Dye Waste Treatment
Abstract
:1. Biological Treatment
2. Catalytic Oxidation
3. Membrane Filtration
4. Sorption Process
5. Coagulation/Flocculation
6. Combination of Different Methods
7. Other Treatment Methods
Acknowledgement
References
- Ng, T.W.; Cai, Q.; Wong, C.-K.; Chow, A.T.; Wong, P.-K. Simultaneous chromate reduction and azo dye decolorization by Brevibacterium casei: Azo dye as electron donor for chromate reduction. J. Hazard. Mater. 2010, 182, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, F.; Tabandeh, F.; Bambai, B. Decolorization of different azo dyes by phanerochaete chrysosporium RP78 under optimal condition. Int. J. Environ. Sci. Technol. 2010, 7, 457–464. [Google Scholar] [CrossRef]
- Pakshirajan, K.; Singh, S. Decolorization of synthetic wastewater containing azo dyes in a batch-operated rotating biological contactor reactor with the immobilized fungus phanerochaete chrysosporium. Ind. Eng. Chem. Res. 2010, 49, 7484–7487. [Google Scholar] [CrossRef]
- Andleeb, S.; Atiq, N.; Ali, M.I.; Razi-Ul-Hussnain, R.; Shafique, M.; Ahamad, B.; Ghumro, P.B.; Ahmad, S. Biological treatment of textile effluent in stirred tank bioreactor. Int. J. Agriculture Bio. 2010, 12, 256–260. [Google Scholar]
- Kilic, N.K.; Duygu, E.; Donmez, G. Triacontanol hormone stimulates population, growth and Brilliant Blue R dye removal by common duckweed from culture media. J. Hazard. Mater. 2010, 182, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Karacakaya, P.; Kilic, N.K.; Duygua, E.; Donmez, G. Stimulation of reactive dye removal by cyanobacteria in media containing triacontanol hormone. J. Hazard. Mater. 2009, 172, 1635–1639. [Google Scholar] [CrossRef] [PubMed]
- Ozer, A.; Turabik, M.; Akkaya, G. Biosorption of acid dyes by brown alga dictyota dichotoma: Equilibrium, kinetic and thermodynamic studies. Fresenius Environ. Bull. 2009, 18, 1798–1808. [Google Scholar]
- Nilratnisakorn, S.; Thiravetyan, P.; Nakbanpote, W. A constructed wetland model for synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn). Water Sci. Technol. 2009, 60, 1565–1574. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, G.; Pugalvendhan, R.; Jayaseelan, M. Studies on textile dye degradation by aspergillus niger from dye contaminated soil. Pollut. Res. 2009, 28, 555–560. [Google Scholar]
- Won, S.W.; Vijayaraghavan, K.; Mao, J.; Kim, S.; Yun, Y.-S. Reinforcement of carboxyl groups in the surface of Corynebacterium glutamicum biomass for effective removal of basic dyes. Bioresour. Technol. 2009, 100, 6301–6306. [Google Scholar] [CrossRef] [PubMed]
- Nehra, K.; Anju, M.; Malik, K. Isolation and optimization of conditions for maximum decolorization by textile-dye decolorizing bacteria. Pollut. Res. 2008, 27, 257–264. [Google Scholar]
- Bafana, A.; Krishnamurthi, K.; Devi, S.S.; Chakrabarti, T. Biological decolorization of C.I. Direct Black 38 by E. gallinarum. J. Hazard. Mater. 2008, 157, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Bafana, A.; Chakrabarti, T.; Krishnamurthi, K.; Devi, S.S. Biodiversity and dye decolorization ability of an acclimatized textile sludge. Bioresour. Technol. 2008, 99, 5094–5098. [Google Scholar] [CrossRef]
- Raghukumar, C.; D’Souza Ticlo, D.; Verma, A.K. Treatment of colored effluents with lignin-degrading enzymes: An emerging role of marine-derived fungi. Crit. Rev. Microbiol. 2008, 34, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Cetin, D.; Donmez, S.; Donmez, G. The treatment of textile wastewater including chromium(VI) and reactive dye by sulfate-reducing bacterial enrichment. J. Environ. Manage. 2008, 88, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Khalid, A.; Arshad, M.; Crowley, D.E. Decolorization of azo dyes by Shewanella sp. under saline conditions. Appl. Microbiol. Biotechnol. 2008, 79, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Dawkar, V.V.; Jadhav, U.U.; Jadhav, S.U.; Govindwar, S.P. Biodegradation of disperse textile dye brown 3REL by newly isolated Bacillus sp. VUS. J. Appl. Microbiol. 2008, 105, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Valdes, H.; Godoy, H.P.; Zaror, C.A. Heterogeneous catalytic ozonation of cationic dyes using volcanic sand. J. Int. Assoc. Water Pollut. Res. 2010, 61, 2973–2978. [Google Scholar] [CrossRef]
