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Abstract: Alluvial aquifers are vital for agricultural communities in semiarid regions,
where groundwater quality is often constrained by seasonal and spatial salinity varia-
tions. This study employed geostatistical methods to analyze the spatial and temporal
variability of electrical conductivity (EC) and the sodium adsorption ratio (SAR) and
elaborate an indicative quality map in the Mimoso Alluvial Aquifer, Pernambuco, Brazil.
Groundwater samples were collected and analyzed for cations, total hardness (TH), and
the percentage of sodium (PS). Moreover, the relation between EC and the SAR was used
to determine the groundwater quality for irrigation. Cation concentrations followed the
order Ca2+ > Mg2+ > Na+ > K+. EC and the SAR exhibited medium to high variability, with
spatial dependence ranging from moderate to strong, and presented a strong cross-spatial
dependence. Results showed that sequential Gaussian simulation (SGS) provided a more
reliable groundwater classification for agricultural purposes compared to kriging methods,
enabling a more rigorous evaluation. Based on the strong geostatistical cross correlation
between EC and RAS, a novel water quality index was proposed, properly identifying
regions with lower groundwater quality. The resulting spatial indicator maps classified
groundwater as suitable (64.7%), restricted use (2.08%) and unsuitable (2.38%) for irrigation.
The groundwater quality maps indicated that groundwater was mostly suitable for agricul-
ture, except in silty areas, also corresponding to regions with low hydraulic conductivity
at the saturated zone. Soil texture, rainfall, and water extraction significantly influenced
spatial and temporal patterns of groundwater quality. Such correlations allow a better
understanding of the groundwater quality in alluvial valleys, being highly relevant for
water resources management in semiarid areas.

Keywords: groundwater quality; electrical conductivity; SAR; geostatistical analysis;
semiarid areas
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1. Introduction
In semiarid regions, groundwater is an essential source of water, being crucial for the

development of the region [1]. The reliance of irrigated agriculture in these regions on
groundwater and its unrestricted use can lead to aquifer depletion and a deterioration in
water quality [2]. The qualitative and quantitative availability of this resource is impacted by
climatic variations, farming activities, and pumping [3,4]. The alluvial valleys of semiarid
regions have a high potential for small-scale irrigation; however, they are prone to the
build-up of salts in both the unsaturated and saturated zones, depending, among other
factors, on the spatial distribution of their hydraulic characteristics [5].

Groundwater salinization is a recurrent and critical environmental and socioeconomic
problem in semiarid regions. It is mainly caused by the interaction of water with rocks,
hydrodynamic conditions, climatic events of precipitation and evapotranspiration, as well
as human activities such as over-exploitation of underground resources and incorrect
irrigation management [6–8]. Excessive abstraction of groundwater in recent decades has
led to a decrease in water quality, and they also warn of the scarcity of studies on the
availability of adequate water for irrigation [9]. Groundwater quality in semiarid alluvial
valleys is highly variable seasonally due to the influences of hydrological and climatic
conditions, such as the dilution of salts by rainfall recharge and the concentration of salts
by greater evaporation of water in the dry season [10].

The salinization of groundwater presents a significant risk to human health and has
a considerable impact on the environment [11,12]. This process can have detrimental
consequences on various productive areas, leading to the infertility of agricultural soils [13].
Additionally, irrigating soils with low permeability using saline water can cause a gradual
yet excessive build-up of salts in soils [6]. The quality of irrigation water is determined by
several types of salts that contribute to its salinity and sodicity [2]. Electrical conductivity
(EC) is an effective indicator of salinity, while the sodium adsorption ratio (SAR) is com-
monly used to assess the suitability of water for irrigation [14]. EC reflects the total amount
of dissolved ions in the water, while the SAR indicates the proportion of dissolved sodium
in relation to calcium and magnesium [15]. Examining various water quality parameters,
such as EC and the SAR, can give a comprehensive understanding of groundwater quality
and its suitability for irrigation [16].

To effectively manage and sustain agriculture, it is essential to be aware of the spatial
variations in groundwater quality and its influencing factors [6]. The significance of
assessing groundwater quality for proper water resource planning and management, which
requires an accurate and reliable analysis and prediction model, has been underlined by
several studies [17,18]. Geostatistics is a method largely used by researchers to spatially
estimate groundwater parameters [19]. For example, the indicator kriging method was
used to pinpoint suitable areas for irrigation systems in southern Iran, demonstrating the
usefulness of geostatistical techniques for the spatial assessment of groundwater quality by
mapping EC and the SAR [20]. Similarly employed geostatistical methods to ascertain the
spatial distribution of groundwater quality parameters in Northeast Algeria, thus allowing
the identification of groundwater suitability through the intersections between EC and the
SAR kriging [14].

Although kriging provides good local accuracy, it is subject to uncertainties and
tends to smooth variability, which can lead to underestimations of spatial variations in the
estimated values compared to observed values. Additionally, it may not fully capture the
spatial uncertainty inherent in the estimates [21,22]. On another hand, stochastic simulation
techniques such as sequential Gaussian simulation (SGS) can generate alternative and
equally probable realizations for spatial variables, considering the spatial variability of
data at sampled locations and the variability of estimates at unsampled locations [23–25].
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Stochastic realizations reduce the smoothing effect and can more accurately represent spatial
heterogeneity. Recent studies have provided predictions of spatial heterogeneity through
kriging, robust quantification of resulting uncertainty, and the probability of exceeding
certain threshold concentration values through stochastic simulation in groundwater. SGS
has also been used to evaluate the reliability of groundwater flow simulations to assess the
heterogeneity of hydrogeological parameters [26–28].

Mimoso Alluvial Valley, located in the semiarid region of northeastern Brazil, is part
of the Nossa Senhora do Rosário rural settlement, where small-scale agriculture is prac-
ticed using groundwater irrigation [4]. The region faces significant challenges related to
groundwater salinity and sodicity, which directly threaten crop yields and soil health, exac-
erbating the already precarious conditions of agricultural sustainability. Previous studies
have evaluated the saline dynamics of the aquifer, identifying spatiotemporal patterns of
variability and spatial dependence in electrical conductivity (EC) through geostatistical
techniques [4,10]. Despite these efforts, there remains a high level of uncertainty regard-
ing the temporal dynamics of salinity, particularly its relationship with episodic recharge
events and periods of intense evapotranspiration [29]. Additionally, the interplay between
irrigation water quality and its spatiotemporal variability is poorly understood, leaving
farmers with limited management alternatives to mitigate salinity risks effectively.

To address these gaps, this study aims to: (i) assess the groundwater quality in Mimoso
Alluvial Valley by measuring soluble salts; (ii) map EC and the SAR using geostatistical
methods, including kriging and sequential Gaussian simulation; (iii) propose a groundwa-
ter quality index for irrigation purposes; and (iv) identify areas with suitable groundwater
quality for agriculture through the integration of these indicators. By providing a com-
prehensive analysis of the spatial and temporal dynamics of irrigation water quality, this
research seeks to offer critical insights to improve water sustainability and support irrigated
agriculture in the region.

2. Material and Methods
2.1. Study Area

This study was conducted in Mimoso Alluvial Valley (MAV), located in Alto Ipanema
Basin, a smaller sub-basin of Ipanema River Basin in Pernambuco, northeastern Brazil
(Figure 1). Covering an area of 100–136 hectares, the valley is bordered by the slopes of
the crystalline basement and runs along the alluvial terrace of the Ipanema River. The
main watercourse in the basin is the Mimoso River, an intermittent stream characteristic of
semiarid regions, which is hydraulically connected to the aquifer along its entire length [5].
According to the Köppen classification, the climate in the region is BSsh (extremely hot and
semiarid), with an average annual rainfall of 630 mm [4].

