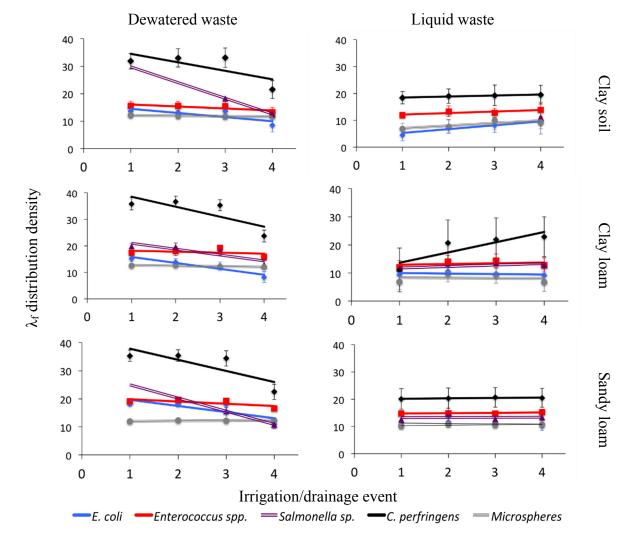
Supplementary Information

Table S1. Concentration of bacteria per sampling unit (individual funnel, see Section 2.1) drainage, average and CI₉₅ (cfu mL⁻¹). Event 0 summarizes the background bacteria as collected during the preliminary irrigation event (see Section 2.5) run previously to addition of biosolids. Biosolids were added once, before irrigation Event 1.

Irrigation Event	E. coli	Enterococcus spp.	Salmonella spp.	C. perfringens
		Clay		
0	8.8 (3.2)	0.1 (0.14)	0 (0)	5.9 (11.6)
1	28,589.0 (18816.0)	59.9 (25.6)	3.2 (1.76)	86.7 (19.4)
2	394.0 (129.0)	4.1 (1.7)	0.02 (0.04)	6.1 (1.8)
3	188.0 (77.6)	7.6 (9.6)	1.5 (0.9)	36.0 (30.2)
4	2.9 (1.0)	0 (0)	0.1 (0.2)	7.6 (2.3)
		Clay Loam		
0	36.7 (11.7)	3.0 (2.8)	3.5 (5.0)	2.5 (1.7)
1	176.0 (58.7)	103.0 (52.7)	7.8 (4.6)	75,335.0 (43.1)
2	111.0 (29.8)	1.1 (1.0)	0.8 (1.1)	11.0 (3.4)
3	447.0 (191.0)	2.1 (2.0)	2.7 (1.8)	6.3 (2.2)
4	2.9 (1.3)	0.01 (0.01)	0.01 (0.01)	0.9 (0.3)
		Sandy Loam		
0	5.3 (4.0)	0.3 (0.4)	0.7 (0.4)	6.3 (3.6)
1	2.1 (0.9)	0.3 (0.1)	0.4(0.3)	13.0 (5.8)
2	2.5 (1.6)	0.002 (0.005)	0.2 (0.1)	8.3 (4.8)
3	0.6 (0.7)	0.002 (0.004)	1.5 (1.0)	7.8 (2.4)
4	8.5 (3.4)	0.03 (0.03)	0.06 (0.03)	11.9 (10.4)

Table S2. Filtration coefficients best fit; Drainage Event 1 (see Figure 1).


