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Abstract: Excessive use of nitrogen fertilizer in agricultural activities can easily induce
nitrogen pollution in groundwater, which may deteriorate groundwater quality. Generally,
nitrogen fertilizer passes through the unsaturated zone to groundwater. Therefore, it is of
great significance to investigate the migration and transformation of nitrogen pollutants
in unsaturated zones for the prevention and control of groundwater nitrogen pollution.
Clay-rich soil is often considered a barrier layer to prevent pollutant leakage because of its
lower relative permeability, while its prevention capacity is seldom reported under shallow
groundwater table conditions. Motivated by this, an in situ experiment and numerical
simulation were conducted to investigate the migration and transformation of nitrogen
fertilizer in a clay-unsaturated zone with a shallow groundwater table. Systematic measure-
ments and numerical simulation results revealed that nitrogen can pollute groundwater
via the infiltration through clay-rich soil in the in situ experiment site. This finding clarified
that the difference in hydraulic head under the shallow groundwater table, rather than
soil permeability, is the dominant factor in controlling the downward migration of nitro-
gen pollutants in the clay-unsaturated zone. More importantly, the nitrogen migration is
convection dominant during precipitation in this experiment, indicating nitrogen polluted
groundwater much faster in humid climate areas. These findings suggest that nitrogen
contaminates groundwater easily under shallow groundwater tables in humid climate
areas, even with clay-rich soil texture.

Keywords: in situ experiment; HYDRUS-1D; shallow groundwater table; nitrogen
pollutant; clay-unsaturated zone; Hanzhong Basin

1. Introduction
In recent decades, the application of large amounts of nitrogen fertilizers in croplands

around the world has led to severe excesses of ammonia in groundwater [1–3]. The migra-
tion and transformation of nitrogen in the vadose zone are influenced by many factors, such
as soil physicochemical properties, soil nitrogen composition, fertilization, precipitation,
and irrigation [4,5]. Among these factors, precipitation and soil water dynamics strongly
regulate the nitrogen cycle by affecting the migration and distribution characteristics of ni-
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trogen in the vadose zone [6,7]. Thus, one of the scientific challenges is to quantify the effect
of multi-factors on the migration of nitrogen under changing environmental conditions.

Due to the highly nonlinear migration and transformation of nitrogen in the unsatu-
rated zone and the complexity of chemical reactions, many efforts have been expended on
the nitrogen pollution mechanisms, physical and chemical properties of the unsaturated
zone, and irrigation intensity [8–10]. In previous research, environmental factors and
human activities were the predominant factors in terms of nitrogen migration and trans-
formation. The environmental factors include precipitation, pH, soil redox environment,
soil moisture, organic carbon content, available oxygen content, groundwater depth, and
unsaturated lithology structure [11–14]. The effects of human activities refer to crop species,
different planting methods, fertilization, irrigation amount, and irrigation methods [15–20].
Already published research results show that precipitation, irrigation amount and method,
lithology structure of unsaturated zone, and groundwater depth indirectly affect the migra-
tion and transformation of nitrogen pollutants through soil moisture content and oxygen
levels. Clay-rich soil is often applied as a barrier layer to block nitrogen pollution since
nitrogen migration and transformation are faster in coarse soil [21–23]. Previous work has
studied the migration and transformation of nitrogen in a laboratory-scale soil column
experiment, which had important guiding significance for the prevention and control of
groundwater pollution [24,25]. Meanwhile, groundwater depth also affects the migration
and transformation of nitrogen since nitrogen species are more likely to reach groundwater
when the groundwater depth is shallow [26,27]. Therefore, more work on the co-effects of
clay-rich soil and shallow groundwater depth on nitrogen migration and transformation
is needed to improve the understanding of the domination processes and controls for
changing environmental variables.

Numerical models are commonly used to quantify the migration and transformation
of nitrogen in saturated and unsaturated zones. Previous studies have explored the forms
and pollution of nitrogen in unsaturated zones by establishing mathematical models solely
or combining them with laboratory-scale soil column experiments. These numerical models
involve the absorption and rate of nitrogen in ponding, nitrogen migration, or nitrogen cy-
cle in soil [28–37]. It has been found that the main forms of nitrogen in the soil are ammonia
nitrogen (NH4

+-N) and nitrate nitrogen (NO3
−-N). The adsorption of NH4

+-N by soil is
greater than that of NO3

−-N, and the pollution form of nitrogen in groundwater is mainly
nitrate [38,39]. In terms of the influence of unsaturated zone thickness and permeability
on nitrogen migration and transformation, it was found that groundwater had a high risk
of nitrogen pollution in the thin vadose zone with high permeability [40], while nitrogen
pollution rarely occurred in the area where the groundwater was buried deeper than 10 m
and unsaturated zone has low permeability. Controlling irrigation intensity can also ef-
fectively reduce groundwater nitrogen pollution. The working hypothesis of this study
is that the unique hydrogeological conditions of shallow groundwater tables significantly
influence the process of nitrogen migration and transformation, thereby increasing the
risk of groundwater contamination in clay-rich soil under humid climates. Based on this
hypothesis, we conducted field experiments and numerical simulations to delve into the
migration and transformation patterns of nitrogen fertilizers under shallow groundwater
table conditions in the clay-unsaturated zone. Specifically, this study aims to address the
following question: How do shallow groundwater tables in the clay-unsaturated zones
synergistically affect the migration and transformation of nitrogen contaminants? The elu-
cidation of this process is crucial for understanding and predicting the risk of groundwater
nitrogen contamination in humid climates. This research holds significant importance for
the formulation of effective strategies to prevent and control groundwater contamination.
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2. Materials and Methods
2.1. Field Experiment and Measurements
2.1.1. Site Description