- Xiu, F-R.; Zhang, F-S. Preparation of nano-Cu2O/TiO2 photocatalyst from waste printed circuit boards by electrokinetic process. J. Hazard. Mater. 2009, 172, 1458–1463. [Google Scholar]
- Khataee, A.R.; Fathinia, M.; Aber, S.; Zarei, M. Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: Intermediates Identification. J. Hazard. Mater. 2010, 181, 886–897. [Google Scholar] [CrossRef] [PubMed]
- Damodar, R.A.; You, S-.J.; Chou, H.-H. Study of self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membrane. J. Hazard. Mater. 2009, 172, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Jijn, D.; Lee, Y-S.; Kim, H-I. Photocatalytic treatment of acidic wastewater by electrospun composite nanofibers of pH-sensitive hydrogel and TiO2. Mater. Lett. 2010, 64, 2431–2434. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Lee, H.-S. Effects of TiO2 coating dosage and operational parameters on a TiO2/Ag photocatalysis system for decolorizing Procion red MX-5B. J. Hazard. Mater. 2010, 179, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.-C.; Zhang, Y.; Tao, T.-X.; Zhang, L.; Fong, H. Silver nanoparticles on amidoxime fibers for photo-catalytic degradation of organic dyes in waste water. Appl. Surf. Sci. 2010, 257, 1092–1097. [Google Scholar] [CrossRef]
- Sun, J.-H.; Dong, S.-Y.; Wang, Y.-K.; Sun, S.-P. Preparation and photocatalytic property of a novel dumbbell shape ZnO microcrystal photocatalyst. J. Hazard. Mater. 2009, 172, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Shi, L. Catalytic oxidation and spectroscopic analysis of stimulated wastewater containing Acid Chrome Blue K by using chlorine dioxide as oxidant. Water Sci. Technol. 2010, 61, 1931–1940. [Google Scholar] [CrossRef] [PubMed]
- Valero, D.; Ortiz, J.M.; Exposito, E.; Montiel, V.; Aldaz, A. Electrochemical wastewater treatment directly powered by photovoltaic panels: Electrooxidation of a dye-containing wastewater. Environ. Sci. Technol. 2010, 44, 5182–5187. [Google Scholar] [CrossRef] [PubMed]
- Maljaei, A.; Arami, M.; Mahmoodi, N.M. Decolorization and aromatic ring degradation of colored textile wastewater using indirect electrochemical oxidation method. Desalination 2009, 249, 1074–1078. [Google Scholar] [CrossRef]
- Lodha, S.; Jain, A.; Punjabi, P.B. A novel route for waste water treatment: Photocatalytic degradation of Rhodamine B. Arabian J. Chem. 2010, in press. [Google Scholar]
- Lv, J.-X.; Xie, G.-H.; Yue, Q.-L.; Zhang, L.; Li, J.-M.; Cui, Y. H2O2-assisted photolysis of reactive BES Golden Yellow simulated wastewater. Water Sci. Technol. 2009, 60, 2329–2336. [Google Scholar] [CrossRef] [PubMed]
- Mounteer, A.H.; Leite, T.A.; Lopes, A.C.; Medeiros, R.C. Removing textile mill effluent recalcitrant COD and toxicity using the H2O2/UV system. Water Sci. Technol. 2009, 60, 1895–1902. [Google Scholar] [CrossRef] [PubMed]
- Bauman, M.; Poberznik, M.; Lobnik, A. Textile wastewater cleaning with O3 and H2O2/O3 process. Tekstilec. 2009, 52, 284–305. [Google Scholar]
- Mahamuni, N.N.; Adewuyi, Y.G. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrason. Sonochem. 2010, 17, 990–1003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Fu, H.; Zhang, D. Degradation of C.I. Acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process. J. Hazard. Mater. 2009, 172, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, L.-L.; Kang, H.-J.; Shyu, H.-L.; Chang, C.-Y. Optimal degradation of dye wastewater by ultrasound/Fenton method in the presence of nanoscale iron. Water Sci. Technol. 2009, 60, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, D.; Ma, W.; Chen, C.; Zhao, J. Enhanced sonocatalytic degradation of azo dyes by Au/TiO2. Environ. Sci. Technol. 2008, 42, 6173–6178. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, Z.; Zhang, Z.; Xie, Y.; Wang, X.; Xing, Z.; Xu, R.; Zhang, X. Sonocatalytic degradation of Acid Red B and Rhodamine B catalyzed by nano-sized ZnO powder under ultrasonic irradiation. Ultrason. Sonochem. 2008, 15, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-H.; Liu, R.-L.; Mu, T.-M.; Zuo, Z.-H.; Tao, C.-Y. Degradation of Methyl Orange solution by microwave-assisted catalysis of H2O2 with chromium residue. Spec. Spectr. Anal. 2008, 28, 1900–1904. [Google Scholar]
