Chemicals and Allied Products Waste Treatment
Abstract
:1. Introduction
2. Waste Management
3. Physicochemical Treatment
4. Aerobic Treatment
5. Anaerobic Treatment
6. Air Emissions
7. Soils and Groundwater
8. Reuse
9. Summary
10. Conclusion
References
- Devi, P.S.R.; Joshi, S.; Verma, R.; Reddy, A.V.R.; Lali, A.M.; Gabntayet, L.M. Ion-Exchange Separation of Co-60 and Sb-125 from Zirconium for Radioactive Management. Nucl. Tech. 2010, 171, 220–227. [Google Scholar]
- Ko, G.; Simmons, O.D.; Likirdopulos, C.A., III; Worley-Davis, L.; Williams, M.; Sobsey, M.D. Investigation of Bioaerosols Released from Swine Farms using Conventional and Alternative Waste Treatment and Management Technologies. Environ. Sci. Technol. 2008, 42, 8849–8857. [Google Scholar] [CrossRef]
- Cobo, M.; Conesa, J.A.; Montes de Correa, C. Effect of the reducing agent on the hydrodechlorination of dioxins over 2 wt.% Pd/gamma-Al2O3. Appl. Catal. B. 2009, 92, 367–376. [Google Scholar] [CrossRef]
- Schiffman, S.S.; Graham, B.G.; Williams, C.M. Dispersion modeling to compare alternative technologies for odor remediation at swine facilities. J. Air Waste Manage. Assoc. 2008, 58, 1166–1176. [Google Scholar] [CrossRef]
- Muhle, S.; Balsam, I.; Cheeseman, C.R. Comparison of carbon emissions associated with municipal solid waste management in Germany and the UK. Resour. Conservat. Recycl. 2010, 54, 793–801. [Google Scholar] [CrossRef]
- Roudil, D.; Bonhoure, J.; Pik, R.; Cuney, M.; Jegou, C.; Gauthier-Lafaye, F. Diffusion of radiogenic helium in natural uranium oxides. J. Nucl. Mater. 2008, 378, 70–78. [Google Scholar] [CrossRef]
- Davoli, E.; Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M.; Rossi, A.N.; Il Grande, M.; Fanelli, R. Waste management health risk assessment: A case study of a solid waste landfill in South Italy. Waste Manag. 2010, 30, 1608–1613. [Google Scholar] [CrossRef] [PubMed]
- Othman, N.; Basri, N.E.A.; Yunus, M.N.M.; Sidek, L.M.; Othman, N.A. Potential of electronic plastic waste as a source of raw material and energy recovery. Sains Malaysiana. 2009, 38, 707–715. [Google Scholar]
- Zhang, L.; Dong, L.S.; Zhou, L.; Zhang, T.; Huang, Y. Organochlorine pesticides contamination in surface soils from two pesticide factories in southeast china. Chemosphere 2009, 77, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; He, P.; Shao, L. Implication of heavy metals distribution for a municipal solid waste management system - a case study in Shanghai. Sci. Total Environ. 2008, 402, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Astrup, T.; Fruergaard, T.; Christensen, T.H. Recycling of plastic: Accounting of greenhouse gases and global warming contributions. Waste Manage. Res. 2009, 27, 763–772. [Google Scholar] [CrossRef]
- Homem, V.; Alves, A.; Santos, L. Amoxicillin removal from aqueous matrices by sorption with almond shell ashes. Int. J. Environ. Anal. Chem. 2010, 90, 1063–1084. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Kumar, E.; Sillanpaa, M. Nitrate removal from water by nano-alumina: Characterization and sorption studies. Chem. Eng. J. 2010, 163, 317–323. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, B.; Shen, Z.; Qiu, Z.; Chen, Z.; Jin, M.; Li, J.; Wang, J. The EPS characteristics of sludge in an aerobic granule membrane bioreactor. Bioresour. Technol. 2010, 21, 8046–8050. [Google Scholar]
- Cheng, W.H. Using a biological aerated filter to treat mixed water-borne volatile organic compounds and assessing its emissions. J. Enviro. Sci. 2009, 21, 1497–1502. [Google Scholar] [CrossRef]