The in situ experiment for the investigation of nitrogen migration and transformation
was carried out in the farmland of Wangzhuang Village, Wuxiang Township, Hantai District,
Hanzhong City, Shaanxi Province, China (107◦1′ E, 33◦12′ N, altitude 632.5 m, Figure 1). This
region belongs to a subtropical humid monsoon climate. Annual average temperature is
14.5 ◦C. Annual average precipitation is 855.3 mm, and precipitation is mainly concentrated
in June to September. The average relative humidity is 79%. The annual average sunshine
hours is 1478.4 h. Annual total radiation is 105.1 Kcal/cm2. This experimental field is a gentle
slope terraced field. The crops are corn, rape, and seasonal vegetables. The texture of the
unsaturated zone is silt clay according to soil particle analysis (Table 1).
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Table 1. Soil texture and bulk density at different depths at the in situ site.

Depth
(cm)

Soil Particle Size Distribution
Texture

Bulk Density
(g/cm3)Sand (%) Silt (%) Clay (%)

0–10 2.2 68.1 29.7 silt clay 1.50
10–20 1.7 61.7 36.6 silt clay 1.65
20–40 1.7 56.6 41.7 silt clay 1.60
40–60 0.0 58.7 41.3 silt clay 1.76
60–80 0.0 55.2 44.8 silt clay 1.68
80–100 0.0 56.6 43.4 silt clay 1.63

100–120 0.0 54.2 45.8 silt clay 1.70
120–140 0.9 60.2 38.9 silt clay 1.50
140–155 1.5 59.1 39.4 silt clay 1.35
155–175 2.3 57.4 40.3 silt clay 1.35
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2.1.2. Instrument Set-Up

This research site consists of an area of 30 m × 30 m. The in situ experiment site
consists of 4 parts, including a spray infiltration area, soil water content measurement, soil
nitrogen concentration samples collection shaft, meteorological variables monitoring area,
groundwater level, and groundwater quality monitoring wells (Figure 2). The spray area
is 2 m in length and 1.5 m in width. Nitrogen solute with pressureless spray was used
to simulate the infiltration of nitrogen pollutants under precipitation recharge. A spray
frame with spray sensors was installed 80 cm high above the ground surface. Nitrogen
solute supplied by a peristaltic pump ensures a foggy spray solution with no pressure on
the ground surface. A shaft with 1.5 m length, 1.2 m width, and 1.8 m depth was dug for
soil water content measurement and soil nitrogen sample collection 0.3 m distant from the
spraying area. A set of instruments was installed to measure soil water contents, soil matrix
potentials, groundwater levels, and meteorological variables. Soil water content sensors
(EC-5, Meter Inc., Pullman, WA, USA) were installed in the shaft at the depths of 10, 20,
40, 60, 80, 100, 120, 140, and 155 cm. All data were collected by a data logger (CR3000,
Campbell Scientific, Logan, UT, USA) every 60 s, and 10-min averages were calculated and
stored. A data logger (Rugged Troll 100, In situ Inc. Fort Collins, CO, USA) was installed in
a piezometer (at a 400 cm depth below the ground surface) to monitor the groundwater
level and temperature. The piezometer was covered by a ventilated PVC cap for protection.
The data were recorded at 10 s intervals and stored as 10 min average values. A tintype
meteorological station, Vantage Pro2 (DAVIS Inc., Hayward, CA, USA), was installed at
the research plot 2 m above the ground surface to measure wind speed and direction, air
temperature and humidity, solar radiation, rainfall, and air pressure.
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2.1.3. Sample Collection and Analysis

Soil samples were collected during the shaft dig for soil background nitrogen analysis.
We applied a nitrogen solution as a spray over the soil, consisting of ammonium bicarbonate,
urea, and deionized water, mixed according to local farmland practices. The solution was
formulated to simulate local dryland fertilization, with a nitrogen input of 196.1 kg/hm2.
For a 3 m2 experimental area, this amounted to 0.4 kg of ammonium bicarbonate and
0.07 kg of urea. Based on these calculations, the concentration of NH4

+-N was determined
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to be 344 mg/m2. At the preliminary stage of this experiment, a group of soil nitrogen
samples were collected every day (Collect 1 kg of soil samples at depths of 10 cm, 20 cm,
40 cm, 60 cm, 80 cm, 100 cm, 120 cm, 140 cm, 155 cm below the surface, a total of 9 samples).
With the experiment time expanding, the sampling frequency gradually extended to once a
week, and the in situ experiment lasted for 61 days.

The samples were collected in strict accordance with the ‘Technical Specification for
Soil Environmental Monitoring’ (HJ/T 166-2004) [41]. The sampling sequence is from
bottom to top, with 1 kg of samples collected from each layer, placed in sample bags, and
labeled with sample labels and sampling records. There are two copies of the label, one
placed in the bag and the other tied to the bag opening. The label indicates the sampling
time, location, sample number, monitoring items, and sampling depth. After collection,
the samples were sealed, stored at 4 ◦C, transported back to the laboratory, and frozen at
−20 ◦C. NH4

+-N was measured by phenol–hypochlorite spectrophotometry, and nitrate
was determined by ultraviolet spectrophotometry. The analyzed method was carried out
according to the requirements of the national environmental protection standard of the
People’s Republic of China ‘Determination of NH4

+-N, NO−
3 -N and nitrite nitrogen in soil

using potassium chloride solution extraction-spectrophotometry’ (HJ 634-2012) [42]. The
method for determining the content of NH4

+-N and NO−
3 -N is to first weigh 40.0 g of the

soil sample, place it in a 500 mL polyethylene bottle, add 200 mL of potassium chloride
solution to the polyethylene bottle, shake and extract for 1 h in a constant temperature water
bath oscillator, and maintain the temperature at 20 ± 2 ◦C. Place 60 mL of the extraction
solution into a 100 mL centrifuge tube and centrifuge at 3000 r/min for 10 min. Transfer
50 mL of the supernatant after centrifugation to a 100 mL colorimetric tube to prepare the
sample and measure the concentration using a UV spectrophotometer.

