.65 1.13 −1.90 0.56

3.2.2. Russian River Watershed

For the Russian River at Hopland, both the RF and SVR models exhibit moderate
predictive accuracy for the all-season models, but performance drastically decreases during
the summer. The RF summer model shows a near-zero R2, indicating a poor fit, and a
negative NSE value, suggesting that the model predictions are less accurate than simply
using the mean of the observed data. The SVR summer model also shows significantly
reduced performance, highlighting the challenges in modeling stream temperatures in this
region during summer. The Russian River at Guerneville displays a contrasting pattern
where the all-season RF and SVR models perform exceptionally well with an R2 of 0.97
and 0.95. However, during the summer, both the RF and SVR models experience a drop
in predictive power, although the decline is more pronounced in the SVR model. The RF
summer model maintains a decent R2 of 0.74, while the SVR summer model falls to 0.65,
indicating that RF models may be more resilient in certain conditions.

Several factors could explain these performance discrepancies between Hopland and
Guerneville. Firstly, the difference in drainage area might play a role (Table 1). Guerneville’s
larger drainage area (3465 km2) compared to Hopland’s (938 km2) could lead to more stable
stream temperature patterns, making it easier for models to predict accurately. Additionally,
the percentage of watershed burned is higher at Hopland (18%) than at Guerneville (13%),
potentially causing more significant disruptions in stream temperature due to increased
erosion, sediment transport, and altered hydrology. Furthermore, land cover differences
might also impact model performance. The percentage of forest cover at Hopland is
considerably lower (29.8%) compared to Guerneville (32.4%), while the percentage of
shrub/grassland is higher at Hopland (57.2% versus 47.6%). This difference in vegetation
cover could affect microclimatic conditions and hydrological responses, influencing stream
temperature patterns and making them more complex to predict at Hopland.

3.2.3. Comparison Between Clackamas and Russian River Watersheds

The particularly poor performance of both models at the Hopland site during the
summer months, as illustrated in Figure 5, where the models consistently underpredict
stream temperatures until September 2022, can be attributed to the significant hydrological
impacts of recent wildfires and prolonged drought years [73]. Post-fire conditions often
result in increased solar radiation due to the loss of riparian vegetation, higher sediment
loads, and altered streamflow patterns, all of which can exacerbate temperature fluctuations.
This phenomenon is supported by research indicating that wildfire can lead to reduced
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canopy cover and changes in streambed composition, which collectively increase water
temperatures [44,74].

These post-fire effects are likely more pronounced in the Russian River watershed due
to its unique climatic and land cover characteristics, such as more agricultural lands and
shrubs instead of forests (Table 1) and more frequent droughts that hinder the moisture
needed for vegetation recovery [75]. Interestingly, both RF and SVR models overpre-
dicted stream temperatures during the summer of 2023, which can be expected due to
the back-to-back atmospheric rivers hitting Northern California in the winter of 2022, al-
leviating the multi-year drought and encouraging vegetation growth that lowers stream
temperatures [76]. Since both RF and SVR models do not include streamflow as a pre-
dictor, the overprediction may also be attributed to the increase in summer reservoir
releases from Lake Sonoma and Lake Mendocino, which were both filled during the heavy
winter storms.

On the other hand, the Clackamas River’s more stable and forested environment
provides a conducive setting for more accurate and reliable stream temperature predictions.
The Russian River’s variable climate and recent wildfire disturbances pose challenges
for predictive models. These results suggest that while both RF and SVR models have
their strengths, the RF model outperformed the SVR model in this context likely due to
its robustness in handling complex interactions and non-linear relationships in the stream
temperature data across different watersheds and seasonal variations. However, water
management practices such as summer reservoir releases in both the Clackamas River and
Russian River may introduce complications in RF and SVR modeling.

The high level of statistical significance in our results can be attributed to the careful
selection of predictor variables and the rigorous application of sensitivity analysis meth-
ods. While the significance might seem high, it reflects the robustness of the models in
capturing the critical factors influencing stream temperature and turbidity. Moreover, both
RF and SVR models are designed to handle complex, non-linear relationships, reducing
the likelihood of spurious correlations, and they are less affected by multicollinearity, al-
lowing them to focus on identifying the most influential predictors without being skewed
by correlations among variables. The significance is, therefore, a result of these models’
capacity to effectively discern meaningful patterns in the data rather than an artifact of the
sampling process.