Treatment *	E. coli	Enterococcus spp.	Salmonella spp.	C. perfringens	Microspheres	
C DMW	$y = 6.3054x^{-0.119}$	$y = 7.4358x^{-0.123}$		$y = 5.8745x^{-0.132}$	$y = 3.6652x^{-0.162}$	
C-DMW	$R^2 = 0.48$ $R^2 = 0.62$		_	$R^2 = 0.41$	$R^2 = 0.67$	
CIM	$y = 0.0198x^{-0.539}$	$y = 8.8864x^{-0.1}$	$y = 8.4362x^{-0.099}$	$y = 8.6857x^{-0.112}$	$y = 2.6833x^{-0.154}$	
C-LMB	$R^2 = 0.01$	$R^2 = 0.44$	$R^2 = 0.72$	$R^2 = 0.69$	$R^2 = 0.13$	
	15 125 -0.044	y = -9482.3x +	0.2455 -0.122	12.054 -0.064	$y = 6.6168x^{-0.107}$	
CL-DMW	$y = 15.137x^{-0.044}$	31.038	$y = 9.3455x^{-0.133}$	$y = 13.854x^{-0.064}$		
	$R^2 = 0.14$	$R^2 = 0.38$	$R^2 = 0.75$	$R^2 = 0.28$	$R^2 = 0.82$	
CL IND	$y = 3.3475x^{-0.158}$	$y = 8.362x^{-0.093}$	$y = 8.4521x^{-0.088}$	$y = 32.32e^{-6677x}$	$y = 0.2716x^{-0.387}$	
CL-LMB	$R^2 = 0.57$	$R^2 = 0.34$	$R^2 = 0.69$	$R^2 = 0.45$	$R^2 = 0.44$	
CL DIAN	$y = 15.345x^{-0.077}$	$y = 15.228x^{-0.083}$		$y = 15.228x^{-0.083}$	_	
SL-DMW	$R^2 = 0.59$	$R^2 = 0.70$	_	$R^2 = 0.40$	_	
	y = -3860.2x +	y = -3968.1x +	$y = -3.451\ln(x) -$	y = -6305.8x +	y = -3722.9x +	
SL-LMB	15.932	24.152	9.4794	23.312	14.739	
	$R^2 = 0.37$	$R^2 = 0.54$	$R^2 = 0.60$	$R^2 = 0.39$	$R^2 = 0.42$	

Notes: * C-clay soil; CL-clay loam soil; SL-sandy loam soil; DMW-dewatered municipal waste biosolids organic amendment; LMB-liquid municipal waste biosolids organic amendment.

Table S3. Filtration coefficients best	fit; drainage Event 4	(double irrigation)	(see Figure 1).
---	-----------------------	---------------------	-----------------

Treatment	E. coli	Enterococcus spp.	Salmonella spp.	C. perfringens	Microspheres
C-DMW	$y = 12.562x^{-0.098}$		$y = 10.144x^{-0.125}$	$y = 14.033x^{-0.064}$	
C-DMW	$R^2 = 0.47$	_	$R^2 = 0.40$	$R^2 = 0.29$	
C-LMB	$y = 8.788x^{-0.085}$			$y = 6.6086x^{-0.143}$	y = 37.24e - 117.1x
C-LIVID	$R^2 = 0.82$	_	_	$R^2 = 0.53$	$R^2 = 0.52$
CL-DMW	$y = 13.6x^{-0.081}$	$y = 24.393x^{-0.023}$		$y = 14.843x^{-0.063}$	$y = 24.433x^{-0.047}$
CL-DIVIW	$R^2 = 0.26$	$R^2 = 0.61$	_	$R^2 = 0.39$	$R^2 = 0.36$
CL-LMB				$y = 14.085x^{-0.061}$	$y = 20.761x^{-0.067}$
CL-LIVID	_	_	_	$R^2 = 0.21$	$R^2 = 0.33$
SL-DMW	$y = 13.6x^{-0.081}$	$y = 24.393x^{-0.023}$		$y = 14.843x^{-0.063}$	$y = 27.745x^{-0.031}$
SL-DIVIW	$R^2 = 0.26$	$R^2 = 0.61$	_	$R^2 = 0.38$	$R^2 = 0.22$
SL-LMB	$y = 2.7494x^{-0.193}$		$y = 10.403x^{-0.079}$	$y = -1.323\ln(x) + 11.388$	$y = 27.138x^{-0.027}$
SL-LMB	$R^2 = 0.24$	_	$R^2 = 0.41$	$R^2 = 0.21$	$R^2 = 0.08$

Notes: C-clay soil; CL-clay loam soil; SL-sandy loam soil; DMW-dewatered municipal waste biosolids organic amendment; LMB-liquid municipal waste biosolids organic amendment.

Figure S1. Mean cumulative filtration coefficients (λ_f); Mean, standard deviations, and linear fit. The slope of the fit indicates an increase or decrease in average cumulative filtration. For dewatered waste all slopes were negative; for liquid waste slopes were either positive or very close to 0.

Table S4. Kolmogorov-Smirnov dissimilarity indices between the empirical distributions of microsphere and the respective bacterial distributions.