MAV has a shallow unconfined aquifer with an average thickness of approximately
10 m, approximately 3 km in length and 300 m in width, with a natural topographic slope of
approximately 0.3% (West–East) [30]. The soil in the area is predominantly Fluvic Neosol,
which is a heterogeneous deposit containing medium to high silt content [30].
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Figure 1. South America map, with location of the semiarid region in Brazil (A); Pernambuco State,
and location of Ipanema River Basin (B); Mimoso Alluvial Valley, Alto Ipanema Basin, Pesqueira mu-
nicipality of Pernambuco State, Brazil (C); saturated hydraulic conductivity map of Mimoso Alluvial
Aquifer (D); soil surface texture map of Mimoso Alluvial Aquifer (E); well (F) and piezometers (G)
monitoring; and piezometers installation (H,I).

Mimoso Alluvial Valley (MAV) consists of a narrow alluvial formation primarily
composed of fine to medium sands with heterogeneous characteristics, mixed with varying
amounts of silt and clay [30]. The sandy sediments are rich in coarse quartz particles
and fragments of pink feldspar, along with the presence of biotite, muscovite, and gneiss
minerals [4]. To the north, a granite complex, including granite, syenite, and gabbro, is
found, which likely contributes quartz particles to the alluvial fans in the region. While
soils in the crystalline terrains are generally shallow, with limited infiltration capacity and
low water retention, the alluvial deposits differ significantly, offering higher porosity and
greater hydraulic conductivity.

The hydraulic conductivity of the aquifer ranges from 0.1 to 125.0 m day−1, while
the saturated hydraulic conductivity of the subsoil varies between 0.07 and 93.0 m day−1,
with an average of 7.13 m day−1 [4]. Loam and sandy–loam soils dominate the area, with
loamy soils favoring capillary rise and surface accumulation of excess rainfall and irrigation
water due to their low infiltration rates. Regional stratigraphy and hydrology significantly
influence salinity and sodicity dynamics. In finer-textured soils, water tends to accumulate
at or near the surface, leading to higher evaporation rates and potential salt accumulation.

Groundwater flow and salt transport pathways are monitored using wells and
piezometers, classified based on hydraulic conductivity: low hydraulic conductivity
(Log(K) ≤ 0.8 m day−1) and high hydraulic conductivity (Log(K) > 0.8 m day−1) [4].

On the surrounding slopes, soils of the Fluvisols, Regosols, Lithosols, Litholic, Re-
golitic Neosols, and Argisols types are present, with clayed lens as impediment lay-
ers. Saturated zone monitoring through piezometers [4] reveals that the average wa-
ter table depth fluctuates between 2 and 4 m during the rainy and dry periods, respec-
tively. The pedological classification [31] of the valley is as follows (Figure 2): RR1:
Regolithic Neosol + Litholic Neosol (both with a gently undulating phase); RR2: Regolithic
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Neosol (Eutrophic Solodic, medium (light) texture, with flat and gently undulating relief
phases); RU1: Fluvic Neosol Eutric Medium Sand (Eutrophic Typical, sandy or medium
(light) texture, moderately drained); RU2: Fluvic Neosol Eutric Medium (Eutrophic Typ-
ical, medium (light) texture, moderately drained); RU3: Fluvic Neosol Sodium Medium
(Sodic Typical, medium (light) or sandy texture, moderately drained); RU4: Fluvic Neosol
Sodic Medium Sand (Sodic Typical, medium or sandy texture, moderately drained);
RU5: Fluvic Neosol Sodium Saline (Sodic Saline, medium or medium (light) texture,
imperfectly drained); RU6: Fluvic Neosol Saline Sodium (Sodic Saline, medium texture,
imperfectly drained).

Water 2025, 17, x FOR PEER REVIEW 5 of 25 
 

 

Saturated zone monitoring through piezometers [4] reveals that the average water table 
depth fluctuates between 2 and 4 m during the rainy and dry periods, respectively. The 
pedological classification [31] of the valley is as follows (Figure 2): RR1: Regolithic Neosol 
+ Litholic Neosol (both with a gently undulating phase); RR2: Regolithic Neosol (Eu-
trophic Solodic, medium (light) texture, with flat and gently undulating relief phases); 
RU1: Fluvic Neosol Eutric Medium Sand (Eutrophic Typical, sandy or medium (light) tex-
ture, moderately drained); RU2: Fluvic Neosol Eutric Medium (Eutrophic Typical, me-
dium (light) texture, moderately drained); RU3: Fluvic Neosol Sodium Medium (Sodic 
Typical, medium (light) or sandy texture, moderately drained); RU4: Fluvic Neosol Sodic 
Medium Sand (Sodic Typical, medium or sandy texture, moderately drained); RU5: Fluvic 
Neosol Sodium Saline (Sodic Saline, medium or medium (light) texture, imperfectly 
drained); RU6: Fluvic Neosol Saline Sodium (Sodic Saline, medium texture, imperfectly 
drained). 

 

Figure 2. Soil map Location of Mimoso Alluvial Valley and locations of irrigated plots (adapted 
from [31]). 

The most important economic activity in MAV is agriculture, with approximately 51 
plots designated for family farming. Each irrigated plot is equipped with an irrigation 
system supplied by one of the monitoring wells used for analysis. The primary crops cul-
tivated in the plots were: carrot (Daucus carota L.), cabbage (Brassica oleracea L. var. capitata 
L.), bell pepper (Capsicum annum), tomato (Lycopersicon esculentum), watermelon (Citrullus 
lanatus), coriander (Coriandrum sativum), gherkin (Cucumis anguria), and maize (Zea mays). 
To estimate water exploitation for irrigation in MAV, the actual consumption was consid-
ered for each farm and its respective farmers based on the water requirements of the irri-
gated crops [4]. 

2.2. Meteorological Data 

The meteorological data were collected using a Campbell Scientific automatic 
weather station installed in MAV from 2000 to 2019. This station provided daily records 
of air temperature, relative humidity, global solar radiation, atmospheric pressure, wind 
speed and direction, and rainfall. Reference evapotranspiration was obtained from the 
climatological data recorded in the automatic station and calculated using the FAO Pen-
man–Monteith method [32]. 

2.3. Groundwater Quality Data 

For this study, 12 months of electrical conductivity data were collected from January 
2000 to December 2019 from a network of 54 piezometers and 33 wells [4]. Due to 
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from [31]).

The most important economic activity in MAV is agriculture, with approximately
51 plots designated for family farming. Each irrigated plot is equipped with an irrigation
system supplied by one of the monitoring wells used for analysis. The primary crops
cultivated in the plots were: carrot (Daucus carota L.), cabbage (Brassica oleracea L. var.
capitata L.), bell pepper (Capsicum annum), tomato (Lycopersicon esculentum), watermelon
(Citrullus lanatus), coriander (Coriandrum sativum), gherkin (Cucumis anguria), and maize
(Zea mays). To estimate water exploitation for irrigation in MAV, the actual consumption
was considered for each farm and its respective farmers based on the water requirements
of the irrigated crops [4].