3.3. Turbidity Model Performance
3.3.1. Clackamas River Watershed

The RF and SVR models for turbidity prediction at various sites present some in-
triguing findings (Table 7). At the Clackamas River at Estacada, the across all-season RF
model shows better performance metrics than its SVR counterpart. Interestingly, both
winter-specific models (RF and SVR) show identical performance, indicating that winter
conditions might affect model predictions uniformly. Winter months typically have pre-
cipitation patterns that allow for more consistent turbidity behavior, including increased
precipitation and runoff, which directly influence turbidity levels. These consistent patterns
can make it easier for the model to capture and predict changes in turbidity accurately.
Additionally, winter conditions may lead to more consistent sediment transport and depo-
sition processes via increased flow in the river, reducing variability in turbidity readings.
During winter, the river is less likely to experience sporadic disturbances that can occur
during other seasons (Figure 6), such as sudden storms or dry spells, which can introduce
noise and make it harder for sediment to mobilize and be transported downstream.
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At the Clackamas River in Oregon City, both RF and SVR models exhibit strong pre-
dictive power with high R2 values, especially during all seasons. However, during winter,
the predictive accuracy drops slightly, with both RF and SVR models showing higher errors
and biases. Oregon City may have more urbanized areas contributing to runoff, leading to
more variable and less predictable turbidity levels. Urban runoff can carry diverse pollu-
tants and sediments, making it harder for the model to capture the relationships accurately.
This finding suggests that winter conditions introduce complexities in turbidity prediction
due to differences between the more natural upstream areas and the downstream urban
areas. These complexities arise from variations in lag time between precipitation and peak
turbidity, as well as the hysteresis behavior of the hydrograph, both of which are influenced
by differing levels of impervious surfaces [47].

Table 7. Turbidity RF and SVR model performance summary.

Turbidity MSE R2 RMSE PBIAS NSE

14210000 Clackamas River at Estacada
RF_All 3.39 0.84 1.84 1.10 0.80
RF_Winter 6.76 0.89 2.60 3.60 0.80
SVR_All 4.83 0.74 2.20 −5.60 0.71
SVR_winter 6.76 0.89 2.60 3.60 0.80

14211010 Clackamas River at Oregon City
RF_All 3.14 0.87 1.77 1.10 0.81
RF_Winter 7.89 0.87 2.81 2.30 0.77
SVR_All 3.65 0.80 1.91 −5.40 0.78
SVR_winter 7.89 0.87 2.81 2.30 0.77
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Table 7. Cont.

Turbidity MSE R2 RMSE PBIAS NSE

11462500 Russian River at Hopland
RF_All 291.54 0.87 17.07 3.80 0.76
RF_Winter 710.22 0.88 26.65 19.90 0.71
SVR_All 243.11 0.81 15.59 −10.40 0.80
SVR_winter 710.22 0.88 26.65 19.90 0.71

11467000 Russian River at Guerneville
RF_All 218.30 0.89 14.78 14.20 0.83
RF_Winter 506.21 0.86 22.50 14.70 0.79
SVR_All 448.50 0.70 21.18 14.40 0.66
SVR_winter 986.98 0.64 31.42 11.10 0.60

3.3.2. Russian River Watershed

For the Russian River at Hopland, the models show a stark contrast in performance.
Both RF and SVR models exhibit significantly higher errors and biases, especially during
winter. The extremely high MSE and RMSE values for the RF Winter and SVR Winter mod-
els suggest that these models struggle considerably with turbidity prediction in winter. This
could be attributed to unique watershed characteristics due to the majority of the watershed
being dominated by shrubs and grasslands, creating a non-linear response in turbidity
levels that introduce substantial variability, which the models fail to predict accurately.

The Russian River at Guerneville presents a different scenario where the all-season
RF model performs exceptionally well, similar to the Clackamas River sites. However, the
winter-specific models show a marked decrease in performance in Guerneville, particularly
the SVR Winter model. The substantial drop in R2 and increase in error metrics highlight
that SVR models may be less resilient to seasonal variations compared to RF models. This
emphasizes the need for incorporating additional environmental and climatic variables to
improve model robustness, especially during challenging winter conditions.

3.3.3. Comparison Between Clackamas and Russian River Watersheds

The Russian River site tends to underpredict turbidity (Figure 7) more while the
Clackamas River sites follow observation pretty well, likely due to differences in watershed
characteristics. The smaller, nested watershed may experience more pronounced hydrolog-
ical responses to rainfall and post-fire conditions, leading to higher sediment transport and
turbidity. Conversely, the larger Guerneville Watershed might buffer these effects due to a
lower percentage of watershed burned, resulting in under-predictions. Wildfire impacts,
including increased erosion and sediment loads [7], can exacerbate these differences, as
smaller watersheds are more sensitive to such disturbances [23].