- Cristovao, R.O.; Tavares, A.P.M.; Loureiro, J.M.; Boaventura, R.A.R.; Macedo, E.A. Treatment of kinetic modeling of a simulated dye house effluent by enzymatic catalysis. Bioresour. Technol. 2009, 100, 6236–6242. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.L.; Zhong, D.J.; Jia, J.P.; Chen, S.; Li, K. Enhanced dye wastewater degradation efficiency using a flowing aqueous film photoelectrocatalytic reactor. J. Environ. Sci. Health A 2008, 43, 1215–1222. [Google Scholar] [CrossRef]
- Ren, X.; Wang, T.; Zhou, C.; Du, S.; Luan, Z.; Wang, J.; Hou, D. Treatment of dye aqueous solution using a novel aromatic polyamide asymmetric nanofiltration membrane. Fresenius Environ. Bull. 2010, 19, 1441–1446. [Google Scholar]
- Han, R.; Zhang, S.; Xing, D.; Jian, X. Desalination of dye utilizing copoly(phthalazinone biphenyl ether sulfone) ultrafiltration membrane with low molecular weight cut-off. J. Membrane Sci. 2010, 358, 1–6. [Google Scholar] [CrossRef]
- Rekha, R.; Chauhan, P.; Gangopadhyay, U.K. Zero effluent process by using membrane type solute separation systems for wet process house. Asian Text. J. 2009, 18, 65–69. [Google Scholar]
- Altenbaher, B.; Turk, S.S. Treatment of textile processing wastewater with membrane filtrations. Tekstil. 2009, 58, 367–383. [Google Scholar]
- Salehi, R.; Arami, M.; Mahmoodi, N.M.; Bahrami, H.; Khorramfar, S. Novel biocompatible composite (Chitosan-zinc oxide nanoparticle): Preparation, characterization and dye adsorption properties. Colloids Surf. 2010, B80, 86–93. [Google Scholar] [CrossRef]
- Wong, Y.C.; Szeto, Y.S.; Cheung, W.H.; McKay, G. Sorption kinetics for the removal of dyes from effluents onto chitosan. J. Appl. Polym. Sci. 2008, 109, 2232–2242. [Google Scholar] [CrossRef]
- Rosa, S.; Laranjeira, M.C.M.; Riela, H.G.; Favere, V.T. Cross-linked quaternary chitosan as an adsorbent removal of the reactive dye from aqueous solutions. J. Hazard. Mater. 2008, 155, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Jalil, A.A.; Triwahyono, S.; Adam, S.H.; Rahim, N.D.; Aziz, M.A.A.; Hairom, N.H.H.; Razali, N.A.M.; Mohamadiah, M.K.A. Adsorption of Methyl Orange from aqueous solution onto calcinated Lapindo volcanic mud. J. Hazard. Mater. 2010, 181, 755–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asuha, S.; Zhou, X.G.; Zhao, S. Adsorption of Methyl Orange and Cr(VI) on mesoporous TiO2 prepared by hydrothermal method. J. Hazard. Mater. 2010, 181, 204–210. [Google Scholar] [CrossRef]
- Haque, E.; Lee, J.E.; Jang, I.T.; Hwang, Y.K.; Chang, J.-S.; Jegal, J.; Jhung, S.H. Adsorptive removal of Methyl Orange from aqueous solution with metal-organic frameworks, porous chromium-benzenecarboxylates. J. Hazard. Mater. 2010, 181, 535–542. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Dutta, B.K.; Apak, R. Active manganese oxide: A novel adsorbent for treatment of wastewater containing azo dye. Water Sci. Technol. 2009, 60, 3017–3024. [Google Scholar] [CrossRef] [PubMed]
- Kannan, C.; Sundaram, T.; Palvannan, T. Environmentally stale adsorbent of tetrahedral silica and non-tetrahedral alumina for removal and recovery of malachite green dye from aqueous solution. J. Hazard. Mater. 2008, 157, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.F.; Liu, J.; Hu, X.F.; Liu, Z.W.; Lin, H. Application on dyeing wastewater treatment by tourmaline. In Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering, 11–13 June 2009; iCBBE: Beijing, China.