- Mori, M.; Cassella, R.J. Sorption of crystal violet by polyurethane foam from aqueous medium containing sodium dodecylsulfate. Quimica Nova. 2009, 32, 2039–2045. [Google Scholar] [CrossRef]
- Li, N.; Mei, Z.; Chen, S. Removal of 4-Chlorophenol from Aqueous Solutions by Cyclodextrin Polymer. Frensius Environ. Bull. 2009, 18, 2249–2253. [Google Scholar]
- Zheng, H.; Zhu, G.; He, Q.; Hu, P.; Jiao, S.; Tshukudu, T.; Zhang, P. A study on the degradation of direct pink by the low-frequency ultrasonic irradiation. Water Sci. Technol. 2010, 62, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Katuri, K.P.; Mohan, S.V.; Sridhar, S.; Pati, B.R.; Sarma, P.N. Laccase-membrane reactors for decolorization of an acid azo dye in aqueous phase: Process optimization. Water Res. 2009, 43, 3647–3658. [Google Scholar] [CrossRef] [PubMed]
- Hasal, P.; Penizkova, R. Penicillin G splitting in a flow-through electro-membrane reactor with the membrane-bound enzyme. Asia-Pacific J. Chem. Eng. 2009, 4, 356–364. [Google Scholar] [CrossRef]
- Saravanane, R.; Sundararaman, S. Effect of loading rate and HRT on the removal of cephalosporin and their intermediates during the operation of a membrane bioreactor treating pharmaceutical wastewater. Environ. Technol. 2009, 30, 1017–1022. [Google Scholar] [CrossRef]
- Mohan, S.V.; Mohanakrishna, G.; Reddy, B.P.; Saravanan, R.; Sarma, P.N. Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment. Biochem. Eng. J. 2008, 39, 121–130. [Google Scholar] [CrossRef]
- Beler-Baykal, B.; Allar, A.D. Upgrading fertilizer production wastewater effluent quality for ammonium discharges through ion exchange with clinoptilolite. Environ. Technol. 2008, 29, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Liu, M.; Zeng, Q.; Ding, Y. Degradation and decolorization of reactive red X-3B aqueous solution by ozone integrated with internal micro-electrolysis. Separ. Purif. Tech. 2010, 74, 195–201. [Google Scholar] [CrossRef]
- Gulnaz, O. Adsorption of Reactive Dyes from Aqueous Solution by Chara Vulgaris. Frensius Environ. Bull. 2009, 18, 2243–2248. [Google Scholar]
- Turhan, K.; Turgut, Z. Treatment and degradability of direct dyes in textile wastewater by ozonation: A laboratory investigation. Desalination Water Treat. 2009, 11, 184–191. [Google Scholar] [CrossRef]
- Merle, T.; Pic, J.S.; Manero, M.H.; Debellefontaine, H. Enhanced bio-recalcitrant organics removal by combined adsorption and ozonation. Water Sci. Technol. 2009, 60, 2921–2928. [Google Scholar] [PubMed]
- Wang, C.; Xi, J.H.H.; Hu, H.; Yao, Y. Stimulative effects of ozone on a biofilter treating gaseous chlorobenzene. Environ. Sci. Technol. 2009, 43, 9407–9412. [Google Scholar] [CrossRef] [PubMed]
- Garoma, T.; Matsumoto, S.A.; Wu, Y.; Klinger, R. Removal for Bisphenol A and its Reaction-Intermediates from Aqueous Solution by Ozonation. Ozone-Sci. Eng. 2010, 32, 338–343. [Google Scholar] [CrossRef]
- Gagnon, C.; Lajeunesse, A.; Cejka, P.; Gagne, F.; Hausler, R. Degradation of selected acidic and neutral pharmaceutical products in a primary-treated wastewater by disinfection processes. Ozone-Sci. Eng. 2008, 30, 387–392. [Google Scholar] [CrossRef]
- Di Iaconi, C.; Del Moro, G.; de Sanctis, M.; Rossetti, S. A chemically enhanced biological process for lowering operative costs and solid residues of industrial recalcitrant wastewater treatment. Water Res. 2010, 44, 3635–3644. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Xu, Y.; Yu, M.; Zhang, Q. Enhanced mineralization of 2,4-dichlorophenol by ozone in the presence of trace permanganate: Effect of pH. Environ. Technol. 2010, 31, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Polo-Sanchez, M.; Rivero, M.J.; Ortiz, I. Photocatalytic oxidation of grey water over titanium dioxide suspensions. Desalination. 2010, 262, 141–146. [Google Scholar] [CrossRef]