The reduction in accuracy during winter months for Guerneville could be attributed to
impacts from cumulative and multiples wildfires impacts such as increased sediment loads
due to the loss of vegetation and changes in soil stability, which can exacerbate turbidity
fluctuations [1]. This phenomenon is supported by research indicating that wildfire can
lead to increased erosion, higher sediment transport [77], and altered streamflow patterns,
all of which contribute to higher turbidity [45,78]. These post-fire effects are likely more
pronounced in the Russian River watershed due to its unique Mediterranean climate and
lower summer flows due to lack of precipitation in late spring, as well as the presence of
numerous reservoirs that can buffer sediment impacts but also complicate hydrological
responses. The Clackamas River Watershed on the other hand, exhibits more stable stream-
flow throughout the year from consistent rainfall, and heavily forested area with a high
infiltration rate help in reducing runoff and sediment transport. Current dams along the
Clackamas River Watershed further capture sediment and regulate stream temperatures,
making the watershed more resilient to the hydrological impacts of wildfires downstream.
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the post-fire testing period.

The discrepancies in model performance, such as overprediction and underprediction,
across the Clackamas and Russian River Watersheds can be attributed to the distinct
hydrological and geomorphological characteristics of each watershed. In the Russian
River Watershed, the under-prediction of turbidity may be linked to its Mediterranean
climate, where low summer flows and post-wildfire conditions can create complex sediment
transport dynamics that are difficult for models to accurately capture. The presence of
reservoirs, which can buffer sediment but also alter streamflow patterns, adds another
layer of complexity that might contribute to the models’ struggle in predicting turbidity
during winter months.

Conversely, the Clackamas River Watershed, with its more consistent rainfall and
stable streamflow throughout the year, offers a more predictable environment for sediment
transport, leading to better model performance. The high infiltration rates in its heavily
forested areas reduce surface runoff and sediment transport, which, coupled with the
sediment capture by dams, results in a system less prone to the extremes that complicate
turbidity prediction in more variable watersheds like the Russian River. These differences
highlight the importance of considering watershed-specific factors when interpreting
model performance, as the unique interactions between climate, land use, and hydrological
processes can lead to varying levels of prediction accuracy.

3.4. Simulated Future Stream Temperature
3.4.1. Clackamas River Watershed

The analysis of projected future versus historic stream temperatures at both sites in
the Clackamas River under RCP 4.5 and RCP 8.5 scenarios (Table 3) indicates significant
warming across all future climate conditions (cool, average, and warm). As shown in
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Table 8 and Figures 8 and 9, both RF and SVR models predict considerable increases of up
to 2.2 degrees Celsius in summer 7dADM stream temperatures for the period 2030–2059
compared to 1970–1999. The RF models generally show higher sensitivity to climate change,
indicated by larger t-values, suggesting more pronounced differences from historical
temperatures. These results highlight that under moderate (RCP 4.5) and extreme (RCP 8.5)
climate scenarios, stream temperatures are projected to rise significantly, impacting cool
(+0.43~2.05 ◦C), average (+0.55~2.18 ◦C), and warm (+0.7~2.22 ◦C) scenarios (Figure 8).

Table 8. T-test results showing t-value and significance between modeled future and historic stream
temperature. *** indicates p < 0.001 level of significance; ** indicates p < 0.01 level of significance.

Historic: 1970–1999 Clackamas River Russian River
Future: 2030–2059 Estacada Oregon City Hopland Guerneville

RF SVR RF SVR RF SVR RF SVR

RCP4.5_Cool vs. Hist_Cool 26.46 *** 17.58 *** 10.22 *** 4.35 *** 13.01 *** 22.07 *** 3.18 *** 14.16 ***
RCP8.5_Cool vs. Hist_Cool 26.78 *** 18.27 *** 10.92 *** 3.91 *** 13.79 *** 20.82 *** 4.62 ** 16.80 ***
RCP4.5_Avg vs. Hist_Avg 18.49 ** 14.44 *** 9.24 *** 4.12 *** 12.90 *** 22.20 *** 5.08 ** 13.40 ***
RCP8.5_Avg vs. Hist_Avg 18.63 *** 14.76 *** 9.41 *** 4.62 *** 15.23 *** 26.94 *** 4.47 *** 13.81 ***
RCP4.5_Warm vs. Hist_Warm 21.89 *** 17.53 *** 11.16 *** 7.71 *** 15.42 *** 17.71 *** 4.06 *** 10.64 ***
RCP8.5_Warm vs. Hist_Warm 22.12 *** 17.31 *** 11.48 *** 6.99 *** 12.69 *** 22.72 *** 3.19 *** 13.50 ***
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projections compared to historical (1970–1999) for (a) Hopland RF, (b) Hopland SVR, (c) Guerneville
RF, and (d) Guerneville SVR in the Russian River Watersheds.