- Liu, Q.; Wang, L.; Xiao, A.; Gao, J.; Ding, W.; Yu, H.; Huo, J.; Ericson, M. Templated preparation of porous magnetic microspheres and their application in removal of cationic dyes from wastewater. J. Hazard. Mater. 2010, 181, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Iram, M.; Guo, C.; Guan, Y.; Ishfaq, A.; Liu, H. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J. Hazard. Mater. 2010, 181, 1039–1050. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, A.; Viraraghavan, T. Decolourization of dye wastewaters by biosorbents: A review. J. Environ. Manage. 2010, 91, 1915–1929. [Google Scholar] [CrossRef]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of Methylene Blue on low-cost adsorbents: A review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Zhang, X.; Wu, Y.; Liu, X. Adsorption of anionic dyes from aqueous solution on fly ash. J. Hazard. Mater. 2010, 181, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Smelcerovic, M.; Dordevic, D.; Novakovic, M.; Mizdrakovic, M. Decolorization of a textile vat dye by adsorption on waste ash. J. Serb. Chem. Soc. 2010, 75, 855–872. [Google Scholar] [CrossRef]
- Saad, S.A.; Isa, K.Md.; Bahari, R. Chemically modified sugarcane bagasse as a potentially low-cost biosorbent for dye removal. Desalination 2010, 1-2, 123–128. [Google Scholar] [CrossRef]
- Ong, S.T.; Khoo, E.C.; Hii, S.L.; Ha, S.T. Utilization of sugarcane bagasse for removal of basic dyes from aqueous environment in single and binary systems. Desalination Water Treat. J. 2010, 20, 86–95. [Google Scholar]
- Lee, C.K.; Ong, S.T.; Zainal, Z. Ethylenediamine modified rice hull as a sorbent for the removal of Basic Blue 3 and Reactive Orange 16. Int. J. Environ. Pollut. 2008, 34, 246–260. [Google Scholar] [CrossRef]
- Ong, S.T.; Tay, E.H.; Ha, S.T.; Lee, W.N.; Keng, P.S. Equilibrium and continuous flow studies on the sorption of Congo Red using ethylenediamine modified rice hulls. Int. J. Phys. Sci. 2009, 4, 683–690. [Google Scholar]
- Ong, S.T.; Lee, W.N.; Keng, P.S.; Lee, S.L.; Hung, Y.T.; Ha, S.T. Equilibrium studies and kinetics mechanism for the removal of basic and reactive dyes in both single and binary systems using EDTA modified rice husk. Int. J. Phys. Sci. 2010, 5, 582–595. [Google Scholar]
- Mital, A.; Jain, R.; Mittal, J.; Shrivastava, M. Adsorptive removal of hazardous dye Quinoline Yellow from wastewater using coconut-husk as potential adsorbent. Fresenius Environ. Bull. 2010, 19, 1171–1179. [Google Scholar]
- Oliveira, L.S.; Franca, A.S.; Alves, T.M.; Rocha, S.D.F. Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters. J. Hazard Mater. 2008, 155, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.; Sharif, M.; Iqbal, M. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium, and mechanism of crystal violet adsorption. J. Hazard. Mater. 2010, 179, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Deniz, F.; Saygideger, S.D. Equilibrium, kineticm and thermodynamic studies of Acid Orange 52 dye biosorption by Paulownia tomentosa Steud. leaf powder as a low-cost natural biosorbent. Bioresour. Technol. 2010, 101, 5137–5143. [Google Scholar] [CrossRef] [PubMed]
- Nagda, G.K.; Ghole, V.S. Biosorption of Congo Red by hydrogen peroxide treated tendu waste. Iranian J. Environ. Health Sci. Eng. 2009, 6, 195–200. [Google Scholar]
- Parab, H.; Sudersanan, M.; Shenoy, N.; Pathare, T.; Vaze, B. Use of Agro-Industrial Wastes for the Removal of Basic Dyes from Aqueous Solutions. In Proceedings of the 2nd International Conference and Exhibition on Water in the Environment, Stellenbosch, South Africa, 2–4 March 2009; Volume 37, pp. 963–969.
