Heavy Rainfall Monitoring by Polarimetric C-Band Weather Radars
Abstract
:1. Introduction
2. Data
Bric della Croce | Monte Settepani | |
---|---|---|
Model | Meteor 400C | GPM250C |
C-band frequency: | 5,640 MHz | 5,626 MHz |
Antenna 3-B beam-width: | 1° | 1° |
Antenna rotating speed: | 6° to 36° sec−1 | 6° to 36° sec−1 |
Transmitter type | Magnetron | Klystron |
Peak power: | 250 kw | 250 kw |
Pulse duration: | 1–2 μs | 0.5–1.5–3 μs |
Dual-polar: | H and V alternates (simultaneous since May 2008) | H and V alternates |
3. Rainfall Estimation Algorithms
- High variability of raindrop size distribution which determines the Z-R relationship.
- Changes in the vertical reflectivity profile.
- Bright band effects caused by scattering of radar waves by ice particles present in the higher levels of some clouds.
- False echo caused by anomalous propagation of radar waves.
- Miscalibration of radar electronic instruments.
- Erroneous measurements of the received power.
- Atmospheric processes between the level of the measurement cell and the ground.
4. Case Studies Analysis
4.1. Flash Flood on 16 August 2006—Ligurian Apennines
- R:: unadjusted radar rainfall estimates obtained by using Marshall-Palmer Z-R relation [10];
- RZPHI: adjusted radar rainfall estimates, obtained by using differential phase shift to correct for attenuation and by N0* normalization [8];
- RKDP: based on a linear relation between R and KDP, with RKDP = 19.8 × KDP [13].
Site | Altitude (m a.s.l.) | Cumulated rain in raing-auge (mm) | Cumulated rain radar 0.3° KDP (mm) | BIAS |
---|---|---|---|---|
Fiorino | 290 | 337.0 | 199.8 | –0.41 |
Passo del Turchino | 598 | 299.0 | 212.0 | –0.29 |
Mele | 280 | 276.2 | 139.0 | –0.49 |
Il Pero | 90 | 223.6 | 138.8 | –0.38 |
Busalla | 358 | 223.0 | 111.6 | –0.50 |
Sandra | 180 | 194.2 | 85.9 | –0.56 |
Isoverde | 270 | 193.8 | 118.2 | –0.39 |
Pianpaludo | 882 | 180.0 | 142.0 | –0.21 |
4.2. Flash Flood on 13 September 2008—Turin International Airport
5. Conclusions
Acknowledgments
References
- Duncan, M.R.; Austin, B.; Fabry, F.; Austin, G.L. The effect of gauge sampling density on the accuracy of streamflow prediction for rural catchments. J. Hydrol. 1993, 142, 445–476. [Google Scholar] [CrossRef]
- Doviak, R.J.; Zrnic, D.S. Doppler Radar and Weather Observations, 2nd ed.; Academic Press: New York, NY, USA, 1993; p. 228. [Google Scholar]
- Bringi, V.N.; Chandrasekar, V. Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Liu, H.; Chandrasekar, V. Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Tech. 2000, 17, 140–164. [Google Scholar] [CrossRef]
- Cremonini, R.; Bechini, R.; Alberoni, P.P.; Celano, M. Which hydrometeor classification scheme is realistic using ZH, ZDR and temperature in complex orography?—A study based on operational C-band polarimetric weather radar in northern Italy. In Proceedings of the 3rd European Conference on Radar Meteorology (ERAD) Together with the COST 717 Final Seminar, Visby, Island of Gotland, Sweden, 6–10 September 2004; pp. 393–397.
- Zawadzki, I. Factors affecting the precision of radar measurements of rain. In Proceedings of Preprints of the 22nd Conference on Radar Meteorology; American Meteorological Society: Boston, MAUSA, 1984. [Google Scholar]
- Hubbert, J.; Bringi, V.N. An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos. Ocean. Tech. 1995, 12, 643–648. [Google Scholar] [CrossRef]
- Testud, J.; Le Bouar, E.; Obligis, E.; Ali-Mehenni, M. The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Ocean. Tech. 2000, 17, 322–356. [Google Scholar] [CrossRef]
- Marzoug, M.; Amayenc, P. A class of single and dual frequency algorithms for rain profiling from a spaceborn radar. J. Atmos. Oceanic. Tech. 1994, 11, 1480–1506. [Google Scholar] [CrossRef]
- Joss, J.; Lee, R. The application of Radar-Gauge comparisons to operational precipitation profile corrections. J. Appl. Meteorol. 1995, 34, 2612–2630. [Google Scholar] [CrossRef]
- Delrieu, G.; Creutin, J.D. Simulation of radar mountain returns using a digitized terrain model. J. Atmos. Ocean. Tech. 1995, 12, 1038–1049. [Google Scholar] [CrossRef]
- Berenguer, M.; Lee, G.W.; Sempere-Torres, D.; Zawadzki, I. A variational method for attenuation correction of radar signal. In Proceedings of the Second European Conference on Radar Meteorology (ERAD) in Conjunction with COST 717 Mid-term Seminar, Delft, The Netherlands, 18–22 November 2002.
- Gorgucci, E.; Scarchilli, G.; Chandrasekar, V. Calibration of radars using polarimetric techniques. IEEE Trans. Geosci. Remote. Sens. 1992, 30, 853–858. [Google Scholar]
- Illingworth, A.J.; Blackman, T.M.; Goddard, J.W.F. Improved rainfall estimates in convective storms using polarisation diversity radar. Hydrol. Earth Syst. Sci. 2000, 4, 555–563. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Cremonini, R.; Bechini, R. Heavy Rainfall Monitoring by Polarimetric C-Band Weather Radars. Water 2010, 2, 838-848. https://doi.org/10.3390/w2040838
Cremonini R, Bechini R. Heavy Rainfall Monitoring by Polarimetric C-Band Weather Radars. Water. 2010; 2(4):838-848. https://doi.org/10.3390/w2040838
Chicago/Turabian StyleCremonini, Roberto, and Renzo Bechini. 2010. "Heavy Rainfall Monitoring by Polarimetric C-Band Weather Radars" Water 2, no. 4: 838-848. https://doi.org/10.3390/w2040838
APA StyleCremonini, R., & Bechini, R. (2010). Heavy Rainfall Monitoring by Polarimetric C-Band Weather Radars. Water, 2(4), 838-848. https://doi.org/10.3390/w2040838