2.2. Meteorological Data

The meteorological data were collected using a Campbell Scientific automatic weather
station installed in MAV from 2000 to 2019. This station provided daily records of air tem-
perature, relative humidity, global solar radiation, atmospheric pressure, wind speed and
direction, and rainfall. Reference evapotranspiration was obtained from the climatological
data recorded in the automatic station and calculated using the FAO Penman–Monteith
method [32].

2.3. Groundwater Quality Data

For this study, 12 months of electrical conductivity data were collected from January
2000 to December 2019 from a network of 54 piezometers and 33 wells [4]. Due to decom-
missioning or disrepair of wells and piezometers, only 36 piezometers and 15 wells were
considered. The piezometers had a mean depth of six meters and a 75 mm diameter, present
screens and gravel filters. The wells, on the other hand, varied in size, comprising com-
munity wells with larger diameters and equipped with multilevel radial collectors aimed
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at increasing groundwater exploitation, and individual wells for supplying individual
irrigation plots.

The water samples were collected, transferred to a sealed container and packed in a
thermal box. The sampling was conducted within the first 15 days of each month, with
slight variations of 2 to 5 days between months, from 8 am to 2 pm. The conditions of
sample collection varied according to the climatic conditions of each day. However, all
procedures were standardized to ensure consistency: the equipment and instruments used
during sampling, the storage temperature, and the time elapsed between sample collection
and salt determination were maintained constant throughout this study. The electrical
conductivity (EC) was read using a conductivity meter (HANNA-HI 9835, EMIN, Ha
Noi City, Vietnam) adjusted to the sample temperature. The Na+ and K+ contents were
determined by flame emission photometry and the Ca2+ and Mg2+ contents by titration in
EDTA after the sample had been buffered, for the months of May to November. The total
water hardness (TH) was calculated using Equation (1) [33].

TH =
(

Ca2+ + Mg2+
)
+ 50 (1)

where Ca2+ = calcium concentration in mmolc L−1; Mg2+ = concentration of magnesium
in mmolc L−1.

The total water hardness results were categorized into four restriction levels [34]: mild
(TH < 75); moderate (75 < TH < 150); high (150 < TH < 300); and very high (TH > 300). The
percentage of sodium (SP) was used to assess the suitability of water for agricultural uses,
being determined by Equation (2) [34], in which all variables are expressed in mmolc L−1.

SP =
Na+

Ca2+ + Mg2+ + Na+ + K+
× 100 (2)

where Na+, K+, Ca2+, Mg2+ correspond to the concentrations of sodium, potassium,
calcium and magnesium in water, respectively, in mmolc L−1.

The percentage of sodium was classified into five groups: very low (SP ≤ 20); low
(20< SP ≤ 40); moderate (40 < SP ≤ 60); high (60 < SP ≤ 80); and very high (SP > 80). In
the context of groundwater quality classification, the classification framework [35] served
as the primary reference. The irrigation water classification was carried out in accordance
with the SAR (mmolc L−1)0.5 [36], as shown in Equation (3).

SAR =
Na+

2
√

(Ca2++Mg2+)
2

(3)

where ion concentrations of Na+, Ca2+, and Mg2+ are expressed in mmolc L−1.
The categorization of irrigation water quality adhered to the framework introduced

by the United States Salinity Laboratory, known as the Richards diagram [37]. In this
classification, the parameters of electrical conductivity (indicative of salinity risk) and the
sodium absorption ratio (SAR, indicative of sodium adsorption risk) are utilized. These
parameter values are graphically represented on the diagram, which is partitioned into four
discernible tiers, facilitating the systematic classification of water samples. Table 1 furnishes
the elucidation of diagram classes, predicated upon the seminal work of Richards [36].



Water 2025, 17, 410 7 of 25

Table 1. Groundwater classification for irrigation purpose [36].

Salinity Sodicity

C1 Low Can be used for most crops and on
many soil types. S1 Low Suitable for use on almost all soil

types.

C2 Medium
Can be used, provided that

moderate leaching of salts occurs in
the soil.

S2 Medium
May pose a risk of sodicity in
fine-textured soils with low

leaching rates.

C3 High Should not be used on soils with
drainage restrictions. S3 High May result in dangerous levels of

exchangeable sodium in most soils.

C4 Very High Not suitable for irrigation. S4 Very High Unsuitable for irrigation, except
when salinity is low or medium.

The groundwater quality for the irrigation indicator (GWQ) categorizes water suit-
ability for irrigation into four classes [36,37]. To develop this indicator for agricultural
suitability, soil characteristics from the alluvial valley were considered, including soil type,
hydraulic properties, salinization susceptibility, and texture.

2.4. Geostatistical Methods

The statistical distribution of data was evaluated according to the normal distribution,
using the Kolmogorov–Smirnov (KS) test, at a probability level of 0.05. The KS test is largely
applied and appropriate for hydrogeological applications and environmental research, for
sample sizes of at least 50 points. According to the coefficient of variation (CV) values,
variability was classified as low (CV ≤ 12%); medium (12 < CV ≤ 60%) and high variability
(CV > 60%) [38].

Outliers were filtered out considering data below the lower limit (Li) or above the
upper limit (Ls) as discrepant [39]. However, during the kriging process, outliers were also
considered. Such points, although deviating from the mean, were deemed representative
of actual field conditions, thereby enhancing the accuracy of the resulting maps.

For the geostatistical analysis, the GEOEAS geostatistical tool was used. The spa-
tial dependence of salinity and sodicity was analyzed using the classic semivariogram
constructed from the semivariance estimate given by Equation (4) [40].

γ̂(h) =
1

2N(h)∑
n
i=1[Z(Xi + h)− Z(Xi)]

2 (4)

where γ̂(h) = estimated value of the semivariance of the experimental data; Z(Xi + h)
and Z(Xi) = observed values of the regionalized variable; and N(h) = number of pairs of
measured values, separated by a distance h.

With the experimental semivariogram in hand, the exponential, gaussian and spherical
models were tested. The mathematical adjustment made it possible to define the following
parameters: nugget effect (C0), range (A) and sill (C1).

The model that presented the best fit to the experimental values was chosen, according
to the leave-one-out cross-validation technique [41], in which each of the measured values
is interpolated by the kriging method, and the measured values are then replaced by the
estimated and then calculated the distribution of standardized errors, which should present
a mean close to zero and standard deviation close to one [40]. This method provides reliable
and unbiased estimates of model efficiency.

The spatial dependence index (SDI) was calculated as the ratio between the nugget
effect and the sill of theoretical semivariograms [42]. This criterion establishes a strong
dependence when a given ratio is less than 25%, moderate for a ratio between 25 and 75%,
and weak when the ratio is greater than 75%.
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After validating the semivariogram, universal kriging of the data was applied and spa-
tial distribution maps were created using the Surfer for Windows software, version 8.0 [43].
Kriging provides unbiased spatial predictions and quantify estimation errors through the
kriging variance and reproduces the actual values at the measured points. This feature
makes it particularly suited for assessing groundwater quality indicators, as it accounts
for spatial dependence in the dataset [6,30]. However, kriging assumes a stationary mean
and variance within the study area, which may not fully capture local variations in highly
heterogeneous environments like Mimoso Alluvial Valley.

