Biosorption Parameter Estimation with Genetic Algorithm
Abstract
:1. Introduction
2. Parameter Estimation Methods
2.1. Genetic Algorithm Optimization
2.2. Nonlinear and Linear Regressions
2.3. Goodness-of-Fit Measure
3. Results and Discussion
3.1. Equilibrium Isotherms
3.1.1. Langmuir equation
Linearization plot | Equation form |
---|---|
Lineweaver-Burk | |
Hanes-Woolf | |
Eadie-Hofstee | |
Scatchard |
Estimation method | qm (mmol/g) | b (L/mmol) | COD |
---|---|---|---|
Linear regression | |||
Lineweaver-Burk | 0.99 | 10.31 | 0.414 |
Hanes-Woolf | 2.37 | 2.17 | 0.967 |
Eadie-Hofstee | 1.60 | 5.20 | 0.809 |
Scatchard | 1.97 | 3.46 | 0.923 |
Nonlinear regression | 3.20 | 1.00 | 0.990 |
Genetic algorithm | 3.20 | 1.00 | 0.990 |
3.1.2. Freundlich equation
Estimation method | nF | COD | |
---|---|---|---|
Linear regression (Equation (5)) | 1.554 | 0.609 | >0.999 |
Nonlinear regression | 1.550 | 0.607 | >0.999 |
Genetic algorithm | 1.550 | 0.607 | >0.999 |
3.2. Batch Kinetic Models
3.2.1. Lagergren equation
Estimation method | qe (mmol/g) | k1 (min−1) | COD |
---|---|---|---|
Linear regression (Equation (8)) | 0.32 | 0.028 | 0.512 |
Nonlinear regression | 0.71 | 0.268 | 0.819 |
Genetic algorithm | 0.71 | 0.268 | 0.819 |
3.2.2. nth Order Rate Equation
Estimation method | qe (mmol/g) | kn ((mmol/g)1−n/min) | n | COD |
---|---|---|---|---|
Nonlinear regression | 0.900.90 | 0.84 | 3.89 | 0.971 |
Genetic algorithm | 0.84 | 3.89 | 0.971 |
3.3. Fixed Bed Models
3.3.1. Bohart-Adams equation
Estimation method | N (meq/L) | kBA (L/meq min) | COD |
---|---|---|---|
Linear regression (Equation (12)) | 5.29 | 0.0035 | 0.963 |
Nonlinear regression | 4.54 | 0.0029 | 0.998 |
Genetic algorithm | 4.54 | 0.0029 | 0.998 |
3.3.2. Belter-Cussler-Hu Equation
Estimation method | tc (min) | σ | COD |
---|---|---|---|
Nonlinear regression | 670.3 | 0.41 | 0.999 |
Genetic algorithm | 670.3 | 0.41 | 0.999 |
4. Conclusions
List of Symbols, Acronyms and Abbreviations
b | Langmuir constant |
BDST | Bed-depth-service-time |
Ce | Equilibrium solution concentration |
Ci | Feed solution concentration |
Ct | Solution concentration at fixed bed outlet at time t |
COD | Coefficient of determination |
erf(x) | Error function of x |
GA | Genetic algorithm |
k1 | Lagergren rate constant |
kBA | Bohart-Adams rate constant |
kn | nth order rate constant |
KF | Freundlich parameter |
n | Reaction order |
nF | Freundlich exponent |
N | Sorption capacity of sorbent per unit volume of fixed bed |
p | Number of observations |
qe | Sorbed concentration at Ce |
qm | Langmuir saturation capacity |
qt | Sorbed concentration at time t |
SSE | Sum of squared errors |
t | Time |
tc | Characteristic time |
u | Superficial velocity |
wj | Weighting factor for observation j |
yexp,j | Measured value for observation j |
ypred,j | Model-predicted value for observation j |
Mean of measured values | |
Z | Total bed depth |
σ tc | Standard deviation |
References
- Lesmana, S.O.; Febriana, N.; Soetaredjo, F.E.; Sunarso, J.; Ismadji, S. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem. Eng. J. 2009, 44, 19–41. [Google Scholar] [CrossRef]
- Park, D.; Yun, Y.-S.; Park, J.M. The past, present, and future trends of biosorption. Biotechnol. Bioprocess Eng. 2010, 15, 86–102. [Google Scholar] [CrossRef]
