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Abstract: Selecting an optimum number of calibration sites for hydrological modeling is
challenging. Modelers often spend a lot of time and effort on trial and error because there is no
guide. We propose a novel entropy method to automate the selection of the optimum combination
of calibration sites. To illustrate, the proposed entropy method is applied using discharge data from
one river basin in Korea. First, different combinations of discharge-gauging sites were grouped
based on the maximum information estimated by the entropy method. Then, a hydrological model
was set up for the study basin and was calibrated by estimating optimal parameters using a
genetic algorithm at the discharge-gauging sites. The calibration result confirmed that the model’s
performance was best when it was calibrated using the site number and combination suggested by
the entropy method. In addition, the entropy method was useful in reducing the time and effort
of model calibration. Therefore, we suggest and confirm the applicability of the entropy method in
selecting calibration sites for hydrological modeling.
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1. Introduction

Hydrological models are increasingly used to evaluate the impacts of climate, land use, and
crop management practices on the quantity of water resources [1]. The two main objectives of
hydrological modeling are to explore the implications of making certain assumptions about the
nature of the real-world system and to predict the system’s behavior under a set of naturally
occurring circumstances [2]. The successful application of any hydrological model is dependent on
the quality of its calibration [3]. As a result, developing calibration strategies is a requirement for their
proper application in hydrological modeling. During the calibration process, model parameters are
estimated by minimizing the deviation between the measured and simulated discharges. Researchers
have suggested a number of methodologies to improve calibration-related issues [4–11].

Over the past decades, information technologies, such as the Geographical Information System
(GIS), have developed significantly and several GIS-based hydrological models have been created.
The GIS provides spatial data as inputs for the variables needed in hydrological models. The GIS
has contributed to the change in hydrology from simplified conceptual models to high-resolution
distributed models. Runoff analysis, using a physically-based distributed model, gains an advantage
from its ability to reflect the spatial characteristics of a watershed’s physical parameters [12].
The parameters in a physically-based distributed model are classified as those set up through
observation and those set up through estimation. Ideally, parameters established through observation
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should not require calibration; however, because of scale problems and observation errors, it is
still required [4,13–17]. As the parameters are dependent on the topography, land cover and soil
characteristics are allocated by a grid or a sub-basin. There have also been many studies about real-life
case studies of soft computing techniques in hydrologic engineering [18–24].

Until now, the calibration of the hydrological model has focused on estimating the optimum
parameters. The traditional approach to calibrating hydrological models has relied on a single
objective function, such as Root-Mean-Square Error (RMSE) or Percent Bias, among others [25].
Local search methods, such as the simplex method [26], have a very low probability of success in
finding the global optimum parameter set [3]. Currently available global search methods are the
population-evolution-based Shuffled Complex Evolution-University of Arizona (SCE-UA) [3] and
Genetic Algorithms (GA) [27]. Other studies have also been conducted on the selection of calibration
sites. When runoff is calculated at multiple sites in a watershed, the most intuitive method to
guarantee the physical and hydrological similarities between the watershed where the model is
calibrated and the sub-basin where the model will be simulated is to calibrate the model using the
stream gauges near the sub-basin outlet [15,28–31]. Choi, et al. [31] and Zhang, et al. [32] suggested
the importance of calibration at multiple sites in the basin.

Recently, many discharge-gauging stations have been installed in basins to manage water
resources, such as forecasting and issuing warnings for possible flooding events. When establishing
and calibrating the hydrological model, the issue of selecting sites naturally arises. Of course, to
select discharge-gauging sites, the spatial resolution can be considered, depending on the purpose of
establishing the hydrological model and the quality or the importance of the discharge-gauging sites.
However, there is no generalized guide for this even though there have been a significant number of
studies as the above references, and it depends on the modeler’s experience. Sometimes we do not
have confidence in the calibrated results even though we spend a large amount of time and effort.
The aim of this study under the problems is to confirm the applicability of the entropy method when
selecting observation sites to calibrate the hydrological model in multiple sites. The basic theory of
the application methodology, including the entropy method, is introduced in Section 2. Section 3 is
an analysis and discussion of the application and the results of the methodology for the study basin,
and Section 4 consists of the study’s conclusion.