2.2. Numerical Model

The HYDRUS-1D model software package (version 4.0) was applied to simulate water
flow and solute transport in one-dimensional variable saturated media [43]. In this study,
the water flow model was calibrated by soil water content, and the nitrogen migration and
transformation were verified by soil nitrogen concentration in the soil profile.

2.2.1. Numerical Description

The water flow governing equation for variably saturated soil water movement is
given by the Richards’ equation

∂θ

∂t
=

∂

∂Z

[
K(h)

(
∂h
∂Z

+ 1
)]

, (1)

where θ is the volumetric soil water content (L3 L−3); t is the time (T−1); h is the soil water
pressure head (L); Z is the vertical space coordinate (L), and K is the hydraulic conductivity
function (LT−1). We used van Genuchten’s K-h and θ-h relationships for describing soil
hydraulic properties soils:

θ(h) = θr +
θs − θr[

1 + (αh)n]m , h ≤ 0 (2)

K(h) = KsSl
e

[
1 −

(
1 − S1/m

e

)m]2
, (3)

m = 1 − 1
n

and Se =
θ − θr

θs − θr
(4)
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where θr and θs denote the residual and saturated volumetric water contents (L3 L−3),
respectively; α (L−1), m (-dimensionless), and n (dimensionless) are fitting parameters
of soil–water characteristic curve; l (dimensionless) is the pore connectivity parameter
(0.5); Ks (LT−1) is the saturated hydraulic conductivity, and Se (dimensionless) is the
relative saturation.

The partial differential equations governing one-dimensional advective–dispersive
nitrogen transport and transformations in variably saturated soil are taken as

Urea:
∂θcw,1

∂t
=

∂

∂Z

(
θD1

∂cw,1

∂Z

)
− ∂qcw,1

∂Z
− µ′

w,1θcw,1, (5)

NH4
+-N:

∂θcw,2

∂t
+ ρ

∂cs,2

∂t
=

∂

∂Z

(
θD2

∂cw,2

∂Z

)
− ∂qcw,2

∂Z
+ µ′

w,1θcw,1 −
(
µw,2 + µ′

w,2
)
θcw,2

−
(
µs,2 + µ′

s,2
)
ρcs,2 + γw,2θ + γs,2ρ,

(6)

NO3
−-N:

∂θcw,3

∂t
=

∂

∂Z

(
θD3

∂cw,3

∂Z

)
− ∂qcw,3

∂Z
+ µ′

w,2θcw,2 − (µw,3 + µs,3)θcw,3 + µ′
s,2ρcs,2, (7)

where subscript numbers 5, 6, and 7 denote the nitrogen species (urea, NH4
+- N, and

NO3
−-N, respectively), and w and s are the liquid and solid phases of nitrogen. c is

the nitrogen concentration (MM−1); ρ is the soil bulk density (ML−3); D is the nitrogen
dispersion coefficient (L2 T−1); q is the volumetric water flux (LT−1); µ represents the first-
order N transformation rate constant (T−1), while µ’ is the similar first-order rate constant
providing connections between urea, NH4

+-N, and NO3
−-N; γ is the zero-order nitrogen

transformation rate constants (ML−3 T−1). The dispersion coefficient in the liquid phase D
is given by θD = DL |q| + θDw

0τw, where Dw
0 is the molecular diffusion coefficient in free

water (L2 T−1), τw is the tortuosity factor in the liquid phase, and DL is the longitudinal
dispersivity (L).

The process of NH4
+-N adsorption by soil was accounted for utilizing linear adsorp-

tion isotherms, which relates cw and cs in equation cs = Kd·cw, where Kd (L3 M−1) is the
distribution coefficient of NH4

+-N between liquid and solid phase. Peclet number (NPE)
is a dimensionless number in heat and mass transfer. It is the ratio of convection rate to
diffusion rate, which is used to characterize the dominance of convection and diffusion in
the vertical migration of pollutants. The dynamics of the nitrogen migration and transfor-
mation in the unsaturated zone can be briefly analyzed via Peclet number. According to the
four types classified by Pfannkuch [44], the Peclet number can explain the convection or
dispersion dominance (Table 2). The formula to calculate NPE is

NPE =
V × d

Dw
, (8)

where V is Darcy velocity; d is grid spacing; and Dw is the diffusion coefficient.

Table 2. Four types of Peclet numbers.

NPE Solute Migration State

NPE < 0.01 Absolute dominance of dispersion
0.01 < NPE < 4 Interaction of convective and dispersion
4 < NPE < 104 Convection dominant

104 < NPE < 106 Absolute convection dominance
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2.2.2. Initial and Boundary Conditions

The initial conditions of water flow were determined by the observed soil water
content in situ. The initial contents of NH4

+-N and NO3
−-N in soil were also based on the

in situ experiment results. The initial concentration of urea was calculated from the initial
concentration of the applied fertilizer and initial soil water content, and urea was assumed
to be homogeneous in 5 cm soil layer.