- Naddeo, V.; Meric, S.; Kassinos, D.; Belgiorno, V.; Guida, M. Fate of pharmaceuticals in contaminated urban wastewater effluent under ultrasonic irradiation. Water Res. 2009, 43, 4019–4027. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Irawan, A.; Ku, Y. Photocatalytic degradation of Acid Red 4 using a titanium dioxide membrane supported on a porous ceramic tube. Water Res. 2008, 42, 4725–4732. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, C. Kinetic study of phenol recovery using phase-transfer catalysis in horizontal membrane reactor. Chem. Eng. J. 2008, 144, 502–508. [Google Scholar] [CrossRef]
- Zhou, J.; Duan, S.H.; Chen, Y.; Hu, B. Nitrogen removal efficiency of iron-carbon micro-electrolysis system treating high nitrate nitrogen organic pharmaceutical wastewater. J. Cent. S. Univ. Tech. 2009, 16, 368–373. [Google Scholar]
- Prieto, A.; Araujo, L.; Navalon, A.; Vilchez, J.L. Comparison of solid-phase extraction and solid-phase microextraction using octadecylsilane phase for the determination of pesticides in water samples. Curr. Anal. Chem. 2009, 5, 219–224. [Google Scholar] [CrossRef]
- Wang, K.; Liu, S.; Zhang, Q.; He, Y. Pharmaceutical wastewater treatment by internal micro-electrolysis-coagulation, biological treatment and activated carbon adsorption. Environ. Technol. 2009, 30, 1469–1474. [Google Scholar] [CrossRef] [PubMed]
- Han, G.C.; Liu, Z.; Wang, Y.L. Preparation and application of pharmaceutical wastewater treatment by praseodymium doped SnO2/Ti electrocatalytic electrode. J. Rare Earth. 2008, 26, 532–537. [Google Scholar] [CrossRef]
- Liu, Y.; Moy, B.; Kong, Y.; Tay, J. Formation, physical characteristics and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment. Enzyme Microb. Technol. 2010, 46, 520–525. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, P.; Shi, S.; Liu, Y. Microwave enhanced fenton-like process for the treatment of high concentration pharmaceutical wastewater. J. Hazard. Mater. 2009, 168, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Mozia, S.; Morawski, A.W.; Toyoda, M.; Inagaki, M. Effectiveness of photodecomposition of an azo dye on a novel anatase-phase TiO2 and two commercial photocatalysts in a photocatalytic membrane reactor (PMR). Separ. Purif. Tech. 2008, 63, 386–391. [Google Scholar] [CrossRef]
- Heger, S.F.; Schmidt, D.R.; Janni, K.A. Aerobic and Media Filter Treatment Systems for Milk House Wastewater on Small Dairy Operations. Appl. Eng. Agric. 2010, 26, 319–327. [Google Scholar] [CrossRef]
- You, S.; Teng, J. Performance and dye-degrading bacterial isolation of a hyrbid membrane process. J. Hazard. Mater. 2009, 172, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gai, L.; Sun, X.; Xie, H.; Gao, M.; Wang, S. Effects of long-term addition of Cu(II) and Ni(II) on the biochemical properties of aerobic granules in sequencing batch reactors. Appl. Microbiol. Biotechnol. 2010, 86, 1967–1975. [Google Scholar] [CrossRef] [PubMed]
- Moussavi, G.; Barikbin, B.; Mahmoudi, M. The removal of high concentrations of phenol from saline wastewater using aerobic granular SBR. Chem. Eng. J. 2010, 158, 498–504. [Google Scholar] [CrossRef]