2. Methodology and Basic Theory

In this study, the procedure and methodology, as seen in Figure 1, were constructed to
review and confirm the entropy method’s applicability when selecting the calibration sites of the
hydrological model. Data were collected at the discharge-gauging sites within the study basin, and
discharge-gauging sites were combined based on the number of sites with maximum information.
Then, the Soil and Water Assessment Tool (SWAT) was established for the study basin, and the
entropy method was used to calibrate the model at the selected sites. GA was used to optimize the
parameters for each site. Finally, the model was calibrated using the site combination with maximum
information, depending on the selected number of sites, and the result was evaluated.
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2.1. Entropy Method for Information Measurement

Shannon and Weaver [33] defined the marginal entropy for the discrete random variable, shown
in Equation (1):

H pXq “ ´
N
ÿ

n“1

p pxnq ln p pxnq , n “ 1, 2, 3, ¨ ¨ ¨ , N (1)

where p pxnq is the occurrence probability of xn. The marginal entropy H pXq is the amount of
information (or uncertainty) of X.

If there exists ym pm “ 1, 2, ¨ ¨ ¨ , Nq related to a random variable xn, it may be possible to reduce
the uncertainty of xn by using ym to estimate xn. Using this principle, the remaining uncertainty in X
with the given Y can be estimated, as shown in Equation (2):

H pX|Yq “ ´
N
ÿ

n“1

N
ÿ

m“1

p pxn, ymq ln p pxn|ymq (2)

where p pxn, ymq is the joint probability of X “ txnu and Y “ tymu, and p pxn|ymq is the conditional
probability of X with the given Y. H pX|Yq is then the conditional entropy of X with the given Y,
which can also be interpreted as the information loss in the transinformation between X and Y [34].
The reduction of uncertainty in X with the given Y, or the transinformation between X and Y, is
defined in Equation (3):

T pX, Yq “ H pXq ´ H pX|Yq (3)

This concept of entropy can be applied to the analysis of a hydrological time series. In this study,
the variable X is defined as the daily stream flow. It is assumed that X is a continuous random variable
with a probability density function f (x).

If the range of X is divided by the class interval ∆x, then the marginal entropy X can be computed
with Equation (4):

H pX; ∆xq » ´

8
ż

0

f pxq ln f pxqdx´ ln∆x (4)

Moreover, if the same class interval ∆x is applied for Y, then the conditional entropy of X with
the given Y can be computed with Equation (5):

H pX|Y; ∆xq » ´

8
ż

0

8
ż

0

f px, yq ln f px|yqdxdy´ ln∆x (5)

when X and Y follow the log-normal distribution function, the marginal entropy, the conditional
entropy, and the transinformation are derived, respectively, in Equations (6)–(8) [35]:

H pX; ∆xq “ µz ` 0.5lnp2πeσ2
zq ´ ln∆x (6)

H pX|Y; ∆xq “ µz ` 0.5
”

lnp2πeσ2
z

¯´

1´ ρ2
zω

¯

s ´ ln∆x (7)

T pX, Yq “ ´0.5ln
´

1´ ρ2
zω

¯

(8)

where µz and σz are the mean and the standard deviation of z “ pln xq, respectively, and ρzw
represents the cross-correlation coefficient between z and ωp“ ln yq. Chapman [36] also derived the
marginal entropy and the conditional entropy, like in Equations (9) and (10), while considering the
varying interval ∆x{x to be proportional to the range instead of being a fixed class interval ∆x. The
transinformation T pX, Yq between X and Y is independent of the class interval from Equation (8).

H pX; ∆x{xq “ 0.5lnp2πeσ2
zq ´ ln p∆x{xq (9)
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H pX|Y; ∆x{xq “ 0.5
”

lnp2πeσ2
z

¯´

1´ ρ2
zω

¯

s ´ ln p∆x{xq (10)

The decision problem in calibration for hydrological modeling minimizes the redundant
information and maximizes the total information from the selected discharge-gauging sites. Thus, the
objective function of this optimization problem can be formulated as shown in Equation (11) [37,38]:

MAXITotal pX1, X2, ¨ ¨ ¨ , Xm; Xi, Xii, ¨ ¨ ¨ , Xkq (11)

where m is the total number of discharge-gauging sites operating in the basin and k is the number
of discharge-gauging sites selected of the m discharge-gauging sites. A set of k sites (i, ii, . . . , kq is
selected to maximize the total information, ITotal pX1, X2, . . . , Xm; Xi, Xii, , Xkq. Equation (11) can
also be expressed as follows in Equation (12):