- Mizdrakovic, M.; Dordevic, D.; Novakovic, M.; Smelcerovic, M. The removal of base dyes from wastewater model by adsorption at waste ashes. Tekstil. 2009, 58, 591–599. [Google Scholar]
- Mittal, A.; Mittal, J.; Malviya, A.; Gupta, V.K. Adsorptive removal of hazardous anionic dye ‘Congo Red’ from wastewater using waste materials and recovery by desorption. J. Colloid. Interf. Sci. 2009, 340, 16–26. [Google Scholar] [CrossRef]
- Song, L.; Chen, J.; Gao, J.; He, B.; Wei, M.; Wang, Y. Adsorbent for waste water treatment made from waste drilling fluids. Drill. Fluid Complet. Fluid 2009, 26, 86. [Google Scholar]
- Hamdaoui, O.; Chiha, M.; Naffrechoux, E. Ultrasound-assisted removal of malachite green from aqueous solution by dead pine needles. Ultrason. Sonochem. 2008, 15, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Elizalde-Gonzalez, M.P.; Mattusch, J.; Wennrich, R. Chemically modified maize cobs waste with enhanced adsorption properties upon Methyl Orange and arsenic. Bioresour. Technol. 2008, 99, 5134–5139. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.-T.; Hsu, H.-C.; Su, T.-Y.; Lin, K.-Y.; Lin, C.-M. Removal of basic dye (Methylene Blue) from wastewaters utilizing beer brewery waste. J. Hazard. Mater. 2008, 154, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Zhuang, Y.Y. Adsorbent derived from sewage sludge and its application in dye wastewater treatment. In Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering, 11–13 June 2009; iCBBE: Beijing, China.
- Zhang, L.; Chen, J.; Liu, L.; An, F.; Li, D. Decolorization of synthetic dye wastewater with sewage sludge ash used as adsorbent. Acta Sci. Circumst. 2009, 29, 2510–2518. [Google Scholar]
- Mui, E.L.K.; Cheung, W.H.; Valix, M.; Mckay, G. Dye adsorption onto activated carbons from tyre rubber waste using surface coverage analysis. J. Colloid Interf. Sci. 2010, 347, 290–300. [Google Scholar] [CrossRef]
- Kauspediene, D.; Kazlauskiene, E.; Gefeniene, A.; Binkiene, R. Comparison of the efficiency of activated carbon and neutral polymeric adsorbent in removal of chromium complex dye from aqueous solutions. J. Hazard. Mater. 2010, 179, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Deng, S.; Sun, B.; Xiao, H.; Li, L.; Yang, G.; Hui, Q.; Zheng, J. Preparation of TiO2-loaded activated carbon fiber hybrids and application in a pulsed discharge reactor for decomposition of Methyl Orange. J. Colloid Interf. Sci. 2010, 347, 260–266. [Google Scholar] [CrossRef]
- Govindasami, S.; Phani Kumar, B.R.; Balamurali Krishna, C.; Mayildurai, R. Equilibrium and isotherm studies of sludge based activated carbon. Ecol. Environ. Conserv. 2009, 15, 817–824. [Google Scholar]
- Jalajaa, P.; Manjuladevi, M.; Saravanan, S.V. Removal of acid dye from textile waste water by adsorption using activated carbon prepared from Punica Granatum (Pomegranate) rind. Pollut. Res. 2009, 28, 287–290. [Google Scholar]
- Matta, G.K.L.; Barros, M.A.S.D.; Lambrecht, R.; da Silva, E.A.; da Motta Lima, O.C. Dynamic isotherms of dye in activated carbon. Mater. Res. 2008, 11, 365–369. [Google Scholar] [CrossRef]
- Karagoz, S.; Tay, T.; Ucar, S.; Erdem, M. Activated carbons from waste biomass by sulfuric acid activation and their use on Methylene Blue adsorption. Bioresour. Technol. 2008, 99, 6214–6222. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, K.; Lee, M.W.; Yun, Y.-S. A new approach to study the decolorization of complex reactive dye bath effluent by biosorption technique. Bioresour. Technol. 2008, 99, 5778–5785. [Google Scholar] [CrossRef]
- Adav, S.S.; Lee, D.-J.; Show, K.-Y.; Tay, J.-H. Aerobic granular sludge: Recent advances. Biotechnol. Adv.s 2008, 26, 411–423. [Google Scholar] [CrossRef]