The upper boundary condition of the water flow model is selected as the atmospheric
boundary with surface runoff, and the lower boundary is chosen as the variable pres-
sure head condition via the groundwater levels measured. Using observation data, the
interaction of rainfall, wind speed, irrigation, solar radiation, and fertilization is given
under time-varying boundary conditions. The upper boundary condition of the solute
transport model is the concentration boundary, and the lower boundary condition is a free
flux boundary.

2.2.3. Hydraulic and Solute Transport Parameters

The HYDRUS-1D software package can use soil particle size classification (percentage
of sand, silt, and clay) and soil bulk density as input parameters (Table 1). The soil water
hydraulic parameters (θr, θs, α, n, and L) and saturated hydraulic conductivity (Ks) in the
van Genuchten model were predicted by a neural network. These parameters need to be
calibrated and validated to better simulate soil water movement. The parameter data are
listed in Table 3.

Table 3. Statistical measures of HYDRUS-1D model performance for simulation of soil water content,
NH4

+-N, and NO3
−-N.

Depth
(cm)

RMSE R2

Soil Water
Content NH4

+-N NO3−-N Soil Water
Content NH4

+-N NO3−-N

0–10 0.096 0.711
10–20 0.007 0.0006 0.0107 0.887 0.9708 0.9543
20–40 0.008 0.0005 0.0080 0.945 0.9715 0.9676
40–60 0.009 0.0007 0.0045 0.863 0.9548 0.9895
60–80 0.007 0.0009 0.0054 0.855 0.9244 0.9981

80–100 0.009 0.0008 0.0038 0.897 0.9407 0.9957
100–120 0.008 0.0005 0.0028 0.911 0.9706 0.9968
120–140 0.005 0.0012 0.0048 0.917 0.9026 0.9895
140–155 0.009 0.0005 0.0053 0.900 0.9424 0.9888
155–410 0.010 0.0005 0.0048 0.856 0.9697 0.9887

2.3. Model Evaluation

The coefficient of determination R2 and root mean square error (RMSE) were used to
evaluate the model simulation results. The RMSE calculation formula is as follows:

RMSE =

√
∑n

i=1(si − oi)
2

n
, (9)

where si and oi are the simulated and observed values of soil water content; NH4
+-N

and NO3
−-N are the concentrations of sample I; n is the total number of the samples. R2

represents the goodness of fit of the model. The closer the value is to 1, the closer the
simulated value is to the actual situation. The RMSE reflects the average absolute error
between the simulated value and the observed value. The numerical range is from 0 to
positive infinity. The smaller the value, the closer the simulation is to the real conditions.
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2.4. Nitrogen Balance Calculation

Based on the principle of nitrogen balance, nitrogen surplus and potential nitrogen
losses are determined by calculating the nitrogen input and output from the results of the
numerical model [45].

3. Results
3.1. Impact of Rainfall and Groundwater on Nitrogen Migration
3.1.1. Variation in Rainfall and Groundwater Depth

The rainfall and groundwater depth change with time is shown in Figure 3. During this
experiment, the maximum rainfall was 11.4 mm/d, and the rainfall on the day of the spray
experiment was 6.24 mm. The groundwater table depth changed in response to rainfall at
the start of this experiment. It can be seen from Figure 3 that the groundwater depth ranged
between 145.5 and 187.9 cm below ground level. On the first day of this experiment, there
was no rainfall event, and the groundwater depth was 179.4 cm. The groundwater depth
gradually increased from the second day to the sixth day and reached the shallowest value
of 145.0 cm below ground level on the sixth day. A rainfall event occurred on the eighth day,
but the trend continued downward. Rainfall on days 12 to 16 of this experiment resulted
in an increase in groundwater level. From the 17th to the 48th day, only a few days of light
rain occurred, and groundwater depth declined continuously with slight fluctuation. Despite
rainfall events occurring between days 48 and 54, groundwater levels continued to decline,
reaching the deepest value of 187.9 cm below ground level on the 61st day.
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3.1.2. The Effect of Precipitation on the Nitrogen Migration

From Table 2, it can be seen that the Peclet number is greater than 0.01, and the
convection and dispersion work together. If it is less than 0.01, then the dispersion is
dominant. When it is greater than 4, the convection is dominant. Based on this, the
dominance of convective and dispersion of nitrogen process affected by precipitation was
analyzed. It can be seen from Figure 4 that the NPE value fluctuates in the range of 0.05–12
during the experiment period. The Peclet number of this experiment was 0.24 on the
first day. The Peclet number reached a maximum value of 11.58 during the application of
nitrogen solution, indicating that convection dominated. Most of the time in the experiment
period, the Peclet number fluctuated between 0.01 and 4, which means that the migration
of nitrogen was controlled by both convection and dispersion. It was found that the Peclet
number changed with rainfall. The Peclet number value increased during rainfall and
decreased during periods with no precipitation.
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3.2. Model Verification of Soil Water Content and Nitrogen

The fit of simulated and observed soil water contents of each layer are shown in Figure 5.
It can be seen that the soil water contents are well-fitted except for the surface layer. The
surface layer is easily disturbed by the external environment in the air–soil interface, so the
divergence between the observed data and the simulated data is expected. The RMSE of the
model was acceptable for all, but the surface layer, and the R2 was greater than 0.85, indicating
that the simulated values were in good agreement with the measured values, which could be
applied to the simulation of soil water movement in the experiment site.
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the fit of observed and simulated soil water contents at soil depths of 0 cm, 10 cm, 20 cm, and 40 cm;
(b) shows the fit of observed and simulated soil water contents at soil depths of 60 cm, 80 cm, and
100 cm; (c) displays the fit of observed and simulated soil water contents at soil depths of 120 cm,
140 cm, and 155 cm. Sim—simulated; Obs—observed.
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The output of NO−
3 -N concentration in this model is the liquid phase concentration,

and the liquid phase concentration and the total soil NO3
−-N concentration measured in

the field are converted using the following formula:

Cw =
Csγ

1000θ
(10)

where Cw is the NO3
−-N concentration in soil solution (mg/cm3); CS is the NO3

−-N
concentration in air-dried soil sample (mg/kg); γ is soil bulk density (g/cm3); θ is the soil
volumetric water content (cm3/cm3).