MAXITotal “ MAX

»

–H pXiq ` H pXiiq ` ¨ ¨ ¨ ` H pXkq `

m´k
ÿ

x“1

k
ÿ

y“i

T
`

Xx, Xy
˘

fi

fl , x ‰ y (12)

where H pXiq ` H pXiiq ` ¨ ¨ ¨ ` H pXkq is the sum of the marginal entropy from the selected

discharge-gauging sites, and
m´k
ř

x“1

k
ř

y“i
T
`

Xx, Xy
˘

is the sum of transinformation between the selected

and the unselected discharge-gauging sites. As the number of selected discharge-gauging sites
increases, the total information obtained increases, but then decreases after hitting a threshold
number of discharge-gauging sites. That is, the marginal entropy increases as the number of
discharge-gauging sites increases, while the sum of transinformation decreases.

2.2. Genetic Algorithm

GA is an algorithm based on Charles Darwin’s “Survival of the Fittest” theory, the most widely
known evolutionary theory. GA was first proposed by Holland [39] as a search algorithm that
applied the natural selection of organisms to the mechanical learning area. GA has been applied
to various application fields, such as pattern recognition, including optimization, machine learning,
robot engineering, and TSP, the traveling salesman problem. GA is an organic evolution model in the
natural world. It is a stochastic optimization method with excellent applicability in the real world
that simulates the process where, among a group of individuals forming a generation, individuals
with high environmental adaptability are more likely to survive (survival of the fittest), go through
crossover and mutation, and form the next generation. In hydrology, GA was used as a methodology
to overcome the local optimization of parameters in the main [40–42].

2.3. SWAT for Runoff Simulation

Numerous hydrological models have been developed to assist in understanding watershed
system, such as MIKE-SHE (MIKE Système Hydrologique Européen) [43], Petroleum Resources
Management System (PRMS) [44], SLURP (Semi-distributed Land Use-based Runoff Processes) [45],
SWAT [46] and so on. Among the models, SWAT has been successfully applied in a wide variety
of data-limited studies, particularly in South Korea [47]. SWAT as open-source software has an
advantage to estimate parameters with an optimization tool like GA.

SWAT is a physically based and distributed agro-hydrological model that operates on a
daily time step (as a minimum) at the watershed scale. It is designed to predict the impact of
management on water, sediments, and agricultural chemical yields in ungauged catchments [46].
The model is capable of continuous simulation of dissolved and particulate elements in large complex
catchments with varying weather, soils, and management conditions over long periods. SWAT
can analyze small or large catchments by discretizing them into sub-basins, which are then further
subdivided into hydrological response units with homogeneous land use, soil type, and slope. When
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embedded within a GIS, SWAT can integrate various spatial environmental data including soil,
land cover, climate, and topographical features. The theory and details of the hydrological and
sediment transport processes integrated in SWAT are available online in the SWAT documentation
(http://swatmodel.tamu.edu/).

3. Application and Results

3.1. Study Area

The study area was the Chungju Dam Basin in the Han River of the Korean peninsula.
The area of the basin is approximately 6648 km2, and the length of the related river is approximately
280 km. The average altitude of the basin, calculated using a 50 ˆ 50 m2 grid, is 610 m;
its maximum altitude is 1560 m; its minimum altitude is 71 m; and its standard deviation
is 261 m. We selected five weather-gauging sites (the red circles in Figure 2), which have
collected data for five years (2008–2012), from the Korean Meteorological Agency. Table 1 shows
the geographic information for the weather stations and the daily data (minimum temperature,
maximum temperature, precipitation, relative humidity, wind speed, and solar radiation) from the
collection period. There are 21 water-level gauging sites in the basin (the black and pink triangles in
Figure 2). However, only eight discharge-gauging sites (the pink triangles in Figure 2) had discharge
data for the period from 2008 to 2012, as most gauging stations were either recently installed or have
not developed a relationship between water level and discharge.
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Longitude
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(m)

Period of
Record (Year)

Weather
gauging
stations

100 Daegoanrung 37.68 128.82 772.4 2008–2012
114 Wonju 37.34 127.95 150.7 2008–2012
216 Taebaek 37.17 128.99 714.2 2008–2012
221 Jecheon 37.16 128.19 263.1 2008–2012
272 Youngju 36.87 128.52 210.5 2008–2012