2.5. Sequential Gaussian Simulation

The sequential Gaussian simulation (SGS) method was applied to the groundwater
quality for the irrigation indicator (GWQ), generating simulated values at each location
based on a conditional cumulative distribution function (CCDF) estimated at each step.
To perform SGS, the original data needed to be transformed into a gaussian distribution.
This transformation was achieved by converting the normal score [25]. This approach
was selected to complement kriging by providing a probabilistic framework that better
represents spatial uncertainty and preserves natural variability, particularly in areas with
sparse data.

The CCDF used in SGS relies on the mean and covariance structure of the dataset,
assuming a random gaussian field. By repeatedly running these sequential steps with
varying random paths, different spatial distribution realizations are generated. The SGS
algorithm was run 100 times to generate multiple realizations, ensuring robust probability
calculations and variability representation [24]. This method addresses limitations of
kriging, that lead to a smoothing effect, resulting in an overestimation or underestimation
of values, thereby restricting its applicability to assess uncertainties for some situations.
Nevertheless, SGS requires careful parameterization, including semivariogram modeling
and normal score transformation. The implementation was conducted using GS+ software
(version 7.0).

2.6. Multivariate Analysis

Principal Component Analysis (PCA) was conducted using the Comprehensive R
Archive Network (CRAN) package in R programming to determine the key variables, such
as rainfall, evapotranspiration and groundwater abstraction, that significantly influence
the dynamics of groundwater salinity and sodicity.

3. Results and Discussion
3.1. Climatic Dynamic

The time series of monthly precipitation and evapotranspiration for the year 2019 are
presented in Figure 3. Average monthly precipitation was higher than normal in March,
July, and December, and lower than usual for all other months. Evapotranspiration values
generally stayed within the historical average range but showed more fluctuation from
May to August due to the increased rainfall and lower air temperatures. The average
groundwater exploitation rates corresponded inversely to the water availability from
precipitation, showing high values from October to December, with a peak in 2019 for
October, which is typically a low-rainfall month in the region. It is observed that after the
rainy period of June and July, the month of August already had a significant exploitation
rate, despite the low precipitation index.
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evapotranspiration; Et0* = historical average evapotranspiration; Qmean = daily exploitation
per month; ECmean = mean electrical conductivity; ECmin = minimum electrical conductivity;
(D) ECmax = maximum electrical conductivity).

The electrical conductivity (EC) values ranged from 0.35 to 25.79 dS m−1, with standard
deviations of 3.04 to 7.3, indicating a high degree of variation from the mean. This was
supported by high values of coefficients of variation (≤1.94). Extreme values in datasets
of Mimoso Alluvial Valley were observed over three consecutive years (2007, 2008 and
2009) [10]. Altogether, nine piezometers exhibited extremely high EC readings throughout
the year, with three of them showing extremely high values in every monitored month.
These values were initially filtered out for the estimation of the mean semivariogram. By
excluding these outliers, the dataset achieved a more balanced representation of the central
tendency and dispersion, facilitating a more accurate geostatistical analysis while still
capturing the overall variability of EC and the SAR in the study area. However, for the
kriging interpolation, the outlier data were reintroduced. Despite their divergence from
the overall dataset mean, these values were retained to ensure the mapping accurately
reflecting the actual field conditions. Their inclusion acknowledges the existence of specific
areas with significantly higher salinity, which are critical for understanding the spatial
variability and potential management implications. These nine piezometers, which were
excluded from the initial analysis, were located in the longitudinal region of the valley [6,44].
This area has a greater accumulation of salt due to the confluence of the Ipaneminha and
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Mimoso streams and is characterized by a high concentration of salts in both the soil and
the groundwater.

Filtered data were employed to compute the mean semivariogram within the study
area. The coefficient of variation for electrical conductivity (EC), after the exclusion of
outliers, exhibited a range of 30–40%, categorizing it as displaying moderate variation.
This adjustment reflects a reduction in variability compared to the unfiltered data, which
initially showed a high coefficient of variation. This data normalization procedure proved
successful, with the Kolmogorov–Smirnov test at a 5% significance level yielding Dn (max)
values of 0.13, 0.08, 0.13, 0.08, 0.21, 0.15, 0.18, 0.14, 0.21, 0.08, 0.15, 0.21 and corresponding
p-values of 0.48, 0.96, 0.65, 0.99, 0.13, 0.20, 0.19, 0.41, 0.40, 0.12, 0.17, and 0.22 for the months
spanning from January to December, respectively.

3.2. Groundwater Quality

Statistics for major ions and SAR data in 2019 are listed in Table 2. Based on the mean
values the order of these cations is Ca2+ > Mg2+ > Na+ > K+. There was a wide range of
variation for all ions throughout all months, with Na+, Ca2+, and Mg2+ exhibiting the most
variability. The average concentrations of Ca2+, Mg2+, Na+, and K+ were 38.4%, 38.3%,
13.8%, and 9.4%, respectively, calculated based on their eight concentrations.

Table 2. Monthly descriptive statistics of groundwater chemical parameters in Mimoso Alluvial Valley.

May Jun Jul Aug Sep Oct Nov

A. Sodium (mg L−1)
Number of Samples 41 40 38 40 41 40 41
Mean 125 114.4 91.5 93.3 118.5 126.5 118.2
Maximum 595.2 609.7 609.7 541.8 554.5 555.4 577.5
Minimum 44.3 11 8.3 46.9 61.2 60.3 53.7
Standard Deviation 133.8 114.2 108.1 90.1 103.9 117.2 104.4
Coefficient of Variation 1.07 1 1.18 0.97 0.88 0.93 0.88

B. Potassium (mg L−1)
Mean 68.7 79 75.9 74.3 85.5 74.6 74.8
Maximum 95.1 110.3 110.3 108.9 113.5 95.1 108.9
Minimum 15.6 1.1 15.6 30 37.4 41.6 33.7
Standard Deviation 20.2 25 23.2 19.7 20.5 15.7 21.9
Coefficient of Variation 0.29 0.32 0.31 0.27 0.24 0.21 0.29

C. Calcium (mg L−1)
Mean 332.9 262.2 242.9 347.4 338.3 374.4 278.6
Maximum 2905.8 1282.6 721.4 1082.2 1683.4 1683.4 1603.2
Minimum 80.2 48.1 60.1 100.2 120.2 80.2 56.1
Standard Deviation 459.6 223.2 160.8 218.9 305 388.2 308.7
Coefficient of Variation 1.38 0.85 0.66 0.63 0.9 1.04 1.11

D. Magnesium (mg L−1)
Mean 294.4 284.7 260.8 217.6 410.2 309.6 394.3
Maximum 1507.2 1653.1 1337.1 875.2 2042 1416.1 2066.4
Minimum 12.2 24.3 24.3 24.3 24.3 36.5 24.3
Standard Deviation 347 276.6 252.6 188 509 279.9 415.9
Coefficient of Variation 1.18 0.97 0.97 0.86 1.24 0.9 1.05

E. Total Hardness (mmol L−1)0.5

Mean 90.8 86.9 84.1 85.2 100.6 94.2 96.4
Maximum 278 250 168.0 160.0 236.1 176.0 260.0
Minimum 60 66 66.0 68.0 60.0 68.0 68.0
Standard Deviation 43.6 30.9 21.4 17.9 42.9 28.0 42.8
Coefficient of Variation 47.9 35.5 25.4 21.0 42.6 29.8 44.4
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Table 2. Cont.