				Irrigation & D	rainage Event			
Bacterial Tracer	1	2	3	4	1	2	3	4
	Clay S	Soil & Dewatere	d Municipal Bi	osolid	Clay	Soil & Liquid	Municipal Bios	solid
E. coli	0.39 (0.059) *	0.36 (0.082)	0.39 (0.039)	0.71 (<0.001)	0.46 (0.005)	0.33 (0.307)	0.51 (0.015)	0.35 (0.525)
Enterococcus spp.	0.79 (<0.001)	0.77 (<0.001)	0.75 (<0.001)	0.45 (0.005)	0.88 (<0.001)	0.80 (0.002)	0.47 (0.142)	0.55 (0.191)
C. perfringens	1 (<0.001)	1 (<0.001)	1 (<0.001)	0.99 (<0.001)	1 (<0.001)	1 (<0.001)	0.91 (<0.001)	0.93 (<0.001)
Salmonella sp.	nd	nd	1 (<0.001)	0.36 (0.16)	0.85 (<0.001)	nd	nd	nd
	Clay Loa	m Soil & Dewa	tered Municipa	l Biosolid	Clay Loam Soil & Liquid Municipal Biosolid			
E. coli	0.9 (<0.001)	0.51 (0.125)	0.36 (0.626)	0.88 (<0.001)	0.46 (0.034)	0.76 (<0.001)	0.83 (<0.001)	0.87 (<0.001)
Enterococcus spp.	1 (<0.001)	1 (<0.001)	1 (<0.001)	0.87 (<0.001)	0.48 (0.012)	0.27 (0.511)	0.25 (0.423)	0.73 (0.001)
C. perfringens	1 (<0.001)	1 (<0.001)	1 (<0.001)	1 (<0.001)	0.78 (<0.001)	0.76 (<0.001)	0.78 (<0.001)	0.78 (<0.001)
Salmonella spp.	1 (<0.001)	1 (<0.001)	1 (<0.001)	0.38 (0.078)	0.78 (<0.001)	0.73 (0.002)	0.71 (0.006)	nd
	Sandy Loa	am Soil & Dewa	tered Municipa	al Biosolid	Sandy L	oam Soil & Lig	quid Municipal	Biosolid
E. coli	1 (0.003)	1 (<0.001)	1 (<0.001)	0.55 (0.06)	0.32 (0.159)	0.42 (0.063)	0.43 (0.072)	0.35 (0.1)
Enterococcus spp.	1 (0.011)	1 (0.047)	1 (0.007)	1 (<0.001)	1 (<0.001)	0.99 (<0.001)	1 (<0.001)	0.99 (<0.001)
C. perfringens	1 (0.003)	1 (<0.001)	1 (<0.001)	1 (<0.001)	1 (<0.001)	1 (<0.001)	1 (<0.001)	1 (<0.001)
Salmonella spp.	nd	nd	0.86 (0.001)	0.88 (0.004)	0.72 (<0.001)	0.83 (<0.001)	0.86 (0.001)	0.57 (0.019)

Notes: * Values represent dissimilarity between the empirical PDF of microspheres and the PDF of each of the four bacterial tracers on a scale of 0 to 1 with 1 being most dissimilar. In parentheses the asymptotic p-values. Analysis was carried out via a Kolmogorov-Smirnov test for comparison of two empirical distributions with H0: F1(x) = F2(x); therefore any p-value smaller than 0.05 rejects H0 indicating that distributions are dissimilar; Distributions that are statistically likely to be similar (i.e., p > 0.05) are highlighted in bold [29]; nd = not determined.

Table S5. Best fit probability density functions (PDF) visualised in Figure 5.