Discharge-gauging
stations

1 Chungju
Dam 37.00 128.00 80.0 2008–2012

2 Youngchun 37.10 128.51 190.0 2008–2012
3 Youngwol 1 37.18 128.48 200.0 2008–2012
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3.2. Entropy Estimation

The concept of entropy has been applied to several fields of study, for example,
Jaynes [48] in statistical mechanics, Molgedey and Ebeling [49] in finance, Ulanowicz [50] in ecology,
Mormarco, et al. [51] in hydraulics, Mogheir, et al. [52] in groundwater, and others. In hydrology,
entropy has mostly been applied as a tool for modeling and decision-making (Singh [53,54]) including
the evaluation of a sampling network. Yoo, et al. [55] evaluated the rain gauge network by comparing
mixed and continuous distribution function applications. This study tried to apply the entropy
method to find calibration sites for hydrological modeling. In this study, the number of class intervals
was set to 500 for all sites. Mutual information was calculated using the same class interval number,
though the class intervals’ ∆x are different from each site. First, the goodness-of-fit of the observed
data for the log-normal distribution was tested. The Quantile-Quantile (QQ) plot, which is a very
useful plot as one of several heuristics for assessing how closely a data set fits a particular distribution
used to visually inspect the similarity between theoretical quantiles of log-normal distribution and
quantiles of observation fit comparatively well in each site, as shown in Figure 3.
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Figure 3. Quantile-Quantile (QQ) plot of observation versus log-normal distribution.

Table 2 shows the information matrices of the discharge-gauging sites from the entropy method.
These matrices summarize the marginal entropy, transinformations between the sites, and the total
information for a selected site, represented as the “sum”. For example, if we select Discharge-Gauging
Site 1 in Table 2, the total information from Gauging Site 1 is the marginal entropy (7.667) plus the
sum of the transinformations.

Table 3 summarizes the optimal sites depending on the total number of sites. At the beginning
of the selection of the discharge-gauging sites, the sum of the marginal entropy of the selected
sites and the transinformations with the other sites is increasing. The increasing trend is valid
until the threshold number of sites for a given basin. However, after the threshold number
of discharge-gauging sites, the sum of transinformation between the selected site and the other
unselected sites decreases more rapidly than the additional marginal entropy from a newly selected
site. The total entropy thus decreases as the number of selected sites increases. In the study area, the
highest number of maximum information is 66 when the five sites (Sites 1, 2, 3, 5, and 6) are selected.
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Table 2. Information matrix.

Discharge-Gauging Sites Discharge-Gauging Sites

1 2 3 4 5 6 7 8 Sum

1 7.667 2.708 2.643 2.543 2.353 1.745 2.128 1.609 23.396
2 2.708 7.079 2.599 2.530 2.337 1.452 2.070 1.641 22.415
3 2.643 2.599 6.783 2.505 2.771 1.867 2.354 1.857 23.378
4 2.543 2.530 2.505 6.007 2.755 2.049 2.462 1.948 22.798
5 2.353 2.337 2.771 2.755 6.457 1.938 2.353 1.808 22.772
6 1.745 1.452 1.867 2.049 1.938 4.288 3.075 2.474 18.888
7 2.128 2.070 2.354 2.462 2.353 3.075 5.124 2.187 21.755
8 1.609 1.641 1.857 1.948 1.808 2.474 2.187 4.140 17.665

Table 3. Changes in the total information depending on the selected sites.

Number of Sites Selected Sites Total Information Change of Total Information

#1 1 23.4
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#2 1, 3 41.5
#3 1, 3, 7 54.3
#4 1, 2, 5, 7 62.4
#5 1, 2, 3, 5, 6 66.03
#6 1, 2, 3, 5, 6, 8 64.9
#7 1, 2, 3, 4, 5, 6, 8 59.1
#8 1, 2, 3, 4, 5, 6, 7, 8 47.5

Sensitivity in each site was analyzed by calculating the losing information, which is the
difference between the maximum information in each case and the maximum information from the
eight sites. Here, each case means the combination of sites, with a specific site removed. For example,
Case 1 estimates the maximum information using the other sites, without Site 1. Figure 4a shows
the result of losing information, depending on the number of selecting sites in each case. Figure 4b
shows the calculated sensitivity ranking in each site for each case. The ranking of the sites is: 1, 3, 2,
5, 7, 6 and 8.