May Jun Jul Aug Sep Oct Nov

F. Sodium Adsorption Ratio (mmol L−1)0.5

Mean 6.7 6.7 5.8 5.3 7 7 6.5
Maximum 19.4 22.5 35.1 18.9 30.5 22 15.4
Minimum 3 0.8 0.4 3.3 2.5 2.7 2.9
Standard Deviation 3.6 3.6 6 2.8 6 4.7 2.7
Coefficient of Variation 0.54 0.54 1.03 0.53 0.86 0.67 0.42

G. Electrical Conductivity (dS m−1)
Mean 1.67 1.41 1.45 0.79 1.26 1.39 1.43
Maximum 18.43 19.37 19.37 1.60 15.00 16.65 20.90
Minimum 0.35 0.25 0.26 0.34 0.39 0.35 0.51
Standard Deviation 3.57 3.15 3.23 0.30 2.22 2.54 3.04
Coefficient of Variation 2.13 2.24 2.22 0.38 1.76 1.82 2.13

The Ca2+/Mg2+ is also a key indicator of water hardness, which is an important
hydrogeochemical indicator of water composition, as it reflects the dissolution of silicate
minerals within the water. In the present study, this ratio was approximately 1, indicating
that dolomite from the lens rock is undergoing dissolution [45]. The average values of
total hardness for May, June, July, August, October and November were recorded as
90.8; 86.9; 84.1; 85.2; 100.6; 94.2 and 96.4 (mmol L−1)0.5, respectively, indicating that the
water was classified as ranging from moderate to hard throughout all months. Similar
values were found in southwestern Nigeria and concluded that values below 600 mg L−1

are not considered to pose any environmental risks and are safe to use [46]. The main
factors responsible for the enrichment of groundwater with magnesium and calcium
are Ca2+–Mg2+ exchanges stemming from the interaction between water and carbonates
present in the rock, as well as ionic exchanges between Ca2+, Mg2+ and Na+ [47].

Na+ and K+ concentrations ranged from 8.3 to 609.7 mg L−1 and from 1.1 to
113.5 mg L−1, respectively, showing high and medium variability. The groundwater K
contents were in general low, with a high concentration in places where fertilizers in the
form of potassium sulfate, potassium chloride or potassium nitrate are used in agricultural
activities [48].

The relationship between the Na+ content and other cations was expressed as the
percentage of sodium (PS). The average percentages for May, June, July, August, October,
and November were 17.9%, 18.2%, 15.7%, 14.6%, 14.2%, 16.7%, and 15.8%, respectively. The
results do not indicate sodium-related issues; however, three monitoring points consistently
showed elevated percentages ranging from 60% to 72% during the evaluated months.
Similar findings were reported when assessing the spatial variation in water quality in
the Doukkala plain, Morocco, that irrigation with water carrying a sodium percentage
exceeding 60% could result in sodium accumulation in the soil, potentially leading to soil
structure degradation [3].

The sodium adsorption rate (SAR), ranged from 0.8 to 35.1 (mmolc L−1)0.5, being
classified as moderate to strong. The correlation values between ions can be used to
determine the origin of ions in groundwater, where the increase or decrease in ions in
groundwater is used as an indication of mineral dissolution [14]. Spearman’s correlation
between salt contents, EC and the SAR for May to November 2019 can be seen in Table 3.
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Table 3. Spearman’s correlation between salt contents, electrical conductivity (EC) and the sodium
adsorption ratio (SAR) from May to November 2019.

A. May B. June

EC Na+ K+ Ca2+ Mg2+ SAR R EC Na+ K+ Ca2+ Mg2+ SAR R

EC 1.00 EC 1.00

Na −0.10 1.00 Na 0.44 1.00

K −0.48 0.38 1.00 K −0.25 −0.22 1.00

Ca −0.07 0.65 0.31 1.00 Ca 0.49 0.58 0.08 1.00

Mg −0.01 0.93 0.42 0.46 1.00 Mg 0.58 0.84 −0.12 0.58 1.00

SAR 0.67 −0.15 −0.43 −0.04 −0.07 1.00 SAR 0.72 0.17 −0.24 0.10 0.25 1.00

R −0.06 0.31 −0.09 0.15 0.21 −0.04 1.00 R −0.11 0.05 0.12 0.01 0.10 −0.03 1.00

C. July D. August

EC Na+ K+ Ca2+ Mg2+ SAR R EC Na+ K+ Ca2+ Mg2+ SAR R

EC 1.00 EC 1.00

Na −0.06 1.00 Na −0.15 1.00

K −0.16 0.32 1.00 K −0.17 −0.12 1.00

Ca −0.07 0.39 0.29 1.00 Ca 0.46 0.11 −0.21 1.00

Mg −0.05 0.77 0.32 −0.11 1.00 Mg −0.20 0.18 −0.10 −0.15 1.00

SAR 0.91 −0.11 −0.14 −0.04 −0.14 1.00 SAR −0.03 −0.12 0.26 −0.21 0.20 1.00

R 0.20 −0.10 −0.34 0.07 −0.20 0.15 1.00 R 0.02 −0.21 −0.12 0.11 0.24 −0.04 1.00

E. September F. October

EC Na+ K+ Ca2+ Mg2+ SAR R EC Na+ K+ Ca2+ Mg2+ SAR R

EC 1.00 EC 1.00

Na −0.13 1.00 Na −0.19 1.00

K −0.22 0.38 1.00 K 0.13 −0.16 1.00

Ca −0.16 0.25 0.30 1.00 Ca 0.07 0.44 −0.06 1.00

Mg −0.14 −0.19 −0.44 −0.09 1.00 Mg −0.13 0.19 −0.12 −0.17 1.00

SAR 0.93 0.02 −0.09 −0.15 −0.21 1.00 SAR 0.68 −0.24 0.18 −0.16 0.02 1.00

R −0.05 −0.09 0.05 −0.16 −0.07 −0.04 1.00 R −0.08 −0.10 0.17 −0.12 0.04 −0.11 1.00

G. November

EC Na+ K+ Ca2+ Mg2+ SAR R

EC 1.00

Na −0.14 1.00

K −0.02 0.25 1.00

Ca 0.02 0.90 0.45 1.00

Mg −0.20 0.50 0.06 0.42 1.00

SAR 0.83 −0.17 0.18 −0.03 −0.27 1.00

R −0.08 0.80 0.34 0.82 0.43 −0.09 1.00

The correlation matrix showed positive and statistically significant correlations be-
tween the SAR and EC, as well as positive relationships among most analyzed cations
over the months. An exception was observed in August, where the SAR × EC correlation
was negative and non-significant. This result can be explained by analyzing the interplay
between climatic factors, reflecting the combined effects of low rainfall, high evapotranspi-
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ration, and anthropogenic factors, such as intensive irrigation and fertilizer application. In
August, as can be seen in Figure 2, accumulated precipitation (R = 7.8 mm) is low, while
evapotranspiration (ET0 = 159.2 mm) remained close to the historical average of 156.3 mm.
These conditions are characteristic of the beginning of the dry season, where minimum
precipitation and high evaporative demand reduce aquifer recharge and increase ground-
water salt concentration due to evaporation. Despite the high mean electrical conductivity
(ECmean = 1.39 dS m−1), the observed decrease in the SAR suggests a change in the ionic
composition of the groundwater, specifically the relative concentrations of Ca2+ and Mg2+.