The fit of observed and simulated NH4
+-N and NO3

−-N are shown in Figures 6 and 7,
respectively. Overall, the fitting is good except for a deviation between the simulated and
the measured NH4

+-N at a depth of 60 cm. The RMSE of the remaining layers was less
than 0.01, and the R2 was greater than 0.85 (Table 3).

This indicates that the simulated value is in good agreement with the measured value,
which could be applied to the simulation of nitrogen migration and transformation in the
research soil profile.

This model involves multiple parameters of soil solute transport and transformation.
On the basis of the parameter sensitivity test and previous studies on solute migration
and transformation, the values of the model’s soil solute transport and transformation
parameters are shown in Table 4.
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Figure 6. Variations in soil NH4
+-N at different soil depths. (a) presents the variations in soil NH4

+-N
at soil depths of 0 cm, 10 cm, 20 cm, and 40 cm; (b) shows the variations in soil NH4

+-N at soil depths
of 60 cm, 80 cm, and 100 cm; (c) displays the variations in soil NH4

+-N at soil depths of 120 cm,
140 cm, and 155 cm. Sim—simulated; Obs—observed.
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−-N at soil depths
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Table 4. Calibrated parameters of the numerical model at different depths.

Depth
(cm)

θr
(cm3·cm−3)

θs
(cm3·cm−3)

α
(cm−1)

n
[-]

Ks
(cm·min−1)

L
[-]

DL
(cm) Kd

µ’w,1
(d−1)

µw,2
(d−1)

µ’w,2
(d−1)

µ’s,2
(d−1)

µw,3
(d−1)

µs,3
(d−1)

0–10 0.03 0.30 0.0079 1.531 10.0 0.5 7 0.50 0.35 0.04 0.070 0.070 0.001 0.001
10–20 0.03 0.46 0.0050 1.100 10.3 0.5 14 0.50 0.32 0.02 0.062 0.062 0.001 0.001
20–40 0.03 0.47 0.0060 1.100 11.8 0.5 10 0.50 0.18 0.02 0.060 0.060 0.001 0.001
40–60 0.03 0.50 0.0050 1.200 10.8 0.5 12 0.50 0.17 0.02 0.060 0.060 0.002 0.002
60–80 0.03 0.50 0.0050 1.100 12.0 0.5 12 0.50 0.17 0.01 0.042 0.042 0.002 0.002
80–100 0.03 0.45 0.0110 1.300 11.5 0.5 10 0.15 0.17 0.01 0.038 0.038 0.002 0.002

100–120 0.03 0.50 0.0100 1.300 10.0 0.5 10 0.10 0.17 0.01 0.038 0.038 0.002 0.002
120–140 0.03 0.47 0.0080 1.300 10.0 0.5 10 0.10 0.17 0.01 0.038 0.038 0.002 0.002
140–155 0.03 0.45 0.0070 1.600 10.0 0.5 11 0.10 0.17 0.01 0.038 0.038 0.002 0.002
155–410 0.03 0.33 0.0060 2.600 10.0 0.5 8 0.10 0.17 0.01 0.038 0.038 0.002 0.002

3.3. Temporal and Spatial Variation in Soil Water Content

The variation in water content with time and depth is shown in Figure 8. Two zones
with high soil water content occurred at the depths of 40 −60 cm and 100 cm, 0.46 cm3/cm3

and 0.4 cm3/cm3, respectively. Soil water contents were low at the depths of 0 to 10 cm
near the ground surface, with a minimum of 0.17 cm3/cm3, and from 10 to 60 cm depth
water content gradually increased and ranged around 0.4 cm3/cm3 to 0.45 cm3/cm3, with
a maximum value of 0.46 cm3/cm3 and a minimum value of 0.36 cm3/cm3. Soil water
content decreased to 0.3 cm3/cm3 at 80 cm, rebounding to about 0.4 cm3/cm3 at 100 cm
while decreasing to 0.298 cm3/cm3 at 155 cm. During the experimental period, on the
whole, soil water content was high, and the unsaturated zone remained in a quasi-saturated
state. When rainfall events occurred, the unsaturated zone acted as a channel, so rainfall
had little effect on soil water content but a greater impact on groundwater depth.
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3.4. Distribution of Nitrogen

The variation in NH4
+-N concentration with time and depth is shown in Figure 6.

NH4
+-N concentration increased first and then decreased with time, overall gradually

decreasing with depth. The highest content at 10 cm occurred on the third day with 0.02
mg/cm3. The concentration at 80 cm was lower than that at 100 cm, and it dropped to the
lowest at 155 cm. On the first day of this experiment, the background concentration of
NH4

+-N in the soil was low. After the application of a solution of ammonium bicarbonate
and urea, the concentration increased rapidly at 10 cm and reached the maximum value
of 0.02 mg/cm3 on the 3rd day, then decreased gradually with time but did not return
to the background value by the 61st day. In this experiment, the solution applied is a
mix of ammonium bicarbonate (inorganic fertilizer) and urea (organic fertilizer). Over
time, urea migrated downward and transformed into NH4

+-N due to mineralization. The
concentration of NH4

+-N was still very high on the third day at 20 cm. While precipitation
recharge occurred during the experimental period, the soil water content changed only
slightly. As a result, NH4

+-N did not decrease rapidly to the background value in the
shallow layer.