- Esteve, K.; Poupot, C.; Mietton-peuchot, M.; Milisic, V. Degradation of pesticide residues in vineyard effluents by activated-sludge treatment. Water Sci. Technol. 2009, 60, 1885–1894. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Siddique, T.; Saleem, M.; Arshad, M.; Khalid, A. Impact of Pesticides on Soil Microbial Diversity, Enzymes, and Biochemical Reactions. Adv. Agron. 2009, 102, 159–200. [Google Scholar]
- Christian, S.J.; Grant, S.R.; Singh, K.S.; Landine, R.C. Performance of a high-rate/high-shear activated sludge bioreactor treating biodegradable wastewater. Environ. Technol. 2008, 29, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Gao, D. Effect of dissolved oxygen on nitrogen removal and process control in aerobic granular sludge reactor. J. Hazard. Mater. 2010, 178, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Li, L.; Yang, Y.Y.; Wang, S.Y.; Peng, Y.Z. Nitrification and denitrification of domestic wastewater using a continuous anaerobic-anoxic-aerobic (A(2)O) process at ambient temperatures. Bioresour. Technol. 2010, 101, 8074–8082. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Peng, J.; Wang, S.Y.; Zheng, Y.A.; Huang, H.J.; Wang, Z.W. Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure. Bioresour. Technol. 2009, 100, 2796–2802. [Google Scholar] [CrossRef] [PubMed]
- Mourad, N.M.; Sharshar, T.; Elnimr, T.; Mousa, M.A. Radioactivity and fluoride contamination derived from a phosphate fertilizer plant in Egypt. Appl. Radat. Isot. 2009, 67, 1259–1268. [Google Scholar] [CrossRef]
- Gouider, M.; Feki, M.; Sayadi, S. Separative recovery with lime of phosphate and fluoride from an acidic effluent containing H3PO4, HF and/or H2SiF6. J. Hazard. Mater. 2009, 171, 962–968. [Google Scholar] [CrossRef]
- Beline, F.; Daumer, M.L.; Loyon, L.; Pourcher, A.M.; Dabert, P.; Guiziou, F.; Peu, P. The efficiency of biological aerobic treatment of piggery wastewater to control nitrogen, phosphorus, pathogen and gas emissions. Water Sci. Technol. 2008, 57, 1909–1914. [Google Scholar] [CrossRef] [PubMed]
- Mezohegyi, G.; Fabregat, A.; Font, J.; Bengoa, C.; Stuber, F.; Fortuny, A. Advanced bioreduction of commercially important azo dyes: Modeling and correlation with electrochemical characteristics. Ind. Eng. Chem. Res. 2009, 48, 7054–7059. [Google Scholar] [CrossRef]
- Sponza, D.T.; Demirden, P. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine. J .Hazard. Mater. 2010, 176, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Lipczynska-Kochany, E.; Kochany, J. Humic substances in bioremediation of industrial wastewater—Mitigation of inhibition of activated sludge caused by phenol and formaldehyde. J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 2008, 43, 619–626. [Google Scholar] [CrossRef]
- Yemashova, N.A.; Kotova, I.B.; Netrusov, A.I.; Kalyuzhnyi, S.V. Special traits of decomposiiton of azo yes by anaerobic microbial communities. Appl. Biochem. Microbiol. 2009, 45, 176–181. [Google Scholar] [CrossRef]
- Lopez, A.; De La Barrera Fraire, J.; Vallejo Rodriguez, R.; Barahona Argueta, C. Comparative study between a physicochemical and a biological process to treat slaughterhouse wastewater. Interciencia. 2008, 33, 490–495. [Google Scholar]
- Abreu, S.B.; Zaiat, M. Performance of Anaerobic-Aerobic Packed-Bed Reactor in the Treatment of Domestic Sewage. Engenharia Sanitaria E Ambiental. 2008, 13, 181–188. [Google Scholar] [CrossRef]
- Lin, Y. Nitrification/denitrification in swine wastewater using porous ceramic sticks with plastic rings as supporting media in two-stage fixed-biofilm reactors. Water Sci. Tech. 2010, 62, 985–994. [Google Scholar] [CrossRef]