This transition period between the wet and dry seasons typically represents a pe-
riod of intensified irrigation to support crops. The application of irrigation water, often
supplemented with fertilizers containing calcium or magnesium salts, may have dispropor-
tionately increased the concentrations of Ca2+ or Mg2+ in the groundwater. Furthermore,
previous studies indicate that the region studied is influenced by regional underground
flow and by contributions from runoff from the valley slopes that feed the water table, even
during the dry season, a fact that also contributes to the increase in salinity, both of the soil
and of the water in the central region of the alluvial valley, since it carries part of the salts
present in the soil from the weathered rocks at the hillslopes to this specific region of the
valley [5,10].

3.3. Spatial Distribuiton Map of EC and the SAR

The semivariograms scaled by variance for electrical conductivity, from January to
December 2019, are shown in Figure 4. The semivariograms were properly validated
according to the leave-one-out cross-validation criterion with a standard deviation close
to one (0.93; 1.10; 0.97; 0.92; 1.20; 0.98; 1.01; 1.09; 1.03; −0.86; 1.08; −0.95), as well as mean
errors close to zero (0.04; 0.14; −0.02; −0.01; 0.05; −0.01; −0.02; −0.05; −0.04; −0.06; −0.01;
0.05), from January to December 2019, respectively.

Water 2025, 17, x FOR PEER REVIEW 13 of 25 
 

 

between climatic factors, reflecting the combined effects of low rainfall, high evapotran-
spiration, and anthropogenic factors, such as intensive irrigation and fertilizer application. 
In August, as can be seen in Figure 2, accumulated precipitation (R = 7.8 mm) is low, while 
evapotranspiration (ET0 = 159.2 mm) remained close to the historical average of 156.3 mm. 
These conditions are characteristic of the beginning of the dry season, where minimum 
precipitation and high evaporative demand reduce aquifer recharge and increase ground-
water salt concentration due to evaporation. Despite the high mean electrical conductivity 
(ECmean = 1.39 dS m⁻1), the observed decrease in the SAR suggests a change in the ionic 
composition of the groundwater, specifically the relative concentrations of Ca2⁺ and Mg2⁺. 

This transition period between the wet and dry seasons typically represents a period 
of intensified irrigation to support crops. The application of irrigation water, often sup-
plemented with fertilizers containing calcium or magnesium salts, may have dispropor-
tionately increased the concentrations of Ca2⁺ or Mg2⁺ in the groundwater. Furthermore, 
previous studies indicate that the region studied is influenced by regional underground 
flow and by contributions from runoff from the valley slopes that feed the water table, 
even during the dry season, a fact that also contributes to the increase in salinity, both of 
the soil and of the water in the central region of the alluvial valley, since it carries part of 
the salts present in the soil from the weathered rocks at the hillslopes to this specific region 
of the valley [5,10]. 

3.3. Spatial Distribuiton Map of EC and the SAR 

The semivariograms scaled by variance for electrical conductivity, from January to 
December 2019, are shown in Figure 4. The semivariograms were properly validated ac-
cording to the leave-one-out cross-validation criterion with a standard deviation close to 
one (0.93; 1.10; 0.97; 0.92; 1.20; 0.98; 1.01; 1.09; 1.03; −0.86; 1.08; −0.95), as well as mean 
errors close to zero (0.04; 0.14; −0.02; −0.01; 0.05; −0.01; −0.02; −0.05; −0.04; −0.06; −0.01; 0.05), 
from January to December 2019, respectively. 

 

Figure 4. Semivariograms scaled by electrical conductivity variances and adjustments of the expo-
nential, gaussian and spherical models, from January to December (A–L) 2019. C0 represents the 
nugget effect, C1 the sill, A the model range and R2 the determination coefficient. 

Figure 4. Semivariograms scaled by electrical conductivity variances and adjustments of the expo-
nential, gaussian and spherical models, from January to December (A–L) 2019. C0 represents the
nugget effect, C1 the sill, A the model range and R2 the determination coefficient.

Electrical conductivity exhibits a spatial dependence structure in the studied area,
with ranges varying from 180 to 634 m. Spatial dependence can be considered strong for
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January, March, April, May, September, November, and December. For February, June,
July, August, and October, dependence was considered moderate. In the present study,
no clear dependence pattern was observed with respect to the dry and wet seasons, as
indicated by non-significant correlation coefficients (Table 3) between precipitation and EC.
This phenomenon can be attributed to water abstraction for agricultural activities in the
region, which disrupts the aquifer’s recharge process and, as a result, alters the dynamics
of salt dilution within the system.

Regarding the SAR, gaussian, spherical, and exponential models were fitted, as shown
in Figure 5. Semivariograms were properly validated using leave-one-out cross-validation
criteria, with standard deviations close to one (1.02, 1.14, 1.09, 1.11, 1.04, 1.02, 1.30) and
mean errors close to zero (−0.002, −0.003, 0.010, −0.003, −0.030, 0.128, 0.020).
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The ranges varied from 107 to 564 m, exhibiting strong spatial dependence over the
months, except for October, which showed moderate dependence. It was also not possible
to associate the model changes with a specific rainfall variation pattern.

In Figure 6, the crossed semivariograms are visualized for the SAR and EC, from
May to November 2019, in order to assess the co-regionalization between them. All fitted
semivariogram models were adjusted and properly validated according to the leave-one-
out cross-validation criterion. The spherical, gaussian and exponential models presented
standard deviation close to one (0.97; 1.01; 0.89; 0.99; 1.04; 0.95; 1.11), as well as the mean
errors close to zero (−0.06; 0.10; −0.02; −0.02; 0.02; −0.01; −0.02).
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The crossed semivariograms indicated a strong correlation between the variables with
determination coefficients (R2) greater than 80%. Experimental semivariances were ob-
tained considering at least 30 pair of points [40]. The identification of highly representative
models for the spatial behavior of the SAR and EC demonstrates the spatial correlation and
interdependence between these variables. In this context, combining both to determine a
water suitability class for agricultural purposes is well-founded and consistent, enabling
a more comprehensive and accurate assessment of water quality, which is essential for
sustainable management in vulnerable regions.

Ranges varied between 176 and 365 m, with moderate to strong spatial dependence.
For August, a negative correlation was observed, that is, the effects of increasing the sodium
adsorption ratio increased as the water salinity decreased. This behavior can be attributed
to the use of soil for agricultural purposes [48] and the consequent application of fertilizers,
which promote an ionic imbalance in the aquifer. Additionally, low salinity levels are often
associated with reduced concentrations of calcium and magnesium as water hardness is the
main contributor to salinity in the MAV region. This imbalance, combined with the use of
fertilizers, leads to an increase in the relative proportion of sodium ions and, consequently,
a higher SAR [49].

The adjusted models were used to create isoline maps of electrical conductivity, as
shown in Figure 7, using the kriging technique. According to Richards’ classification [36],
the groundwater samples showed varying salinity levels throughout the year. Low salinity
was observed in 14% to 52% of the samples, with the highest percentages occurring from
September to October. Moderate salinity predominated, ranging from 37% to 77%, while
high salinity was less frequent, appearing in 3% to 18% of the samples, with lower values
generally observed in the second half of the year.
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The regions with the highest EC are located at the boundaries of the valley, where soil
texture is finer, and the impediment layer (e.g., hard-rock granite complex basement) is
closer to the soil surface, hence with lower aquifer thickness [4,10]. Previous studies indi-
cated that this region is influenced by the regional underground flow and by contributions
of lateral flow and groundwater flow through the upper fissured layer from the slopes of
the valley that feed the water table, which also favors the increase in salinity, since it carries
part of the salts present in the soil of the hillslopes for this region, and the dissolution of
salts from the saprolite zone [5,44].