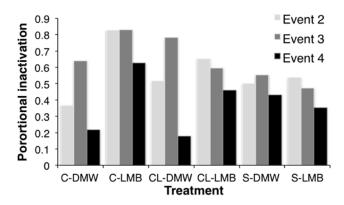
Tuestment	Тиолом		Eve	nt	
Treatment	Tracer	1	2	3	4
		Gamma (2)	Weibull (3);	Beta 4	Gamma (1)
		$\kappa = 74.4 \pm 0.3;$	$\beta = 3.3 \pm 0.3$;	$\alpha = 1.13 \pm 0.2;$	$\kappa = 8.5 \pm 0.2;$
	E. coli	$\beta = 0.18 \pm 0.08;$	$\gamma = 5.2 \pm 0.1;$	$\beta = 1.14 \pm 0.2;$	N = 83; 82.5%
	E. COII	N = 31; 99.9%	$\mu = 8.5 \pm 0.2;$	$c = 9.6 \pm 0.3$;	
			N = 63; 99%	$d = 17.7 \pm (< 0.01);$	
				N = 52; 47.7%	
		Log-normal	Log-normal	GEV	Log-normal
	Enterococcus	$\mu = 2.7$;	$\mu = 2.7 \pm 0.6$;	$\kappa = -0.03 \pm 0.14;$	$\mu = 2.6 \pm 0.3;$
ste		$\sigma = 0.1$;	$\sigma = 0.1 \pm 0.3;$	$\beta = 1.4 \pm 0.2;$	$\sigma = 0.13 \pm 0.05;$
Wa	spp.	N = 29; 94%	N = 44; 83.7%	$\mu = 14.6 \pm 0.3;$	N = 44; 83.7%
pə				N = 35; 97.4%	
Clay soil-dewatered waste		N < 10	N < 10	Weibull (2)	Log-normal
ew	Salmonella spp.			$\beta = 21.9 \pm 5.2;$	$\mu = 2.5 \pm 1.2;$
<u> </u>	saimoneila spp.			$\gamma = 18.8 \pm 0.3;$	$\sigma = 0.1 \pm 0.5;$
SOI	_			N = 10; 91.8%	N = 16; 99.9%
lay	C. perfringens	Gamma (2)	Log-normal	GEVl	Weibull (2)
O		$\kappa = 125.6 \pm 2.1;$	$\mu = 3.5 \pm 0.5$;	$\kappa = -0.3 \pm 0.1;$	$\beta = 7.5 \pm 0.6;$
		$\beta = 0.3 \pm 1.3;$	$\sigma = 0.1 \pm 0.5;$	$\beta = 3.5 \pm 0.3;$	$\gamma = 22.9 \pm 0.3;$
		N = 23; 99.6%	N = 61; 85.5%	$\mu = 31.9 \pm 0.5;$	N = 96; 67.62%
				N = 73; 85.6%	
		Normal	Gamma (2)	GEV	GEV
		$\mu = 12.1;$	$\kappa = 58.7 \pm 1.4;$	$\kappa = 0.2 \pm 0.3;$	$\kappa = 0.3 \pm 0.2;$
	Microspheres	$\sigma = 1.5$;	$\beta = 0.2 \pm 0.6;$	$\beta = 1.4 \pm 0.3;$	$\beta = 1.4 \pm 0.3;$
		N = 17; 99.5%	N = 14; 99.6%	$\mu = 11.1 \pm 0.4;$	$\mu = 11.2 \pm 0.4;$
				N = 16; 93.9%	N = 19; 96.5%
		Weibull (2)	Beta 4	GEV	GEV
		$\beta = 2.2 \pm 0.3;$	$\alpha = 1.2 \pm 0.3;$	$\kappa = -0.3 \pm 0.1;$	$\kappa = -0.3 \pm 0.2;$
ste	E. coli	$\gamma = 5.1 \pm 0.5;$	$\beta = 0.6 \pm 0.1;$	$\beta = 3.5 \pm 0.3;$	$\beta = 2.2 \pm 0.4;$
waste	2.0011	N = 26; 61.7%	$c = 1.4 \pm 1868;$	$\mu = 31.9 \pm 0.5;$	$\mu = 8.3 \pm 0.6;$
			$d = 10.6 \pm (< 0.01);$	N = 73; 85.6%	N = 20; 99.8%
liqu			N = 32; 52.9%		
Clay soil-liquid		Beta 4	Beta 4		
y sc	-	$\alpha = 1.1 \pm 0.3$;	$\alpha = 0.7 \pm 0.3$;		
Öla'	Enterococcus	$\beta = 1.1 \pm 0.3;$	$\beta = 0.6 \pm 0.2;$	N < 10	<i>N</i> < 10
O	spp.	$c = 9.8 \pm 0.3;$	$c = 13.3 \pm 0.5$;		
		$d = 14.0 \pm (<0.01);$	$d = 16.1 \pm (< 0.01);$		
		N = 25; 99.6%	N = 0.12; 90.3%		

Table S5. Cont.