- Puyol, D.; Mohedano, A.F.; Sanz, J.L.; Rodriguez, J.J. Comparison of UASB and EGSB performance on the anaerobic biodegradation of 2,4-dichlorophenol. Chemosphere. 2009, 76, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Satyanarayan, S.; Karambe, A.; Vanerkar, A.P. Herbal pharmaceutical wastewater treatment by a pilot scale upflow anaerobic sludge blanket (UASB) reactor. Water Sci. Technol. 2009, 59, 2265–2272. [Google Scholar] [CrossRef] [PubMed]
- Freire, F.B.; Pires, E.C.; Freire, J.T. Anaerobic Treatment of Pentachlorophenol in a Fluidized Bed Reactor Fed with Synthetic Wastewater Containing Glucose as a Single Carbon Source. Engenharia Sanitaria E Ambiental 2008, 13, 339–346. [Google Scholar] [CrossRef]
- Behera, S.K.; Rene, E.R.; Murthy, D.V.S. Performance of upflow anoxic bioreactor for wastewater treatment. Int. J. Environ. Sci. Tech. 2008, 4, 247–252. [Google Scholar] [CrossRef]
- Ahn, C.H.; Park, J.K.; Wang, J. Changes in polyhydroxy-alkanoates (PHAs) during enhanced biological phosphorus removal with dairy industrial wastewater. J. Environ. Eng. 2009, 135, 1213–1220. [Google Scholar] [CrossRef]
- El-Gohary, F.; Tawfik, A. Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process. Desalination. 2009, 249, 1159–1164. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, J.; Wang, D.; Tian, C.; Wang, P.; Uddin, M. S. A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegradation. 2008, 19, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, S.; Gabus, S.; Rohrbach-Brandt, E.; Hosseini, M.; Rossi, P.; Maillard, J.; Holliger, C. Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 A degrees C, 30 A degrees C, and 35 A degrees C. Appl. Microbiol. Biotechnol. 2010, 87, 1555–1568. [Google Scholar] [CrossRef]
- Kim, I.H.; Yamashita, N.; Kato, Y.; Tanaka, H. Discussion on the application of UV/H2O2, O3 and O3/UV processes as technologies for sewage reuse considering the removal of pharmaceuticals and personal care products. Water Sci. Technol. 2009, 59, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Nagda, G.K.; Ghole, V.S. Biosorption of Congo Red by hydrogen peroxide treated tendu waste. Iranian J. Environ. Health Sci. Eng. 2009, 6, 195–200. [Google Scholar]
- Wu, F.; Xu, Z.; Wang, Z.; Shi, Y.; Li, L.; Zhang, Z. Membrane-based air separation for catalytic oxidation of isolongifolene. Chem. Eng. J. 2010, 158, 426–430. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Seigneur, C.; Bronson, R.; Chen, S.; Karamchandani, P.; Walters, J.T.; Jansen, J.J.; Brandmeyer, J.E.; Knipping, E.M. A Case Study of the Relative Effects of Power Plant Nitrogen Oxides and Sulfur Dioxide Emission Reductions on Atmospheric Nitrogen Deposition. J. Air Waste Manage. Assoc. 2010, 60, 287–293. [Google Scholar] [CrossRef]
- Corsi, R.L.; Lin, C.C. Emissions of 2,2,4-Trimethyl-1,3-Pentanediol Monoisobutyrate (TMPD-MID) from Latex Paint: A Critical Review. Crit. Rev. Environ. Sci. Tech. 2009, 39, 1052–1080. [Google Scholar] [CrossRef]
- Lopez-Torres, M.; Espinosa Llorens, M.D.C. Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Manage. 2008, 28, 2229–2234. [Google Scholar] [CrossRef]
- Whitcombe, J.M.; Braddock, R.D.; Agranovski, I.E. Modeling and characterization of air emissions from laboratory and industrial fluidized beds. Chem. Eng. Technol. 2008, 31, 1336–1341. [Google Scholar] [CrossRef]