Water 2015, 7 6659 

 

 

Table 2. Information matrix. 

Discharge-Gauging Sites 
Discharge-Gauging Sites 

1 2 3 4 5 6 7 8 Sum 

1 7.667 2.708 2.643 2.543 2.353 1.745 2.128 1.609 23.396
2 2.708 7.079 2.599 2.530 2.337 1.452 2.070 1.641 22.415
3 2.643 2.599 6.783 2.505 2.771 1.867 2.354 1.857 23.378
4 2.543 2.530 2.505 6.007 2.755 2.049 2.462 1.948 22.798
5 2.353 2.337 2.771 2.755 6.457 1.938 2.353 1.808 22.772
6 1.745 1.452 1.867 2.049 1.938 4.288 3.075 2.474 18.888
7 2.128 2.070 2.354 2.462 2.353 3.075 5.124 2.187 21.755
8 1.609 1.641 1.857 1.948 1.808 2.474 2.187 4.140 17.665

Table 3. Changes in the total information depending on the selected sites. 

Number of Sites Selected Sites Total Information Change of Total Information 

#1 1 23.4 
#2 1, 3 41.5 
#3 1, 3, 7 54.3 
#4 1, 2, 5, 7 62.4 
#5 1, 2, 3, 5, 6 66.03 
#6 1, 2, 3, 5, 6, 8 64.9 
#7 1, 2, 3, 4, 5, 6, 8 59.1 

#8 1, 2, 3, 4, 5, 6, 7, 8 47.5 

Sensitivity in each site was analyzed by calculating the losing information, which is the difference 

between the maximum information in each case and the maximum information from the eight sites. 

Here, each case means the combination of sites, with a specific site removed. For example, Case 1 

estimates the maximum information using the other sites, without Site 1. Figure 4a shows the result of 

losing information, depending on the number of selecting sites in each case. Figure 4b shows the 

calculated sensitivity ranking in each site for each case. The ranking of the sites is: 1, 3, 2, 5, 7, 6 and 8. 

(a) (b) 

Figure 4. Sensitivity analysis. (a) Losing information in each case; (b) Sensitivity ranking. 
  

Figure 4. Sensitivity analysis. (a) Losing information in each case; (b) Sensitivity ranking.

3.3. Model Setup and Calibration

A rainfall-runoff model was built for the study basin using SWAT. Maps of 1:25,000 scale
were collected to generate a 50 ˆ 50 m2 Digital Elevation Model (DEM) and a stream network.

6725



Water 2015, 7, 6719–6735

In addition, a land cover map (Figure 5b) and a soil map (Figure 5c) from the National Water
Resources Management Information System (WAMIS; http://www.wamis.go.kr/) were used.
The basin was classified into eight different land-use conditions, among which forests (82.2%) and
rice paddies (10.3%) accounted for 92.5% of the land use. The soil map, which included classifications
of 141 total types of soil, showed that apb (17.8%) and ana (15.5%) were the most prevalent soil types
in the area. To build the model used for the study, GIS data were prepared to generate hydrological
response units, based on the above data. Terrain analyses were conducted to delineate the channel
network using the DEM of the Chungju Dam basin. The basin was divided into ten sub-basins,
as shown in Figure 5a. The extract geomorphological characteristics in each sub-basin are shown
in Table 4.
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Figure 5. GIS data as SWAT input. (a) Stream network and sub-basins map; (b) Land use map; (c) Soil
type map.

6726



Water 2015, 7, 6719–6735

Table 4. Geomorphological characteristics in each sub-basin.

Sub-Basin

Basin Stream

RemarkArea
(km2) Slope (%) Altitude

(El. m)

Upstream
Area
(km2)

Length
(km) Slope (%) Min. Alt.

(El. m)
Max. Alt.