It was observed that the electrical conductivities that presented values lower than
4 dS m−1 were highly influenced by diffuse recharge from precipitation. Areas that had
groundwater with electrical conductivity above this value tended not to suffer variations,
maintaining high concentrations over time. This stability in salinity suggests a persistent
risk of soil salinization and reduced crop productivity, emphasizing the importance of
proactive management strategies. Note that in February (Figure 5B) there were higher EC
values in the western region, to the detriment of the leaching of salts from the soil profile
into the aquifer. In August, on the other hand, had the lowest concentration of salts in the
water due to the rainfall events accumulated over the months. In September, there is a new
dynamic of salt concentration in the water, due to greater evapotranspiration and constant
water withdrawals, which increase in this period.

The spatiotemporal dynamics of the sodium adsorption ratio is shown in the kriging
maps in Figure 8.
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Figure 8. Sodium adsorption ratio (SAR) kriging maps from May to November (A–G) from 2019,
with agricultural plots and saturated electrical conductivity contours.

The SAR spatial distribution shows that the highest values represented a moderate
risk [36] and mostly present spatiotemporal dynamics similar to those of electrical conduc-
tivity, being directly proportional. However, the presence of high levels of sodium for June,
July and November in the western portion of the valley stands out. June and July tend to
exhibit the highest electrical conductivities, a behavior likely attributed to the leaching of
salts from the unsaturated zone due to the accumulated rainfall during the rainy season in
the valley [10]. Additionally, an increase in salt concentrations in groundwater is observed
with the intensification of water scarcity, driven by the rise in evapotranspiration, which
peaks in November. This indicates that groundwater salinization and degradation may be
occurring [4]. Furthermore, the presence of agricultural plots in the area indicates that these
results may be partially attributed to agricultural practices, such as the use of fertilizers
and pesticides, which can exacerbate salinity levels [14].

3.4. Groundwater Quality Map for Irrigation Use

The spatial dynamics regarding electrical conductivity and the sodium adsorption
ratio, which can be used to determine the suitability of groundwater for irrigation purposes,
suggesting that more salinity tolerant crops could be cultivated with a good installation
of a drainage system to mitigate the effects of soil salinization and improve agricultural
production [20,50]. Mainly at those critical areas, organic fertilizers are recommended,
along with the use of organic mulching on the soil surface of the irrigated plots, at the
cultivation lines. Figure 9 presents the semivariograms of groundwater adequacy indicators,
with adjustments to exponential, Gaussian, and spherical models for the months of May (A)
through November (G) 2019.
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The results reveal distinct spatial dependency patterns across the monitoring period,
with noticeable variations in model fit and range of spatial influence. A general pattern
is observed where the spherical and Gaussian models demonstrate superior fit (higher
R2 values) compared to the exponential model in most months. This suggests that the
spatial structure of groundwater quality indicators tends to stabilize over short to moderate
distances. For instance, the Gaussian model dominates in May (A) and July (C), while the
spherical model exhibits the best fit in November (G), indicating seasonal variations in
spatial behavior.

The gaussian, spherical and exponential models presented standard deviation close to
one (1.02; 1.10; 1.09; 0.97; 0.98; 0.91; 1.11), as well as the mean errors close to zero (−0.10;
0.09; 0.08; 0.20; −0.05; −0.10; 0.07). The crossed semivariograms indicated a strong to
moderate correlation with determination coefficients (R2) greater than 70%. Experimental
semivariances were obtained considering at least 50 pair of points [40].

The water quality indicator presents a structure of spatial dependence in the studied
area with range values, representing the extent of spatial correlation, varying significantly,
ranging from approximately 143 m in May (A) to 380 m in August (D). This variability high-
lights changes in the spatial continuity of groundwater quality, likely driven by temporal fac-
tors such as recharge events, agricultural activities, and climatic conditions. The relationship
between the nugget effect and the sill of semivariograms ranged from 10.0 to 41.2%; there-
fore, the spatial dependence can be considered from strong to moderate, over the months,
with behavior very similar to that of EC. Overall, the results indicate a clear seasonal influ-
ence on the spatial dependency of groundwater adequacy indicators. While some months
(e.g., May and November) exhibit strong spatial continuity, others (e.g., August) show a
broader range, reflecting changes in environmental and anthropogenic influences. These
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patterns underscore the need for continuous monitoring to account for both spatial and
temporal variability in groundwater quality.

The fitted models were used to create contour maps of groundwater quality for
irrigation purposes. In this map (Figure 10), areas suitable for irrigation are designated in
green and blue, restricted use in yellow, while unsuitable areas are marked in red.
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Figure 10. Kriging maps of groundwater quality for irrigation purposes from May to November
(A–G) 2019, with agricultural plots and saturated electrical conductivity contours.

According to the maps, the most suitable areas for irrigation based on the water quality
index are located in the western and eastern parts of the study area, with some exceptions
in points where agriculture and exploitation activities are carried out more intensively.
In these areas, high sodium concentration may reduce soil permeability and damage soil
structure [51]. Only with mapping using kriging techniques was it not possible to detect
areas where the water is classified as unsuitable for agricultural purposes.

Research on the characterization of spatial variability in groundwater parameters
highlights the importance of conducting more comprehensive evaluations of uncertainty,
particularly given the inherent heterogeneity of natural systems [17,18,27]. To address this,
we performed conditional sequential Gaussian simulation to model the propagation of
uncertainty for each sampling period, as illustrated in Figure 11. Data uncertainties can
stem from potential measurement errors and the limited spatial coverage of field-collected
samples [18]. Additionally, the variance of stochastic simulation is influenced by data
values, with conditional variance being particularly significant when adjacent data points
exhibit dissimilar values [52].
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Figure 11. Sequential Gaussian simulation maps of groundwater quality for irrigation purposes from
May to November (A–G) 2019 with agricultural plots and saturated electrical conductivity contours.

When comparing the scenario generated by the SGS with the kriging map, the large-
scale variation remained conditioned, but the small-scale patterns exhibited differences,
with the presence of water classes unsuitable for agricultural use that are sometimes
represented by 4 or 5 points being smoothed by kriging. Moreover, by inspecting Figure 9
it is possible to verify that kriging was unable to reproduce the unsuitable class due to
smoothing. Indeed, such areas are associated with low water circulation areas, exhibited in
Figure 10. This behavior is expected, as the estimation of the local singularity exponent
relates to all values within the neighborhood of the location being estimated [53]. Notably,
there was a reduction in unsuitable areas for the month of July, while an increase was
observed in the other evaluated months.

The updated spatial maps indicated that the percentage of unsuitable areas for irriga-
tion ranged from 2.2% to 15.0% of the total area, while suitable areas comprised 67.0% to
97.8% during the assessed months. The identification of unsuitable areas underscores the
need for targeted management strategies, such as the adoption of conservation practices,
soil amendments, or crop selection tailored to saline conditions. These approaches could
inform both local agricultural practices and policy interventions, ensuring long-term soil
health and sustainable agricultural productivity in these vulnerable regions.