- Gao, Z.L.; Desjardins, R.L.; van Haarlem, R.P.; Flesch, T.K. Estimating Gas Emissions from Multiple Sources using a Backward Lagrangian Stochastic Model. J. Air. Waste Manag. Assoc. 2008, 58, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.H. Using a Biological Aerated Filter to Treat Mixed Water-Borne Volatile Organic Compounds and Assessing its Emissions. J. Environ. Sci.—China. 2009, 21, 1497–1502. [Google Scholar] [CrossRef] [PubMed]
- Villa, R.D.; Trovo, A.G.; Nogueira, R.F.P. Soil Remediation using a Coupled Process: Soil Washing with Surfactant followed by Photo-Fenton Oxidation. J. Hazard Mater. 2010, 174, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Goi, A.; Trapido, M. Chlorophenols Contaminated Soil Remediation by Peroxidation. J. Adv. Oxid. Technol. 2010, 13, 50–58. [Google Scholar]
- Xu, J.; Wu, L.; Chang, A.C. Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere 2009, 77, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, J.; Li, A.; Yang, W. Adsorption mechanism of toxic organic compounds in chemical wastewater by polymeric adsorbents. Acta Polymerica Sinica 2008, 7, 651–655. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, X. Adsorption properties of activated carbon from sewage sludge to alkaline-black. Mater. Lett. 2008, 62, 1704–1706. [Google Scholar] [CrossRef]
- Niinae, M.; Nishigaki, K.; Aoki, K. Removal of Lead from Contaminated Soils with Chelating Agents. Mater. Trans. 2008, 49, 2377–2382. [Google Scholar] [CrossRef]
- Jechalke, S.; Vogt, C.; Reiche, N.; Franchini, A.G.; Borsdorf, H.; Neu, T.R.; Richnow, H.H. Aerated treatment pond technology with biofilm promoting mats for the bioremediation of benzene, MTBE and ammonium contaminated groundwater. Water Res. 2010, 44, 1785–1796. [Google Scholar] [CrossRef] [PubMed]
- Beler-Baykal, B.; Allar, A.D. Upgrading fertilizer production wastewater effluent quality for ammonium discharges through ion exchange with clinoptilolite. Environ. Technol. 2008, 29, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Gao, D.M.; Li, F.M.; Zhao, J.; Xin, Y.Z.; Simkins, S.; Xing, B.S. Petroleum Hydrocarbon Degradation Potential of Soil Bacteria Native to the Yellow River Delta. Pedosphere 2008, 18, 707–716. [Google Scholar] [CrossRef]
- Reinsch, B.C.; Forsberg, B.; Penn, R.L.; Kim, C.S.; Lowry, G.V. Chemical Transformations during Aging of Zerovalent Iron Nanoparticles in the Presence of Common Groundwater Dissolved Constituents. Environ. Sci. Technol. 2010, 44, 3455–3461. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.M.; Chisholm, B.J.; Bezbaruah, A.N. Reductive Dechlorination of Chloroacetanilide Herbicide (Alachlor) Using Zero-Valent Iron Nanoparticles. Environ. Eng. Sci. 2010, 27, 227–232. [Google Scholar] [CrossRef]
- Noubactep, C.; Kurth, A.F.; Sauter, M. Adsorption evaluation of the effects of shaking intensity on the process of methylene blue discoloration by metallic iron. J. Hazard. Mater. 2009, 169, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, J.; Fang, L.; Yu, G.; Lin, H.; Wang, L. Photodegradation of 2,2',4,4'-tetrabromodiphenyl ether in nonionic surfactant solutions. Chemosphere 2008, 73, 1594–1601. [Google Scholar] [CrossRef] [PubMed]
- Lim, L.L.P.; Lynch, R.J. A proposed photocatalytic reactor design for in situ groundwater applications. Appl. Catal. Gen. 2009, 378, 202–210. [Google Scholar] [CrossRef]
- Chen, J.; Jang, C.; Cheng, C.; Liu, C. Conservative solute approximation to the transport of a remedial reagent in a vertical circulation flow field. J. Hydrol. 2010, 390, 155–168. [Google Scholar] [CrossRef]