Treatment	Тислон			Event	
Treatment	Tracer	1	2	3	4
	Salmonella spp.	Beta 4 $\alpha = 0.8 \pm 0.3$; $\beta = 0.7 \pm 0.3$; $c = 9.6 \pm 0.3$; $d = 12.2 \pm (<0.01)$; N = 0.13; 99.9%	<i>N</i> < 10	<i>N</i> < 10	N < 10
	C. perfringens	Logistic $\mu = 18.4 \pm 0.4$; $s = 1.2 \pm 0.2$; N = 25; 99.8%	Logistic $\mu = 18.4 \pm 0.5$; $s = 1.5 \pm 0.2$; N = 29; 97.8%	Logistic $\mu = 19.3 \pm 0.5$; $s = 2.1 \pm 0.3$; N = 42; 96.6%	Logistic $\mu = 19.4 \pm 0.4$; $s = 1.9 \pm 0.2$; N = 72; 99.1%
	Microspheres	GEV $\kappa = -0.06 \pm 0.2;$ $\beta = 1.5 \pm 0.2;$ $\mu = 5.9 \pm 0.3;$ N = 26; 99.7%	Gamma (2) $\kappa = 9.0 \pm 0.6;$ $\beta = 0.8 \pm 0.3;$ N = 10; 95.7%	Beta 4 $\alpha = 0.8 \pm 0.3$; $\beta = 0.7 \pm 0.3$; $c = 3.7 \pm 1799$; $d = 14.8 \pm (<0.01)$; N = 0.12; $37.1%$	N < 10
	E. coli	Log-normal $\mu = 2.7 \pm 0.6$; $\sigma = 0.1 \pm 0.2$; N = 29; 98.2%	GEV $\kappa = -0.06 \pm 0.1;$ $\beta = 0.8 \pm 0.08;$ $\mu = 13.4 \pm 0.1;$ $N = 55; 89.3 \%$	Weibull (2) $\beta = 10.8 \pm 1.3;$ $\gamma = 13.1 \pm 0.2;$ N = 41; 99.0%	Log-normal $\mu = 2.1 \pm 0.2;$ $\sigma = 0.3 \pm 0.08;$ N = 29; 76.2%
l waste	Enterococcus spp.	<i>N</i> < 10	Logistic $\mu = 18.1 \pm 0.5$; $s = 1.0 \pm 0.2$; N = 15; 57.2%	GEV $\kappa = 0.2 \pm 0.3;$ $\beta = 0.7 \pm 0.2;$ $\mu = 18.9 \pm 0.2;$ N = 14; 99.8%	GEV $\kappa = 0.6 \pm (<0.001)$ $\beta = 1.5 \pm 0.2;$ $\mu = 15.5 \pm 0.3;$ N = 30; 32.4%
Clay loam s– dewatered waste	Salmonella spp.	Log-normal $\mu = 3.0$; $\sigma = 0.1$; $N = 10$; 98.5%	Logistic $\mu = 19.8 \pm 0.3$; $s = 0.6 \pm 0.1$; N = 18; 97.0%	Beta 4 $\alpha = 1.1 \pm 0.3$; $\beta = 1.0 \pm 0.3$; $c = 14.8 \pm 0.4$; $d = 21.3 \pm (<0.01)$; N = 27; 96.5%	GEV $\kappa = 0.7 \pm 0.2;$ $\beta = 11.9 \pm (<0.001)$ $\mu = 12.6 \pm (<0.001)$ $N = 48; 96.9\%$
Clay	C. perfringens	Normal $\mu = 35.8;$ $\sigma = 2.3;$ N = 12; 98.4%	Weibull (3) $\beta = 10.0 \pm 1.6;$ $\gamma = 17.2 \pm 0.7;$ $\mu = 20.3 \pm 0.8;$ N = 24; 74.0%	Normal $\mu = 35.3;$ $\sigma = 2.0;$ N = 51; 88.4%	Normal $\mu = 23.7;$ $\sigma = 2.2;$ N = 63; 91.9%
	Microspheres	<i>N</i> < 10	N < 10	<i>N</i> < 10	Log-normal $\mu = 2.5 \pm 0.4;$ $\sigma = 0.1 \pm 0.2;$ N = 13; 93.5%

Table S5. Cont.