This finding indicates that extreme warming is anticipated under future climate
conditions, especially during warm periods, potentially exacerbating stress on aquatic
ecosystems. These findings indicate that without intervention, future climate conditions
will likely lead to significant warming of stream temperatures in the Clackamas River
Watershed. The consistent upward shift in temperatures across all scenarios, as highlighted
in the box plots, underscores the urgency for adaptive water management strategies to
mitigate the impacts of climate change and to address the anticipated significant warming
of stream temperatures and its effects on water quality and ecosystem health.

3.4.2. Russian River Watershed

For the Hopland location, the RF model projections indicate a general increase in sum-
mer maximum 7dADM stream temperatures across all climate change scenarios. The me-
dian values for each scenario show a consistent warming trend, with the RCP8.5_Warm_D
scenario exhibiting the largest increase. The range of projected changes is wider under the
RCP8.5 scenarios, indicating greater uncertainty in high emission scenarios. The SVR model
projections for Hopland also show an increase in stream temperatures, but with a slightly
different pattern compared to the RF model. The SVR model indicates a more pronounced
increase under the RCP4.5_Warm_D scenario compared to the RF model, while the RCP8.5
scenarios show a similar range of projected changes as observed in the RF model. The
differences between the RF and SVR model projections highlight the variability in model
responses to climate change scenarios.

For the Hopland location, both RF and SVR models indicate a general increase in
summer maximum 7dADM stream temperatures across all climate change scenarios, with
the RCP8.5_Warm_D scenario exhibiting the largest increase. The RF model shows a
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broader range of projected changes compared to the SVR model, especially under the high
emission scenario RCP 8.5, indicating greater uncertainty. At the Guerneville location, the
RF and SVR models also project increases in stream temperatures for all scenarios, but
with a slightly lower magnitude compared to Hopland. The RCP8.5_Warm_D scenario
again shows the highest increase, with a noticeable spread in the range of projections. The
variability among the different scenarios is less pronounced at Guerneville, indicating a
more consistent response to climate change.

The projected increases in summer maximum 7dADM stream temperatures for the
Russian River at both Hopland and Guerneville indicate a significant impact of climate
change on stream thermal regimes. However, the magnitude of change and variability
differ between the two sites. Hopland shows a higher increase in stream temperatures
compared to Guerneville, particularly under the high emission scenario RCP 8.5. This
could be due to local factors such as watershed characteristics, land use, and microclimate
conditions that influence stream temperatures. The wider range of projections at Hopland
suggests higher sensitivity to climate change impacts in this region. The significant t-test
values for Hopland (ranging from 12.69 to 26.94) reflect a strong response to climate change
scenarios. The differences observed between the RF and SVR model projections underscore
the importance of using multiple modeling approaches to capture the range of potential
future conditions. The RF model tends to show a broader range of projected changes,
especially under the high emission scenario RCP 8.5, reflecting the model’s sensitivity
to extreme conditions. The SVR model shows a narrower range of projected changes,
indicating less variability in its projections.

3.4.3. Comparison Between Clackamas and Russian River Watershed

In both watersheds, the RCP8.5 scenarios consistently show higher increases in stream
temperatures compared to RCP4.5, reflecting the higher greenhouse gas concentrations
and associated warming under the RCP8.5 pathway. This indicates that the extent of future
warming and its impact on stream temperatures will be significantly influenced by the
trajectory of greenhouse gas emissions. The wider range of projections under RCP8.5 also
suggests greater uncertainty and variability in future climate conditions, underscoring
the importance of mitigation efforts to limit greenhouse gas emissions and reduce climate
change impacts.