As shown in Figure 7, NO3
−-N in the profile overall shows a gradual decreasing trend.

In the first experiment, the background value concentration of NO−
3 -N in the soil was low.

After the application of the test solution, it reached the maximum value of 0.23 mg/cm3

on the fourth day and then gradually decreased with time. NO−
3 -N concentration was

still high on the 61st day and did not return to the background value. As can be seen
from Figure 7, NO3

−-N migrated downward with water from the 1st to the 20th day of
this experiment, resulting in an increase in leaching loss. The content of NO3

−-N in the
unsaturated zone gradually decreased to 0.05 mg/cm3 by 23 days. There were only a few
days of rainfall from the 23rd day to the 61st day. The subsequent migration rate of NO−

3 -N
was very slow, resulting in a small difference between the concentration of NO3

−-N on the
61st day and the 22nd day, indicating that NO−

3 -N was prone to leaching with water.
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3.5. Mass Balance of Water and Nitrogen
3.5.1. Water Balance

The total amount of water input in the numerical model is 160 mm; water loss accounts
for 60.1% of the total water input in the lower boundary, and the water evaporation is
35.5% of the total water input, based on the actual measurement results from the in situ
experiments at the site. It can be seen that water loss is mainly the downward movement of
soil water compared to evaporation. That indicates that precipitation mainly recharges to
groundwater, and nitrogen migrates easily to groundwater. The total water balance error
of the model is 0.462 cm, and the relative error is 2.9%, which means that the numerical
results of the model are reliable.

3.5.2. Nitrogen Balance

The results of the model simulation of soil ammonia nitrogen mass conservation
during this experiment are shown in Figure 9. The input NH4

+-N includes ammonium
bicarbonate and urea (Figure 9a). The output is NO3

−-N, NH4
+-N migration with water

and soil residual NH4
+-N. The upper part of the figure is the output component, and the

lower part is the input component. The nitrogen balance pie charts for days 1, 10, 30, and
61 are shown below. It can be seen from the chart that the background value on the first day
was 22.1% and gradually decreased to 1.5%. Ammonium bicarbonate hydrolysis reached
a maximum value of 83.8% on day 10 and then gradually decreased to 43.9% on day 61.
Urea hydrolysis accounted for 75.5% on day 1, then gradually decreased to 15.5%, and then
increased to 54.6% on day 61. This confirms that the input NH4

+-N is mainly ammonium
bicarbonate and urea, in which ammonium carbonate gradually decreases with time, and
urea remains in the soil at a higher concentration. The output components were soil residue,
leakage, and nitrification. At the initial period of application, the soil residue accounted
for 88.7%. Over time and with nitrification, it gradually decreased to 6.1% by the 61st day.
Moreover, the leakage amount was only 3% on the first day and less than 0.3% on the
remaining days of this experiment. Nitrification occurs after NH4

+-N enters the soil, and
the process increases over time, thus accounting for the increase from 8.3% to 85.3% on
days 1 and 61, respectively.
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Figure 9. Nitrogen balance during the experiment period. (a) represents the NH4
+-N balance;

(b) represents the NO3
−-N balance.

NO3
−-N balance analysis is shown in Figure 9b. The inputs include NH4

+-N, urea
hydrolysis (conversion through NO−

3 -N nitrification), and soil background values. The
outputs include nitrate denitrification to N2, nitrate leaching with water, and soil residue.
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Similar to the NH4
+-N balance pie chart, the upper part is the output, and the lower part is

the input component. It can be seen that the background value on the first day was 3.2%,
then decreased to 1.4% on the tenth day, and subsequently remained at 1.6%. The ratio of
ammonium bicarbonate hydrolyzed to NH4

+-N and then converted to nitrate reached the
maximum value of 91.2% on the 1st day and then decreased to 51.6% on the 61st day. The
ratio of urea hydrolyzed to NH4

+-N and then converted to nitrate was 5.5% on the first day,
gradually increased to 57.5% on the 10th day, and decreased to 46.8% on the 61st day. In
the initial period of the nitrogen fertilizer application, the soil residue accounted for 82.4%.
With the reaction of nitrification and leakage over time, it gradually decreased to 12.7% by
the 61st day. The losses account for 14% to 18%, which indicates that nitrate is less easily
adsorbed by soil than NH4

+-N. The denitrification reaction became dominant over time as
this process increased from 3.5% to 76.6% over the 61 days monitored.

4. Discussion
4.1. Analysis of Distribution Characteristics of NH4

+-N and NO3
−-N Pollutants

According to previous studies [7,46], clay has strong adsorption of ammonia nitrogen,
and in general, NH4

+-N accumulates in large quantities in the shallow layer of soil and
decreases rapidly with the buried depth. However, due to the addition of ammonium
bicarbonate (inorganic fertilizer) and urea (organic fertilizer) at the same time in this
experiment, ammonium bicarbonate is directly converted into NH4

+-N when it meets
water, while urea requires mineralization to transform. Therefore, ammonium bicarbonate
was applied on the second day of this experiment, and soil NH4

+-N concentration was
higher at 10 cm. Urea migrated downward with time and was converted into NH4

+-N
due to mineralization, and NH4

+-N concentration reached the maximum at 20 cm on the
third day. As can be seen from Figure 3, during this experiment, there was more rainfall,
but the water content changed little with time, and the groundwater depth changed
significantly. According to Figure 8, except for the surface layer, the moisture content of
the other layers is relatively high and reaches a near-saturation state, and the moisture
resistance of each layer in the clay-unsaturated zone decreases during rainfall. As can
be seen from Figure 6, NH4