Tuootres	Tuesar	Event				
Treatment	Tracer -	1	2	3	4	
		Fisher-Tippet	Weibull (3)	Gamma (2)	Logistic	
	E. coli	$\beta = 1.7 \pm 0.3$;	$\beta = 16.9 \pm 2.8;$	$\kappa = 31.1 \pm 0.4;$	$\mu = 9.1 \pm 0.3;$	
		$\mu = 9.3 \pm 0.4$;	$\gamma = 24.3 \pm 0.8$;	$\beta = 0.3 \pm 0.2;$	$s = 0.7 \pm 0.1$;	
		N = 23; 66.3%	$\mu = -13 \pm 0.9$;	N = 42; 97.1%	N = 21; 99.5%	
			N = 22; 80.6%			
		Fisher-Tippet	Weibull (3)	Logistic	Beta 4	
		$\beta = 1.9 \pm 0.3$;	$\beta = 354 \pm 64$;	$\mu = 14.5 \pm 0.5$;	$\alpha = 1.1 \pm 0.3$	
	Enterococcus	$\mu = 10.9 \pm 0.4;$	$\gamma = 628 \pm 5.6$;	$s = 1.5 \pm 0.2;$	$\beta = 1.1 \pm 0.3$	
	spp.	N = 24; 79.7%	$\mu = -613 \pm 5.6$;	N = 27; 54.05%	$c = 8.3 \pm 0.6$	
e e		ŕ	N = 18;99%	ŕ	$d = 17.4 \pm (< 0.0$	
vas			,		N = 20; 32.6%	
id		Logistic	Weibull (2)		-	
igu	~	$\mu = 11.5 \pm 0.3;$	$\beta = 16.0 \pm 4.1$;			
<u>_</u>	Salmonella spp.	$s = 0.8 \pm 0.2;$	$\gamma = 14.0 \pm 0.3$;	N < 10	N < 10	
oan		N = 17; 94.0%	N = 10; 96.1%			
Clay loam– liquid waste		Log-normal	GEV	GEV	GEV	
こ		$\mu = 2.2 \pm 0.2;$	$\kappa = 0.7 \pm 0.2;$	$\kappa = 0.7 \pm 0.1$;	$\kappa = 0.8 \pm (< 0.00)$	
	C. perfringens	$\sigma = 0.7 \pm 1.9;$	$\beta = 8.9 \pm 0.001$;	$\beta = 8.1 \pm 0.9;$	$\beta = 7.7 \pm 0.6$	
		N = 15; 36.8%	$\mu = 19.3 \pm 0.001$;	$\mu = 20.8 \pm 1.1;$	$\mu = 22.1 \pm 0.9$	
		,	N = 49; 35.5%	N = 63; 26.8%	N = 49; 18.99	
		Logistic	Beta 4	Beta 4	,	
	Microspheres	$\mu = 6.7 \pm 0.7$;	$\alpha = 1.0 \pm 0.4$;	$\alpha = 0.9 \pm 0.3$;		
		$s = 1.6 \pm 0.3$;	$\beta = 0.7 \pm 0.2;$	$\beta = 0.5 \pm 0.2;$	M < 10	
		N = 18; 99.7%	$c = 3.5 \pm 2088;$	$c = 3.3 \pm 2240$;	N < 10	
		,	$d = 13.4 \pm (<0.01); N =$	· · · · · · · · · · · · · · · · · · ·		
			14; 88.9%	<i>N</i> = 16; 91.9%		
		Weibull (2)	Logistic	Logistic	Beta 4	
		$\beta = 25.3 \pm 4.4;$	$\mu = 18.2 \pm 0.2;$	$\mu = 18.1 \pm 0.2$	$\alpha = 1.4 \pm 0.43$	
	F. 1:	$\gamma = 18.6 \pm 0.32;$	$s = 0.6 \pm 0.1;$	$s = 0.6 \pm 0.1$;	$\beta = 1.1 \pm 0.3$	
	E. coli	N = 20; 95.8%	N = 26; 99.9%	N = 29; 99.9%	$c = 7.2 \pm 0.5$	
					$d = 13.8 \pm 0.00$	
٥					N = 29; 93.0%	
vast	Enterococcus	N < 10	<i>N</i> < 10	N < 10	N < 10	
o pa	spp.	IV < 10	IV < 10	IV < 10	IV < 10	
ıter				Logistic	Weibull (3)	
ews				$\mu = 15.7 \pm 0.4;$	$\beta = 1.6 \pm 0.3$	
Ď u	Salmonella spp.	N < 10	<i>N</i> < 10	$s = 1.1 \pm 0.2;$	$\gamma = 1.6 \pm 0.2$	
loar				N = 19; 96.1%	$\mu = 9.4 \pm 0.2$	
Sandy loam dewatered waste					N = 11; 88.9%	
		Logistic	GEV	Beta 4	Beta 4	
4 1		$\mu = 35.4 \pm 0.5;$	$\kappa = 0.6 \pm 0.2;$	$\alpha = 1.7 \pm 0.3;$	$\alpha = 1.8 \pm 0.3$	
	C. perfringens	$s = 1.1 \pm 0.2;$	$\beta = 2.2 \pm (< 0.001);$	$\beta = 1.2 \pm 0.2;$	$\beta = 1.8 \pm 0.3$	
	c. perjinigens	N = 17; 99.6%	$\mu = 34.9 \pm (< 0.001);$	$c = 28.0 \pm 0.6;$	$c = 16.3 \pm 0.4$	
			N = 36; 98.6%	$d = 39.1 \pm < 0.001;$	$d = 28.5 \pm < 0.00$	
				N = 45; 99.7%	<i>N</i> = 66; 84.9%	
	Microspheres	N < 10	N < 10	N < 10	N < 10	