- Chojnacka, K. Biosorption and bioaccumulation—the prospects for practical applications. Environ. Int. 2010, 36, 299–307. [Google Scholar] [CrossRef] [PubMed]
- McCuen, R.H.; Surbeck, C.Q. An alternative to specious linearization of environmental models. Water Res. 2008, 42, 4033–4040. [Google Scholar] [CrossRef] [PubMed]
- Espinoza-Quiñones, F.R.; Módenes, A.N.; Costa, I.L., Jr.; Palácio, S.M.; Szymanski, N.; Trigueros, D.E.G.; Kroumov, A.D.; Silva, E.A. Kinetics of lead bioaccumulation from a hydroponic medium by aquatic macrophytes Pistia stratiotes. Water Air Soil Pollut. 2009, 203, 29–37. [Google Scholar] [CrossRef]
- Espinoza-Quiñones, F.R.; Módenes, A.N.; Thome, L.P.; Palácio, S.M.; Trigueros, D.E.G.; Oliveira, A.P.; Szymanski, N. Study of the bioaccumulation kinetic of lead by living aquatic macrophyte Salvinia auriculata. Chem. Eng. J. 2009, 150, 316–322. [Google Scholar] [CrossRef]
- Fiorentin, L.D.; Trigueros, D.E.G.; Módenes, A.N.; Espinoza-Quiñones, F.R.; Pereira, N.C.; Barros, S.T.D.; Santos, O.A.A. Biosorption of reactive blue 5G dye onto drying orange bagasse in batch system: kinetic and equilibrium modeling. Chem. Eng. J. 2010, 163, 68–77. [Google Scholar] [CrossRef]
- Leitch, A.E.; Armstrong, P.B.; Chu, K.H. Characteristics of dye adsorption by pretreated pine bark adsorbents. Int. J. Environ. Stud. 2006, 63, 59–66. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems; The University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley: New York, NY, USA, 1989. [Google Scholar]
- Turkkan, N. Discrete optimization of structures using a floating-point genetic algorithm, Paper 134. In Annual Conference of the Canadian Society for Civil Engineering, Moncton, Canada, 4–7 June 2003.
- Schiewer, S.; Balaria, A. Biosorption of Pb2+ by original and protonated citrus peels: equilibrium, kinetics, and mechanism. Chem. Eng. J. 2009, 146, 211–219. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Bolster, C.H.; Hornberger, G.M. On the use of linearized Langmuir equations. Soil Sci. Soc. Am. J. 2007, 71, 1796–1806. [Google Scholar] [CrossRef]
- Sweeney, M.W.; Melville, W.A.; Trgovcich, B.; Grady, C.P.L., Jr. Adsorption isotherm parameter estimation. J. Environ. Eng. Div. ASCE 1982, 108, 913–922. [Google Scholar]
- Kinniburgh, D.G. General purpose adsorption isotherms. Environ. Sci. Technol. 1986, 20, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Freundlich, H. Kapilarchemie; Akademische Verlag: Leipzig, Germany, 1909. [Google Scholar]
- Lagergren, S. Zur theorie der sogenannten adsorption gelöster stoffe. K. Sven. Vetenskapsakad. Handl. 1898, 24, 1–39. [Google Scholar]
- Özer, A. Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated wheat bran. J. Hazard. Mater. 2007, 141, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Morais, W.A.; Fernandes, A.L.P.; Dantas, T.N.C.; Pereira, M.R.; Fonseca, J.L.C. Sorption studies of a model anionic dye on crosslinked chitosan. Colloids Surf. A 2007, 310, 20–31. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, L. A general rate law equation for biosorption. Biochem. Eng. J. 2008, 38, 390–394. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.-W. Uncertainty of preset-order kinetic equations in description of biosorption data. Bioresourc. Technol. 2008, 99, 3309–3312. [Google Scholar] [CrossRef]