(El. m)

B-1 1905.1 27.2 391.0 6631.4 101.5 10.2 71.0 174.0 Site 1
B-2 553.6 35.0 487.0 4726.2 16.4 29.3 157.0 205.0 Site 2
B-3 164.6 33.7 243.0 2398.5 12.0 70.9 136.0 221.0 Site 3
B-4 2233.9 32.2 667.0 2233.9 128.9 30.2 216.0 605.0 Site 4
B-5 276.9 22.6 328.0 1774.2 26.8 17.9 193.0 241.0 Site 5
B-6 88.5 28.6 421.0 896.1 19.3 56.9 215.0 325.0 –
B-7 110.1 31.1 476.0 807.5 23.7 33.0 257.0 335.0 Site 6
B-8 697.4 28.5 636.0 697.4 52.4 47.0 291.0 537.0 Site 7
B-9 67.3 21.1 351.0 601.2 14.0 28.5 211.0 251.0 –
B-10 533.9 26.0 548.0 533.9 43.2 44.0 251.0 441.0 Site 8

In this study, surface runoff was estimated using the Soil Conservation Service Curve Number,
which has an advantage to predict direct runoff or infiltration from excess rainfall using daily
precipitation and GIS data like soil type and land-use maps in an ungagged area. Any water that does
not become surface runoff enters the soil column, where it is removed through evapotranspiration
or through deep percolation into the deep aquifer, or the runoff may move laterally in the soil
column as a streamflow contribution. Groundwater contribution to streamflow is generated from
both shallow and deep aquifers, and is based on groundwater balance. There are three methods
for estimating evapotranspiration like Priestley-Taylor, Penman-Monteith, and Hargreaves in SWAT.
The Penman-Monteith method [56] was used to estimate evapotranspiration using weather variables,
such as mean temperature, wind speed, relative humidity, and solar radiation.

SWAT contains several parameters that are used to describe the spatially distributed
movement of water through the watershed system. Some of these parameters, such as the Curve
Number (CN), cannot be directly measured and must be estimated through calibration. SWAT is a
distributed hydrological model and consequently there are potentially many (thousands) parameters.
As it is impossible to calibrate all of them, a reduction of the number of parameters to estimate
is inevitable. In this study, seven parameters that govern the surface water response and the
subsurface water response of SWAT were used in the calibration. Table 5 shows a general description
of the seven parameters [57]. The default parameters were determined by the methods introduced
by Neitsch, et al. [58]. A more detailed presentation for primary parameters and sensitivity tests is
referred in many studies [57–61].

There are several automatic calibration algorithms. Zhang, et al. [32] compared the efficacy
of five global optimization algorithms, such as shuffled complex evolution method developed at
The University of Arizona (SCE-UA), Genetic Algorithms (GA), Particle Swarm Optimization (PSO),
Artificial Immune Systems (AIS), and Differential Evaluation (DE), for calibrating SWAT and found
that GA is a promising single-objective optimization method. This study used GA to estimate the
optimized parameters of SWAT. In GA, a roulette wheel algorithm is used to select chromosomes for
the crossover and the mutation operations [62]. A two-point crossover method with a probability of
0.8 was selected for making the search shorter and more robust, and a mutation with a probability of
0.01 was selected. The RMSE fitness function (Fs) [25] was used in this study. This performance index
was defined to minimize the RMSE, as shown in Equation (13):

Fs “ min pRMSEq “ min

˜

c

1
n

ÿ

pyi ´ ŷlq

¸

(13)

where yi is simulated daily discharge, ŷl is observed daily discharge at the calibration site, and n is
the number of days with observations.
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Table 5. Parameters for the calibration of SWAT.

Num. Parameter Description Range

Parameters governing surface water response

1 CN2 Curve number 2 35–98
2 ESCO Soil evaporation compensation factor 0–1
3 SOL_AWC Available soil water capacity 0–1

Parameters governing subsurface water response

4 GWQMN Threshold depth of water in the shallow
aquifer for return flow to occur (mm) 0–5000

5 REVAPMN Threshold depth of water in the shallow
aquifer for reevaporation to occur (mm) 0–500

6 GW_REVAP Groundwater reevaporation coefficient 0.02–0.2
7 ALPHA_BF Base flow recession constant 0–1

The size of the initial population was set to 50, and the number of generations was set to
1000. The sites were selected according to the entropy method. The algorithm was configured so
that optimization was implemented sequentially, starting with the discharge-gauging site that was
the furthest upstream. For example, if calibration is conducted for the case where there are three
observation station sites (Sites 1, 3, and 7), then Site 7, which is the furthest upstream, would be the
first to be calibrated, followed by Site 3 and Site 1.

The GA for the parameter optimization of the SWAT in this study was tested by comparing it to a
simple Brute-force Search Algorithm (BSA) for checking the applicability of GA. The calibration was
only performed at the outlet site of the whole basin. The optimized parameters in each algorithm are
shown in Table 6. The parameters were remarkably similar and the RMSE between the results (from
Figure 6) using these methods was about 0.07 m3/s. This shows both the applicability of the GA and
its usefulness in solving the problem of complex combinations in this study.