- Sanchez-Martin, J.; Beltran-Heredia, J.; Solera-Hernandez, C. Surface water and wastewater treatment using a new tannin-based coagulant, Pilot plant trials. J. Environ. Manage. 2010, 91, 2051–2058. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ang, H.M.; Tade, M.O. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere 2008, 72, 1621–1635. [Google Scholar] [CrossRef] [PubMed]
- Zidane, F.; Drogui, P.; Lekhlif, B.; Bensaid, J.; Blais, J.-F.; Belcadi, S.; Kacemi, K.E. Decolorization of dye-containing effluent using mineral coagulants produced by electrocoagualtion. J. Hazard. Mater. 2008, 155, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Sun, L.; Li, Y.; Jia, R.; Yi, X. Adsorption filtration technology using reclaimed iron sludge coated sand filter media for municipal wastewater reuse. In Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering, 18–20 June 2010; iCBBE: Chengdu, China.
- You, S.-J.; Teng, J.-Y. Performance and dye-degrading bacteria isolation of a hybrid membrane process. J. Hazard. Mater. 2009, 172, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zuo, L.; Wang, L. Visible-light assisted Methylene Blue (MB) removal by novel TiO2/adsorbent nanocomposites. Water Sci. Technol. 2010, 61, 2863–2871. [Google Scholar] [CrossRef] [PubMed]
- Berberidou, C.; Avlonitis, S.; Poulios, I. Dyestuff effluent treatment by integrated sequential photocatalytic oxidation and membrane filtration. Desalination 2009, 249, 1099–1106. [Google Scholar] [CrossRef]
- Harrelkas, F.; Paulo, A.; Alves, M.M.; El Khadir, L.; Zahraa, O.; Pons, M.N.; van der Zee, F.P. Photocatalytic and combined anaerobic-photocatalytic treatment of textile dyes. Chemosphere 2008, 72, 1816–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza, S.M.D.A.G.U.; Bonilla, K.A.S.; de Souza, A.A.U. Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. J. Hazard. Mater. 2010, 179, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Montano, J.; Domenech, X.; Garcia-Hortal, J.A.; Torrades, F.; Peral, J. The testing of several biological and chemical coupled treatments for Cibacron Red FN-R azo dye removal. J. Hazard. Mater. 2008, 154, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Emami, F.; Tehrani-Bagha, A.R.; Gharanjig, K.; Menger, F.M. Kinetic study of the factors controlling Fenton-promoted destruction of a non-biodegradable dye. Desalination 2010, 257, 124–128. [Google Scholar] [CrossRef]
- El-Ashtoukhy, E.-S.Z.; Amin, N.K. Removal of acid green dye 50 from wastewater by anodic oxidation and electrocoagulation—A comparative study. J. Hazard. Mater. 2010, 179, 113–119. [Google Scholar] [CrossRef] [PubMed]
- El-Gohary, F.; Tawfik, A. Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor. Desalination 2009, 249, 1159–1164. [Google Scholar] [CrossRef]
- Ramachandran, T.; Ganesan, P.; Hariharan, S. Decolourization of textile effluents—An overview. J. Inst. Engineers (India) TX 2009, 90, 20–25. [Google Scholar]
- Ong, S.-A.; Uchiyama, K.; Inadama, D.; Ishida, Y.; Yamagiwa, K. Treatment of azo dye Acid Orange 7 containing wastewater using up-flow constructed wetland with and without supplementary aeration. Bioresour. Technol. 2010, 101, 9049–9057. [Google Scholar] [CrossRef] [PubMed]
- Bulc, T.G.; Ojstrsek, A. The use of constructed wetland for dye-rich textile wastewater treatment. J. Hazard. Mater. 2008, 155, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yang, S.; Shan, L.; Yang, X.; Zhang, W.; Shao, X.; Niu, R. Waste heat-activated persulfate degradation of dye wastewater. In Proceedings of the 4thInternational Conference on Bioinformatics and Biomedical Engineering, 18–20 June 2010; iCBBE: Chengdu, China.