- Lin, C.; Chen, L.I.Y.; Lai, C. Microbial communities and biodegradation in lab-scale BTEX-contaminated groundwater remediation using an oxygen-releasing reactive barrier. Bioprocess Biosyst. Eng. 2010, 33, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Davie, M.G.; Cheng, H.; Hopkins, G.D.; Lebron, C.A.; Reinhard, M. Implementing Heterogeneous Catalytic Dechlorination Technology for Remediating TCE-Contaminated Groundwater. Environ. Sci. Technol. 2008, 42, 8908–8915. [Google Scholar] [CrossRef] [PubMed]
- Finzgar, N.; Lestan, D. The two-phase leaching of Pb, Zn and Cd contaminated soil using EDTA and electrochemical treatment of the washing solution. Chemosphere 2008, 73, 1484–1491. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Polo, M.; Lopez-Penalver, J.; Prados-Joya, G.; Ferro-Garcia, M.A.; Rivera-Utrilla, J. Gamma irridation of pharmaceutical compounds, nitroimidazoles, as a new alternative for water treatment. Water Res. 2009, 43, 4028–4036. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Zhu, B. The synergistic effect of ozonation and photocatalysis on color removal from reused water. J. Photochem. Photobiol. Chem. 2008, 196, 24–32. [Google Scholar] [CrossRef]
- Riera-Torres, M.; Gutierrez-Bouzan, C.; Crespi, M. Combination of coagulation-flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination 2010, 252, 53–59. [Google Scholar] [CrossRef]
- Yangali-Quintanilla, V.; Maeng, S.K.; Fujioka, T.; Kennedy, M.; Amy, G. Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse. J. Membr. Sci. 2010, 362, 334–345. [Google Scholar] [CrossRef]
- Zhu, B.; Zou, L. Trapping and decomposing of color compounds from recycled water by TiO2 coated activated carbon. J. Environ. Manage. 2009, 90, 3217–3225. [Google Scholar] [CrossRef] [PubMed]
- Bellona, C.; Drewes, J.E.; Oelker, G.; Luna, J.; Filteau, G.; Amy, G. Comparing nanofiltration and reverse osmosis for drinking water augmentation. J. Am. Water Works Assoc. 2008, 100, 102–118. [Google Scholar]
- Juang, L.C.; Tseng, D.H.; Lin, H.Y.; Lee, C.K.; Liang, T.M. Treatment of chemical mechanical polishing wastewater for water reuse by ultrafiltration and reverse osmosism separation. Environ. Eng. Sci. 2008, 25, 1091–1098. [Google Scholar] [CrossRef]
- Vertova, A.; Aricci, G.; Rondinini, S.; Miglio, R.; Carnelli, L.; D’Olimpio, P. Electrodialytic recovery of light carboxylic acids from industrial aqueous wastes. J. Appl. Electrochem. 2009, 39, 2051–2059. [Google Scholar] [CrossRef]
- Kim, I.; Yamashita, N.; Tanaka, H. Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments. Chemosphere. 2009, 77, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.R.; de Angelis, D.D.; Domingos, R.N. Microbiological and physicochemical treatments applied to metallurgic industry aiming water use. Braz. Arch. Biol. Tech. 2008, 51, 391–397. [Google Scholar] [CrossRef]
- Winward, G.P.; Avery, L.M.; Stephenson, T.; Jefferson, B. Chlorine disinfection of grey water for reuse: Effect of organics and particles. Water Res. 2008, 42, 483–491. [Google Scholar] [CrossRef] [PubMed]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hung, Y.-T.; Butler, E.; Yeh, R.Y.-L. Chemicals and Allied Products Waste Treatment. Water 2011, 3, 629-648. https://doi.org/10.3390/w3020629
Hung Y-T, Butler E, Yeh RY-L. Chemicals and Allied Products Waste Treatment. Water. 2011; 3(2):629-648. https://doi.org/10.3390/w3020629
Chicago/Turabian StyleHung, Yung-Tse, Erick Butler, and Ruth Yu-Li Yeh. 2011. "Chemicals and Allied Products Waste Treatment" Water 3, no. 2: 629-648. https://doi.org/10.3390/w3020629
APA StyleHung, Y. -T., Butler, E., & Yeh, R. Y. -L. (2011). Chemicals and Allied Products Waste Treatment. Water, 3(2), 629-648. https://doi.org/10.3390/w3020629