3.5. Interactionf of Groundwater Quality and Climatic Conditions

To validate the results obtained in the previous analyses and illustrate the relation-
ship between EC and the SAR with climatic parameters, soil hydraulics characteristics,
as well as anthropogenic behavior related to water extraction for agricultural purposes,
PCA was applied to the original matrix of electrical conductivity and the SAR. The PCA
biplot for electrical conductivity is presented in Figure 12, along with their relationships
with rainfall and water extraction for the evaluated months. It is observed that EC and the
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SAR contribute significantly to the variability represented by Dim1 (dimension 1) (37.9%),
indicating that these variables play a central role in the differences observed across the
aquifer. Rainfall, on the other hand, is more closely associated with Dim2 (dimension 2)
(19.5%), highlighting its impact through salinity dilution and ion transport. Soil texture
(texture) appears as a moderating variable close to saturated hydraulic conductivity, uni-
formly distributed, while evaporation and water extraction (Q) are directly correlated with
changes in EC and the SAR.

Water 2025, 17, x FOR PEER REVIEW 21 of 25 
 

 

rainfall and water extraction for the evaluated months. It is observed that EC and the SAR 
contribute significantly to the variability represented by Dim1 (dimension 1) (37.9%), in-
dicating that these variables play a central role in the differences observed across the aq-
uifer. Rainfall, on the other hand, is more closely associated with Dim2 (dimension 2) 
(19.5%), highlighting its impact through salinity dilution and ion transport. Soil texture 
(texture) appears as a moderating variable close to saturated hydraulic conductivity, uni-
formly distributed, while evaporation and water extraction (Q) are directly correlated 
with changes in EC and the SAR. 

 

Figure 12. Principal Component Analysis (PCA) showing the scores of the first two principal com-
ponents (A and B), which represent the directions of maximum variance in the dataset. 

Additionally, the SAR and EC show a strong association with Dim1, along with 
Evapo, suggesting that evapotranspiration is one of the primary factors driving salinity 
increases. The PCA also highlights seasonal variations, which can be attributed to changes 
in precipitation and evapotranspiration patterns. The opposition between rainfall and var-
iables such as the SAR, EC, and Evapo along Dim1 (37.9%) suggests an inverse relation-
ship, where higher rainfall tends to dilute soil and water salinity. On the other hand, ele-
vated evapotranspiration, aligned with EC and the SAR, indicates that increased evapo-
ration can concentrate salts, leading to higher salinity levels, meaning that these variables 
play a central role in the differences observed in MAV dynamics. 

In Figure 11B, the main components, Dim1 and Dim2, account for 60.2% of the total 
variance, with Dim1 alone explaining 40.7% of the data variability. For this component, 
samples from October and November exhibit greater variability, possibly due to reduced 
water recharge or intensive water use, whereas June and July show less variation. The 
variables Na, the SAR, and the PS form an associated group, highlighting the link between 
high sodium concentrations and the risks of soil sodicity, while Ca2⁺ and Mg2⁺ exhibit an 
opposing dynamic. Furthermore, salinity and the quality index (GWQ) are strongly asso-
ciated with EC, which serves as the primary contributor to variations in water quality. 
These patterns support the hypothesis that seasonal and spatial factors, such as soil tex-
ture and effect of seasonality (e.g., rainfall and evapotranspiration dynamics), directly in-
fluence the suitability of water for agricultural use, with clear limitations in silty soil areas 
and during critical periods. 

4. Conclusions 
This study provides critical insights into the suitability of groundwater in Mimoso 

Alluvial Valley for irrigation, emphasizing the spatial variability of water quality and its 
implications for agricultural practices. Moreover, the geostatistical analysis and the 

Figure 12. Principal Component Analysis (PCA) showing the scores of the first two principal
components (A,B), which represent the directions of maximum variance in the dataset.

Additionally, the SAR and EC show a strong association with Dim1, along with Evapo,
suggesting that evapotranspiration is one of the primary factors driving salinity increases.
The PCA also highlights seasonal variations, which can be attributed to changes in pre-
cipitation and evapotranspiration patterns. The opposition between rainfall and variables
such as the SAR, EC, and Evapo along Dim1 (37.9%) suggests an inverse relationship,
where higher rainfall tends to dilute soil and water salinity. On the other hand, elevated
evapotranspiration, aligned with EC and the SAR, indicates that increased evaporation
can concentrate salts, leading to higher salinity levels, meaning that these variables play a
central role in the differences observed in MAV dynamics.

In Figure 11B, the main components, Dim1 and Dim2, account for 60.2% of the total
variance, with Dim1 alone explaining 40.7% of the data variability. For this component,
samples from October and November exhibit greater variability, possibly due to reduced
water recharge or intensive water use, whereas June and July show less variation. The
variables Na, the SAR, and the PS form an associated group, highlighting the link between
high sodium concentrations and the risks of soil sodicity, while Ca2+ and Mg2+ exhibit
an opposing dynamic. Furthermore, salinity and the quality index (GWQ) are strongly
associated with EC, which serves as the primary contributor to variations in water quality.
These patterns support the hypothesis that seasonal and spatial factors, such as soil texture
and effect of seasonality (e.g., rainfall and evapotranspiration dynamics), directly influence
the suitability of water for agricultural use, with clear limitations in silty soil areas and
during critical periods.

4. Conclusions
This study provides critical insights into the suitability of groundwater in Mimoso

Alluvial Valley for irrigation, emphasizing the spatial variability of water quality and
its implications for agricultural practices. Moreover, the geostatistical analysis and the
proposed quality index contributed to enhance the knowledge about the salinization
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processes in alluvial valleys. To ensure sustainable agricultural use, the following findings
and recommendations are highlighted:

1. The analysis of cations helped identify the natural salt dissolution process, originat-
ing from the crystalline rock in contact with aquifer-stored water. Targeted interventions,
such as monitoring aquifer recharge areas, could mitigate further salinization.

2. Total hardness (TH) and Permeability Salinity (PS) analyses demonstrated that
most of the alluvial valley is suitable for irrigation throughout the year in areas with high
hydraulic conductivity. These areas should be prioritized for irrigation development.

3. Moderate to high salinity risk was observed in silt loam areas, requiring specific
management practices to control salinity, as groundwater in these areas is unsuitable for
sustainable irrigation.

4. Moderate sodicity risks were observed, with the highest risks concentrated in the
central valley. Adaptive water management strategies, including seasonal adjustment of
irrigation practices, are recommended to address temporal variability.

5. This study highlights the spatial variability of groundwater quality, identifying suit-
able irrigation areas and the implications of salinity using geostatistical maps. Sequential
Gaussian simulation reduced mapping uncertainty, improving the accuracy of suitability
assessments for irrigation.

6. The analysis of groundwater spatial variability, using advanced modeling tech-
niques, revealed that unsuitable irrigation areas fluctuate throughout the year. Uncertainty
simulations were essential for refining suitability estimates for irrigation.

7. The proposed water quality index successfully identified the more suitable re-
gions for irrigation, being strongly related to EC and the SAR, as well as [Mg], and [Ca]
concentrations. This index serves as a valuable tool for ongoing water resource assessments.

8. This study utilized geostatistical maps and sequential Gaussian simulation to
identify spatial variability and reduce mapping uncertainty. These techniques pinpointed
suitable irrigation zones and areas requiring management interventions, supporting preci-
sion agriculture initiatives.

Future research could focus on evaluating the effectiveness of specific management
practices in areas at risk of high salinity and sodicity, aiming to identify best practices for
mitigating these challenges. Additionally, engaging with local farmers and stakeholders
provides valuable insights into the practical challenges associated with groundwater use
and management, fostering more participatory solutions.
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