Table 6. Optimized parameters by GA and BSA.

Parameter GA BSA

CN2 48 48
ESCO 0.73 0.8

SOL_AWC 0.32 0.3
GWQMN 1694 1600

REVAPMN 132 150
GW_REVAP 0.08 0.1
ALPHA_BF 0.6 0.5Water 2015, 7 6663 
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Using the above method, calibration was conducted at the respective sites. Table 3 was
referenced for all of the cases where the number of sites selected was one to eight. After the respective
cases were calibrated, the relation between observed daily discharge and simulated daily discharge
at the eight discharge-gauging sites in the study basin was illustrated, as shown in Figure 7. Figure 7a
shows the case where calibration was conducted at only one site (Case 1), whereas Figure 7b shows
the case where calibration was performed at five different sites (Case 5). These cases were compared
to the case where no calibration was conducted (no calibration; blue circle). Case 5 is included in
the comparison because the maximum amount of information was indicated when five sites (Sites 1,
2, 3, 5, and 6) were selected in the study basin (see Table 3). It was determined that the simulated
discharge in the case where no calibration was conducted had an underestimation issue (blue circles),
and Case 5 (five sites selected) produced a better result than Case 1 (one site selected).
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Figure 7. Scatter plot for the relation between observation and simulation. (a) Calibration at one site
(Case 1); (b) Calibration at five sites (Case 5).

3.4. Calibration Results and Discussion

The calibration results, based on the respective results of Table 3 (from #1 to #8), were mutually
compared. Three evaluation functions were applied for the observed and simulated discharges,
coefficient of correlation (CC), RMSE, and Nash-Sutcliffe efficiency (NSE) [63]. The results of the
case evaluations (with the selection of one to eight sites) using the evaluation functions are shown
in Table 7 and Figure 8. The evaluation was conducted for all of the sites and for the outlet. First,
the calibration results were applied to all of the sites for comparison. Even if only one site had been
selected for calibration, it would have been compared with the respective observation discharge of
eight sites after the simulated discharge of eight sites was extracted. Next, the outlet from the most
important site (as determined in Table 3) was applied. The applicability of the SWAT model was
outstanding in the study basin as the CC, RMSE, and NSE were 0.782, 147.4, and 0.482, respectively,
even in the case where no calibration was conducted (#0); however, it was confirmed that the results
were improved slightly when the model was calibrated. In particular, the result of the case with more
sites selected was even better than the result of the case with only one site selected. Nevertheless, the
calibration result did not improve any further when the number of sites selected exceeded a certain
number. This characteristic is easily confirmed through Figure 8 and Case 5, where all of the sites were
evaluated (five sites selected: CC, 0.813; RMSE, 138.8; NSE, 0.540), and Case 4, where the basin outlet
point was evaluated (four sites selected: CC, 0.799; RMSE, 324.0; NSE, 0.575) and the best calibration
result was produced. If the case evaluating all of the discharge-gauging sites in the basin is deemed to
be more representative than the case evaluating only the outlet point of the basin, then Case 5, where
five sites (Sites 1, 2, 3, 5, and 6) were selected for calibration, produces the best result.
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Table 7. Calibration results at all sites and the outlet site.

Site
Number

All Sites Outlet Site

CC RMSE (m3/s) NSE CC RMSE (m3/s) NSE

#0 (Non-C.) 0.782 147.4 0.482 0.763 351.3 0.501
#1 0.800 142.8 0.516 0.784 330.4 0.554
#2 0.805 141.1 0.530 0.798 325.2 0.568
#3 0.810 140.0 0.538 0.798 325.1 0.573
#4 0.812 139.7 0.539 0.799 324.0 0.575
#5 0.813 138.8 0.540 0.798 325.1 0.573
#6 0.809 140.3 0.536 0.797 325.5 0.572
#7 0.809 142.1 0.524 0.794 329.0 0.562
#8 0.809 142.1 0.524 0.794 329.2 0.562