+-N does not decrease to the background value immediately
after accumulation in the shallow layer, and part of NH4

+-N is adsorbed in the shallow
layer. In contrast, the other part migrates to the lower layer with water. The NH4

+-N
concentration at 80 cm is lower than that at 100 cm because the soil moisture content
at 80 cm is low, about 0.30 cm3/cm3. The higher oxygen content in the soil at 80 cm
probably promotes nitrification, converting NH4

+-N into nitrate nitrogen. Meanwhile,
water movement accelerates NH4

+-N accumulation at 100 cm. As depth increases, soil
density rises, and oxygen content decreases. Nitrification slows down while denitrification
intensifies. This likely results in slower NH4

+-N decay rates in deeper layers compared
to shallow ones. Consequently, NH4

+-N concentrations gradually decrease below 100 cm.
However, the concentration at 155 cm is higher than at 140 cm, possibly because 155 cm
lies within the water fluctuation zone, where conditions promote both nitrification and
denitrification, leading to higher NO3

−-N levels.
As can be seen from Figure 7, soil NO3

−-N concentration is not easily adsorbed by soil
and is easily lost with water. The change in soil NO3

−-N concentration is more pronounced
than that of soil NH4

+-N concentration, but significant differences are primarily observed in
the shallow soil layer, indicating that the adsorption capacity of NO3

−-N in soil is weak, so
it is easy to be lost with water. Soil NO3

−-N concentration showed a gradually decreasing
trend. Before the start of this experiment (first day), the background value concentration
of NO3

−-N in the soil was low. After applying ammonium bicarbonate and urea, the
NO3

−-N content at 10 cm increased rapidly, reaching a peak of 0.2255 mg/cm3 on the
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fourth day. This was because the 10 cm layer was close to the surface, allowing for efficient
oxygen exchange with the atmosphere, which accelerated nitrification and converted a
large amount of NH4

+-N into NO3
−-N. The nitration reaction rate is fast, and a large

amount of NH4
+-N can be converted into NO3

−-N; the NO3
−-N content reaches its highest

level at the 10 cm depth. In Figure 3, the concentration of NO3
−-N in the clay-unsaturated

zone decreased rapidly during heavy rainfall and more slowly during light rainfall. This
suggests that rainfall contributes to NO3

−-N leaching along with soil moisture. However,
in clay-rich soil with low permeability, rainfall may also enhance denitrification, which
could further reduce NO−

3 -N levels. As soil depth increases, oxygen content decreases,
nitrification slows, and denitrification intensifies, leading to a gradual decline in NO3

−-N
concentration below 80 cm.

4.2. The Influence of Shallow Groundwater Table on Nitrogen Migration

In this study, migration and transformation of nitrogen in clay-rich soil under shallow
groundwater depth were studied by in situ test; furthermore, numerical simulation was
conducted to verify the experimental data. The RMSE of measured and simulated soil
moisture content, except for the surface layer, is less than 0.01, while the RMSE for NH4

+-N
and NO3

−-N is less than 0.011. The R2 values for soil moisture content, excluding the
surface layer, are above 0.85, and for NH4

+-N and NH4
+-N, they are above 0.9, indicating

good model fitting. As shown in Figure 5, the soil moisture content fits well for layers other
than the surface layer. This discrepancy at the surface may be attributed to its susceptibility
to external environmental disturbances, leading to differences between measured and
simulated data. Figures 6 and 7 show that the trends for NH4

+-N and NO3
−-N exhibit an

initial increase followed by a decrease. The discrepancy between measured and simulated
NH4

+-N data at 60 cm may result from the model’s inability to accurately simulate the
processes of mineralization and nitrification. It was found that, except for the surface layer,
the moisture content of each layer of the soil changed little with time (Figure 8). The lower
water content is due to evaporation and infiltration. Because the lower soil has higher
density and smaller pores, the water content gradually decreases. The shallow layer is also
affected by evaporation and infiltration, and the water content is also lower, resulting in
the highest water content at a depth of 60 cm. On the whole, the water content is high, the
clay-unsaturated zone is close to saturation state, and the rainfall mainly promotes leaching.
According to the measured data, the groundwater depth is between 145.5 and 187.9 cm,
and the groundwater depth at the experiment site is controlled by precipitation (Figure 3).
The groundwater depth decreases during rainfall and increases when there is no rainfall.
Specifically, a shallower groundwater table will facilitate the easier entry of NH4

+-N into
the groundwater system, and NH4

+-N also becomes a potential source of groundwater
pollution in a humid environment [47,48]. Because of its low permeability, clay is often used
as a barrier to prevent pollutants from seeping into groundwater, but its effectiveness needs
to be proven in shallow groundwater conditions. The in situ experiment was located in the
Hanjiang River basin under humid climate conditions, with an average annual precipitation
of 855.3 mm, an average relative humidity of 79%, and a relatively high soil water content
ranging between 0.30 and 0.45 cm3/cm3. In dry clay soils, fractures and cracks can serve as
preferential conduits for the rapid transport of water and solutes into the unsaturated zone,
especially during heavy rains or flood events when local runoff accumulates and seeks
paths of least resistance [49,50]. During rainfall, due to the quasi-saturation of soil water
content, the unsaturated zone only acts as the corridor of water movement. Water is easy
to migrate downward, and nitrogen (NH4

+-N, NO−
3 -N) is also easy to migrate downward

with water, polluting groundwater.
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In Figure 4, when the NPE value increases to more than 4 during rainfall, convection
gradually dominates. That is, during rainfall, nitrogen is transported downward faster with
soil water, and thus, nitrogen migration is greatly affected by rainfall. In contrast, when the
NPE value varied between 0.01 and 4 during periods of no precipitation, convection and
dispersion performed together, and the downward migration of nitrogen slowed down.