- Brouers, F.; Sotolongo-Costa, O. Generalized fractal kinetics in complex systems (application to biophysics and biotechnology). Physica A 2006, 368, 165–175. [Google Scholar] [CrossRef]
- Cooney, D.O. Adsorption Design for Wastewater Treatment; Lewis Publishers: Boca Raton, FL, USA, 1999. [Google Scholar]
- Borba, C.E.; Guirardello, R.; Silva, E.A.; Veit, M.T.; Tavares, C.R.G. Removal of nickel(II) ions from aqueous solution by biosorption in a fixed bed column: Experimental and theoretical breakthrough curves. Biochem. Eng. J. 2006, 30, 184–191. [Google Scholar] [CrossRef]
- Bohart, G.S.; Adams, E.Q. Some aspects of the behavior of charcoal with respect to chlorine. J. Am. Chem. Soc. 1920, 42, 523–529. [Google Scholar] [CrossRef]
- Chu, K.H. Fixed bed sorption: setting the record straight on the Bohart-Adams and Thomas models. J. Hazard. Mater. 2010, 177, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Belter, P.A.; Cussler, E.L.; Hu, W.-S. Bioseparations: Downstream Processing of Biotechnology; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Brady, J.M.; Tobin, J.M.; Roux, J.C. Continuous fixed bed biosorption of Cu2+ ions: application of a simple two parameter mathematical model. J. Chem. Technol. Biotechnol. 1999, 74, 71–77. [Google Scholar] [CrossRef]
- Stanley, L.C.; Ogden, K.L. Biosorption of copper (II) from chemical mechanical planarization wastewaters. J. Environ. Manage. 2003, 69, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.K.; Lee, C.K.; Low, K.S.; Haron, M.J. Removal of Cu and Pb from electroplating wastewater using tartaric acid modified rice husk. Process Biochem. 2003, 39, 437–445. [Google Scholar] [CrossRef]
- Chu, K.H. Improved fixed bed models for metal biosorption. Chem. Eng. J. 2004, 97, 233–239. [Google Scholar] [CrossRef]
- Teng, M.-Y.; Lin, S.-H. Removal of basic dye from water onto pristine and HCl-activated montmorillonite in fixed beds. Desalination 2006, 194, 156–165. [Google Scholar] [CrossRef]
- Lodeiro, P.; Herrero, R.; Sastre de Vicente, M.E. The use of protonated Sargassum muticum as biosorbent for cadmium removal in a fixed-bed column. J. Hazard. Mater. 2006, B137, 244–253. [Google Scholar] [CrossRef]
- Ramirez, C.M.; Pereira da Silva, M.; Ferreira, L.S.G.; Vasco, E.O. Mathematical models applied to the Cr(III) and Cr(VI) breakthrough curves. J. Hazard. Mater. 2007, 146, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.K.; Ong, S.T.; Zainal, Z. Ethylenediamine modified rice hull as a sorbent for the removal of basic blue 3 and reactive orange 16. Int. J. Environ. Pollut. 2008, 34, 246–260. [Google Scholar] [CrossRef]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chu, K.H.; Feng, X.; Kim, E.Y.; Hung, Y.-T. Biosorption Parameter Estimation with Genetic Algorithm. Water 2011, 3, 177-195. https://doi.org/10.3390/w3010177
Chu KH, Feng X, Kim EY, Hung Y-T. Biosorption Parameter Estimation with Genetic Algorithm. Water. 2011; 3(1):177-195. https://doi.org/10.3390/w3010177
Chicago/Turabian StyleChu, Khim Hoong, Xiao Feng, Eui Yong Kim, and Yung-Tse Hung. 2011. "Biosorption Parameter Estimation with Genetic Algorithm" Water 3, no. 1: 177-195. https://doi.org/10.3390/w3010177
APA StyleChu, K. H., Feng, X., Kim, E. Y., & Hung, Y. -T. (2011). Biosorption Parameter Estimation with Genetic Algorithm. Water, 3(1), 177-195. https://doi.org/10.3390/w3010177