The context of wildfire impacts on stream temperatures is crucial. Post-fire con-
ditions can exacerbate stream temperature increases due to reduced canopy cover and
altered hydrology, leading to higher solar radiation exposure and decreased shade [78–80].
These changes can be more pronounced in smaller watersheds like Estacada and Hop-
land, where the effects of wildfires are more concentrated and less mitigated by landscape
diversity. Conversely, larger watersheds like Oregon City and Guerneville might experi-
ence a more moderated impact due to their extensive buffering capacity. The differences
in prediction range between RF and SVR models indicate that while RF generally cap-
tures broader trends, SVR might be more sensitive to specific climate scenarios, highlight-
ing the importance of using multiple modeling approaches to understand future stream
temperature dynamics.

3.5. Uncertainties and Study Limitations

Uncertainties within downscaled climate models and assumptions inherent in the
RF and SVR models introduce additional complexity to these predictions. Downscaled
models, despite their utility, are limited by the accuracy of their input data and the as-
sumptions regarding future climatic conditions [81,82]. Moreover, the RF and SVR models’
performance in capturing future stream temperatures can be inconsistent, particularly in
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areas with complex hydrological responses to climatic changes, such as Hopland. This
inconsistency can lead to an underestimation or overestimation of future temperatures and
subsequently impact water quality predictions [83,84]. Therefore, these results should be
interpreted with caution, considering the inherent uncertainties in climate projections and
model assumptions.

While our study advances the understanding of post-wildfire water quality dynamics,
several limitations should be acknowledged. Model uncertainties arise because the accuracy
of RF and SVR models is inherently dependent on the quality and quantity of input
data. Incomplete or biased data can lead to inaccurate predictions. This is particularly
relevant in the Hopland site, where poor model performance was noted, highlighting
the challenges in capturing complex hydrological responses [81,82]. Downscaled climate
models, while useful for localized predictions, come with inherent uncertainties due to
the assumptions and input data limitations [83,84]. These uncertainties can compound the
prediction errors in stream temperature and turbidity. The spatial and temporal extent
limitations of our study are evident, as it focuses on specific watersheds with unique
geographical and climatic conditions. Extrapolating these findings to other regions may
not be straightforward due to the variability in watershed characteristics and wildfire
impacts. Additionally, to better address the temporal effects of watershed vegetation
recovery, future research can consider incorporating variables that change over time, such
as the Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), biomass,
and time since burning.

A key limitation of this study is the geographic and hydrological specificity of the
selected watersheds. The Clackamas and Russian River watersheds differ in size, land cover,
and climatic conditions, which limits the generalizability of the findings to other regions
with varying watershed characteristics. For example, the Clackamas River watershed
benefits from consistent forest cover and rainfall patterns that stabilize baseflows, while
the Russian River watershed is influenced by a Mediterranean climate and variable water
management operations. The relatively small size of some subwatersheds, such as Hopland,
may lead to more pronounced post-fire hydrological responses that complicate model
predictions. Expanding the study to include additional watersheds could help identify
broader trends and improve predictive model robustness. Additionally, capturing long-
term post-fire recovery processes, such as changes in vegetation regrowth, is essential for
understanding sustained impacts on water quality.

In this study, while the idea of developing a regional model using machine learning
approaches like Random Forest and Support Vector Regression is appealing for its potential
to generalize across multiple watersheds, our findings suggest that these models are more
effective when tailored to individual watersheds due to their hyper-specialized nature.
The variability between watersheds—such as differences in land cover, burn severity,
and hydrological responses—makes it challenging for a regional model to achieve the
same level of precision as a watershed-specific model. Additionally, although RF and
SVR are robust against multicollinearity, we observed that highly correlated variables can
still appear significant in a hyper fitted model without necessarily improving predictive
performance [21,85]. This underscores the importance of careful variable selection and the
need to avoid overfitting, ensuring that models remain both accurate and generalizable.
Ultimately, while regional models may offer broad insights, the most reliable predictions in
this context are achieved through models that are finely tuned to the specific characteristics
of each watershed.
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3.6. Implications for Water Resource Management and Recommendations

Water reservoir operations play a critical role in regulating stream temperatures [86]
in both the Clackamas and Russian River Watersheds, particularly during the dry summer
months when natural baseflows are insufficient to mitigate rising stream temperatures. In
the Clackamas River, reservoirs managed by Portland General Electric release cooler water
from deeper reservoir layers, helping to offset post-wildfire warming effects and stabilize
stream temperatures downstream, which supports coldwater species such as salmonids.
In contrast, reservoirs in the Russian River Watershed, such as Lake Mendocino and Lake
Sonoma, augment summer flows but may still result in elevated downstream temperatures
due to prolonged surface exposure and ambient air temperatures.