4.3. Control of the Effect of Clay-Unsaturated Zone on the Migration and Transformation of
Nitrogen Pollutants

The strong adsorption of NH4
+-N by clay depends on the mineral composition of

the clay [51]. Clay is mainly formed by silicate minerals after weathering on the earth’s
surface, and its mineral composition includes the kaolinite group, montmorillonite group,
illite group, and chlorite group. On the one hand, clay minerals can adsorb NH4

+-N
through ion exchange, resulting in strong adsorption by clay. In the expandable lattice of
2:1 clay minerals such as montmorillonite, the unit interlayer cations (Ca2+, Mg2+, Na+, K+)
can be replaced by NH4

+, giving rise to ammonium fixation clays [52,53]. On the other
hand, the surface of clay minerals has rich functional groups (such as hydroxyl, silico-
oxygen bond, etc.), which can chemically react with NH4

+-N to form chemical bonding to
achieve adsorption. In addition, the negative charge on the surface of clay minerals can
also attract positively charged NH4

+ ions, which can be adsorbed by electrostatic action.
Different types of clay minerals have different adsorption capacities for NH4

+-N [54–56].
For example, montmorillonite clay minerals have a large specific surface area and a strong
ion exchange capacity, so they have a strong adsorption capacity for NH4

+-N. The smaller
the clay mineral particles, the larger the specific surface area and the stronger the adsorption
capacity of NH4

+-N. Therefore, clay, as a weak permeable layer, is generally believed to
have a blocking effect on the entry of pollutants into groundwater. However, previous
studies have not considered the migration and transformation of nitrogen in the near-
saturated state and ignored the control of the structure of the clay-unsaturated zone on
the migration and transformation of pollutants [57,58]. The presented results show that
the retarding effect of the clay-unsaturated zone on nitrogen pollutants varies under the
influence of groundwater depth, unsaturated zone thickness, and unsaturated zone water
content. When the water content of the clay-unsaturated zone is high (near saturation), its
permeability increases, and its barrier effect decreases. In this case, the clay-unsaturated
zone primarily serves as a pathway for water migration, and NH4

+-N and NH4
+-N are

more likely to move downward into the groundwater along with water during rainfall.
This study verified nitrogen migration and transformation in clay-rich soil under

shallow water tables through tests and simulations, but deeper insights into chemical
reactions, ion exchange, and adsorption differences among clay minerals influenced by
environmental factors are needed. Comprehensive assessments are required to identify
optimal clay types and barrier structures for effective groundwater pollution control. This
study enhanced understanding of nitrogen fertilizer conversion in shallow groundwater,
offered optimization suggestions, promoted nitrogen fertilizer research, and supported
sustainable agriculture.

5. Conclusions
This study investigated nitrogen migration and transformation in clay-rich soil with a

shallow groundwater table in a humid climate area by combining an in situ experiment
with numerical simulation. Generally, although NH4

+-N was adsorbed by clay in large
quantities in the silt–clay soil, a significant 10–15% was still lost to groundwater despite
the presence of clay-rich soils. This differs from the traditional knowledge of nitrogen
migration and transformation features, which assumes clay-rich soils to be an impenetrable
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barrier for the prevention and mitigation of pollution to groundwater. However, in the case
of silt clay soils, these soils were not as impermeable as assumed in many studies.

(1) Peak concentrations of NH4
+-N occurred earlier (on the third day) than NO3

−-N (on
the fourth day);

(2) By the end of this experiment, the concentrations of both ammonia and NO−
3 -N had

not returned to background concentrations;
(3) The depth of the groundwater table fluctuated between 145.5 and 187.9 cm below

ground level. Consequently, NH4
+-N and NO3

−-N were able to migrate downward
and then enter the groundwater convected by precipitation recharge;

(4) The pattern of nitrogen migration is dominated by convection during precipitation,
while convection and dispersion act together during dry periods, according to the
Peclet number;

(5) The leakage loss of NO3
−-N in soil accounts for 14% to 18%. The nitrification reaction

of NH4
+-N and NO3

−-N is rapid over time, with increases from 8.3% to 85.3% and
from 3.5% to 76.6%, respectively.

To sum up, more attention should be paid to the prevention of nitrogen pollution in
humid climate areas with shallow groundwater tables even though the unsaturated zone is
clay-rich soil, as this may not provide the protection originally thought.

Author Contributions: Conceptualization, J.H. and Q.L.; methodology, J.H. and Q.L.; software, Z.Y.;
validation, F.P., J.W. and G.S.; formal analysis, T.H.; investigation, Z.L.; resources, T.F.; data curation,
F.Z.; writing—original draft preparation, F.P.; writing—review and editing, Q.L.; visualization, Q.L.;
supervision, F.S.; project administration, J.H.; funding acquisition, J.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China
(42177076, 41672250) and the Natural Science Foundation of Shaanxi Province (2021ZDLSF05-09).

Data Availability Statement: Data are available upon request from the authors.

Acknowledgments: The authors thank three anonymous reviewers for their detailed and helpful
comments on improving this paper.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Castaldelli, G.; Colombani, N.; Tamburini, E.; Vincenzi, F.; Mastrocicco, M. Soil type and microclimatic conditions as drivers of

urea transformation kinetics in maize plots. Catena 2018, 166, 200–208. [CrossRef]
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