The total information will increase if more sites are used. For example, the maximum
information was about 66 when eight sites were used in this study (see Table 3). However, the
maximum information was about 56.6 when seven sites were used in Case 8 (shown in Figure 9).
Here, Case 8 means that Site 8 was removed from the eight sites and the maximum information is
calculated using the other seven sites. There is a small difference between using seven sites among
seven sites and using seven sites among eight sites. The maximum information was 59.1 when
seven sites were selected among eight sites. However, the maximum information was shown when
five sites (1, 2, 3, 5, and 6 sites) were selected among the eight sites. As a result, if in the future
more observation sites are available, it will still be possible to get more information. However, the
maximum information is not shown when all observation sites are used.
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The entropy method may identify the number of calibration sites after which the marginal
increase in model efficiency to represent the observed runoff no longer significantly increases.
Choi, et al. [31] stated that additional calibration sites can benefit model performance. However, the
results of this study showed that model performance instead decreased if more four of five sites were
selected (Table 7). There may be two reasons for this. First, the exclusion of one of the sites worsened
the simulation result of the other sites. The sites that caused this response could be Site 4 and Site 8
because model performance with those sites is decreased. However, there is a limit to understanding
the result of the model performance using only one problem in each site. This does not clearly explain
the results in terms of Site 7. In fact, the model performance for Site 7 is positive in Case 3 and Case 4,
and negative in Case 8 (as seen Tables 3 and 7). Here, error compensation is a very important point for
multi-site calibration. In a case where many sites are considered for calibration, error compensation
has an effect on model performance. In this study, error compensation can be prevented if all of the
sites are used for calibration, and therefore decrease model performance. Model performance will
increase due solely to the error compensation if fewer than the maximum number of sites is used
for calibration. Therefore, the entropy method should not be preferred over an approach where all
available sites are used for calibration, if time allows for it. The entropy method is useful in cases
where computational requirements do not allow the use of all sites for calibration. In other words,
the entropy method is only useful in reducing the time and effort of model calibration, but not in
increasing model performance.

The growing importance of water resource management, along with the development of
observation techniques, has recently resulted in the installation of significantly more water level
observation stations in basins. Currently, there are 21 water level observation stations in the study
basin, and it is expected that the observed discharge information will be continuously accumulated.
Obviously, observation data obtained from more sites will be a great advantage to hydrological
modeling. However, assuming that all 21 sites in the study basin can be utilized, the number of cases

of the selection of sites for calibration is 2,097,151 (
21
ř

n“1
21Cn= 2,097,151). While this assumption does

not consider the importance of the sites, the number of cases for the hydrological model calibration
must still be high. If the brute-force search method is considered to select calibration sites in this
area, we would waste too much time and effort. Sometimes, a modeling result does not improve
any further, although we try to get a good result in model calibration. This study confirmed that
the selection of more calibration sites did not lead to improved calibration results from the model.
Therefore, the entropy method attempted in this study is expected to provide an excellent guideline
to conduct the calibration of the hydrological model. In addition, the application of the theory will
further increase when selecting a certain number of sites, depending on the purpose of the application
of the model, because the theory also provides information as to which sites need to be selected.
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4. Conclusions

The purpose of this study was to review the applicability of the entropy method in selecting the
calibration sites for hydrological modeling. The entropy method was applied to the discharge data
of eight different sites in the Chungju Dam Basin in Korea. Then, the selected sites were combined,
case-by-case, so that the combination of sites can yield the maximum amount of information. In
addition, the SWAT model was established for the study basin, and the model was calibrated by
estimating the optimal parameters using a genetic algorithm at the discharge-gauging sites selected
through the entropy method. As a result, we learned that the model calibration using the selected
sites and the combined sites having maximum information based on the entropy method gave us
excellent outcomes. Therefore, we confirmed the applicability of the entropy theory in the selection
of calibration sites for hydrological modeling. In addition, the entropy method is only useful in
reducing the time and effort spent on model calibration, but not in increasing model performance.
The method needs to apply and evaluate its applicability through various hydrological models in
the future.

In particular, selecting more sites does not always lead to a better model performance. The
decrease in model performance when selecting more than the optimal number of sites indicated
by the entropy method can be associated to error compensation. However, applying the entropy
method can significantly reduce time and effort required for model calibration, and can therefore be a
valuable tool if the computational requirements for parameter optimization against all available data
exceed available resources. As more discharge-gauging stations are expected to be installed all over
the world, the entropy method, which provides information on the preferential types of observation
stations to consider for the calibration of the hydrological model, will have significantly more use in
the future.
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