Future climate projections indicate more frequent droughts, higher air temperatures,
and increased variability in precipitation [87], which will likely require reservoir operators
to balance competing priorities more intensely, such as conserving storage for extended
dry seasons versus maintaining sufficient downstream releases for ecological needs. These
changes could reduce the ability to mitigate extreme temperature spikes unless opera-
tions incorporate more flexible, adaptive strategies, such as dynamic release schedules,
coordinated inter-basin transfers, and increased use of predictive climate models. The
relevance of our results lies in demonstrating that while current reservoir operations help
buffer post-wildfire impacts on stream temperatures. Future conditions may challenge this
buffering capacity, necessitating proactive adjustments to avoid further stressing aquatic
ecosystems, particularly in drought-prone watersheds like the Russian River.

The findings of this study underscore the critical role of machine learning models
in predicting post-wildfire stream temperature and turbidity, with Random Forest (RF)
models demonstrating superior performance in capturing complex non-linear interactions
between climatic variables and hydrological responses. Key predictors, such as the 14-day
moving average of air temperature (MA14_Tmean) and mean discharge, were identified
as significant drivers of post-fire water quality changes, providing valuable insights for
improving water quality forecasting. While the results are specific to the Clackamas and
Russian River Watersheds, the framework developed in this study can be adapted for other
wildfire-prone watersheds with similar climatic and hydrological challenges. Expanding
this approach to additional watersheds with diverse geological and land use characteristics
can help evaluate the generalizability of the models and inform broader regional water
management strategies.

Future research should incorporate dynamic variables such as vegetation recovery
indices (e.g., NDVI, LAI) and soil moisture to improve long-term post-fire predictions, par-
ticularly for smaller watersheds where recovery timelines vary. Additionally, incorporating
predictive tools, such as Forecast-Informed Reservoir Operations (FIRO), could enhance
the ability to balance water storage with downstream ecological needs amid fluctuating
hydrological conditions [88]. By emphasizing future climate scenarios, this study highlights
the need for adaptive reservoir operations and targeted restoration efforts, such as strategic
riparian planting and sediment control measures, to mitigate the impacts of warming
on stream temperatures and increased turbidity. The scalable nature of this framework
supports the development of proactive, data-driven water resource management practices
that address the intensifying impacts of wildfires and climate change on water quality.

4. Conclusions
This study provides a detailed assessment of wildfire and climate change impacts on

stream temperature and turbidity in the Clackamas and Russian River Watersheds, United
States, demonstrating the value of machine learning models in predicting post-fire water
quality changes. By employing Random Forest (RF) and Support Vector Regression (SVR),
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we investigated the complex interactions between climatic variables and hydrological
responses, with RF models outperforming SVR due to their ability to handle non-linear
relationships and identify key predictors. For example, RF achieved an R2 of 0.98 and a
root mean square error (RMSE) of 0.88 ◦C for stream temperature at the Estacada gauge in
the Clackamas Watershed, compared to 0.97 and 1.09 ◦C, respectively, for SVR. Similarly,
RF reduced turbidity prediction errors by over 15% compared to SVR at sites influenced by
high post-fire sediment loads. Sensitivity analysis revealed that the 7-day average daily
maximum air temperature and mean discharge were the most influential predictors, reflect-
ing the role of short-term thermal dynamics and streamflow variability. Our comparison
of nested watersheds highlights how smaller watersheds with higher burn percentages
(e.g., 18% at Hopland) are more susceptible to stream temperature increases of up to 2.2 ◦C
under RCP 8.5 and turbidity spikes exceeding 70 NTU during storm events.

The study findings provide valuable insights for localized adaptive water management
strategies. While the study focuses on two distinct watersheds, the framework can be
adapted to other regions facing similar challenges, offering a scalable approach for assessing
post-fire water quality dynamics across various hydrological settings. Future research could
further refine this framework by applying it to watersheds with diverse climatic and land-
use conditions to evaluate its generalizability. Incorporating time-varying post-fire recovery
metrics, such as vegetation indices and soil moisture, can enhance long-term predictions of
watershed recovery. Consistent water quality monitoring using high-frequency sensors
remains essential for improving model calibration and validation. Overall, this study
underscores the importance of data-driven tools for adaptive water resource management in
wildfire-prone regions. By identifying key drivers of post-fire water quality and projecting
future stream conditions under different climate scenarios, the models developed here
support proactive strategies that enhance the resilience of water resources and ecosystems
amid escalating wildfire and climate impacts.
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