- Du, C.; Shi, T.; Sun, Y.; Zhuang, X. Decolorization of Acid Orange 7 solution by gas-liquid gliding arc discharge plasma. J. Hazard. Mater. 2008, 154, 1192–1197. [Google Scholar] [CrossRef] [PubMed]
- Sheth, N.; Dave, S. Enhanced biodegradation of Reactive Violet 5R manufacturing wastewater uing down flow fixed film bioreactor. Bioresour. Technol. 2010, 101, 8627–8631. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Zhang, X.-L.; Zhao, Y.-L.; Wu, Z.-L. Removal of color from textile dyeing wastewater by foam separation. J. Hazard. Mater. 2010, 182, 928–932. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Jiang, W.; Bi, J. Cost-effectiveness of two operational models at industrial wastewater treatment plants in China: A case study in Shengze town, Suzhou City. J. Environ. Manage. 2010, 91, 2038–2044. [Google Scholar] [CrossRef] [PubMed]
- Kozakova, Z.; Nejezchle, M.; Krcma, F.; Halamova, I.; Caslavsky, J.; Dolinova, J. Removal of organic dye Direct Red 79 from water solutions by DC diaphragm discharge: Analysis of decomposition products. Desalination 2010, 258, 93–99. [Google Scholar] [CrossRef]
- Sadri Moghaddam, S.; Alavi Moghaddam, M.R.; Arami, M. A comparison study on Acid Red 119 dye removal using two different types of waterworks sludge. Water Sci. Technol. 2010, 61, 1673–1681. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.-C.; Shu, H.-Y.; Chang, C.-C.; Chen, W.-H. Using wasted basic oxygen furnace (BOF) slag for decolorization of diazo dye Acid Black 24 wastewater. Fresenius Environ. Bull. 2010, 19, 1118–1124. [Google Scholar]
- Siddique, M.; Farooq, R.; Khalid, A.; Farooq, A.; Mahmood, Q.; Farooq, U.; Raja, I.A.; Shaukat, S.F. Thermal-pressure-mediated hydrolysis of Reactive Blue 19 dye. J. Hazard. Mater. 2009, 172, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Gnanavel, P.; Kumar, P.M.; Ananthakrishnan, T. Effect of sugarcane extract in vat dyeing. Man-Made Textiles in India 2009, 52, 432–433. [Google Scholar]
- Yi, F.; Chen, S.; Yuan, C. Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater. J. Hazard. Mater. 2008, 157, 79–87. [Google Scholar] [CrossRef]
- Ting, T.-M.; Jamaludin, N. Decolorization and decomposition of organic pollutants for reactive and disperse dyes using electron beam technology: Effect of concentration of pollutants and irradiation dose. Chemosphere 2008, 73, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Firmino, P.I.M.; da Silva, M.E.R.; Cervantes, F.J.; dos Santos, A.B. Color removal of dyes from synthetic and real textile wastewaters in one- and two-stage anaerobic systems. Bioresour. Technol. 2010, 101, 7773–7779. [Google Scholar] [CrossRef] [PubMed]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ong, S.-T.; Keng, P.-S.; Lee, W.-N.; Ha, S.-T.; Hung, Y.-T. Dye Waste Treatment. Water 2011, 3, 157-176. https://doi.org/10.3390/w3010157
Ong S-T, Keng P-S, Lee W-N, Ha S-T, Hung Y-T. Dye Waste Treatment. Water. 2011; 3(1):157-176. https://doi.org/10.3390/w3010157
Chicago/Turabian StyleOng, Siew-Teng, Pei-Sin Keng, Weng-Nam Lee, Sie-Tiong Ha, and Yung-Tse Hung. 2011. "Dye Waste Treatment" Water 3, no. 1: 157-176. https://doi.org/10.3390/w3010157
APA StyleOng, S. -T., Keng, P. -S., Lee, W. -N., Ha, S. -T., & Hung, Y. -T. (2011). Dye Waste Treatment. Water, 3(1), 157-176. https://doi.org/10.3390/w3010157