Table S5. Cont.

Tuestanout	Tueses	Event				
Treatment	Tracer	1	2	3	4	
		Logistic	Logistic	Beta 4	Logistic	
		$\mu = 10.8 \pm 0.2;$	$\mu = 11.7 \pm 0.3;$	$\alpha = 0.9 \pm 0.3;$	$\mu = 10.3 \pm 0.3$;	
	E. coli	$s = 0.7 \pm 0.1$;	$s = 0.8 \pm 0.1;$	$\beta = 1.1 \pm 0.3;$	$s = 1.0. \pm 0.1$;	
	E. COII	N = 24; 99.6%	N = 25; 99.1%	$c = 9.0 \pm 0.3$;	N = 49;98.1%	
				$d = 14.2 \pm < 0.001;$		
				N = 23; 96.5%		
		Logistic	Logistic	Log-normal	Weibull (2)	
je je	Enterococcus	$\mu = 14.8 \pm 0.7;$	$\mu = 15.0 \pm 0.3;$	$\mu = 2.6$;	$\beta = 14.9 \pm 2.6;$	
vast	spp.	$s = 0.6 \pm 0.1$;	$s = 0.5 \pm 0.1;$	$\sigma = 0.1$;	$\gamma = 15.7 \pm 0.3;$	
jg v		N = 27; 99.8%	N = 12; 99.8%	N = 12; 99.9%	N = 18; 82.5%	
igu	Salmonella spp.		Logistic		Gamma (2)	
Ī		<i>N</i> < 10	$\mu = 14.2 \pm 0.7;$	<i>N</i> < 10	$\kappa = 37.8 \pm 0.4;$	
n so		$N \leq 10$	$s = 1.3 \pm 0.4;$	IV < 10	$\beta = 0.3 \pm 0.3$;	
Sandy loam soil–liquid waste			N = 10; 97.5%		<i>N</i> = 11; 83.5%	
dy I		Weibull (2)	Logistic	Weibull (3)	Logistic	
anc		$\beta = 6.0 \pm 0.7;$	$\mu = 20.41 \pm 0.5$;	$\beta = 5.3 \pm 0.4;$	$\mu = 20.5 \pm 0.3;$	
S 2	C. perfringens	$\gamma = 21.6 \pm 0.5;$	$s = 2.1 \pm 0.2;$	$\gamma = 17.8 \pm 0.4;$	$s = 2.0 \pm 0.2;$	
		N = 49; 99.2%	N = 68; 99.5%	$\mu = 4.2 \pm 0.5$;	N = 109; 95.9%	
				N = 88; 95.4%		
		Logistic	Weibull (3)		GEV	
		$\mu = 10.1 \pm 0.2;$	$\beta=878\pm184;$		$\kappa = 0.7 \pm 0.3;$	
	Microspheres	$s = 0.6 \pm 0.1$;	$\gamma = 804 \pm 5;$	<i>N</i> < 10	$\beta = 1.0 \pm (< 0.001);$	
		N = 21; 81.8%	$\mu = -793 \pm 5$;		$\mu = 10.6 \pm (< 0.001);$	
			N = 14;95.8%		<i>N</i> = 15; 69.7%	

Legend

Gamma (2) = PDF type; α , β , γ , σ , κ , μ , c, d, s = PDF parameters; N = Number of samples; 99.9% = The risk to reject the hypothesis that the sample follows the best fit PDF type

Distribut	ion Equations (Addinsoft, 2014)			
Normal Distribution $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2}}$	Lognormal Distribution $f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{\frac{(\ln(x) - \mu)^2}{2\sigma^2}}$ Weibull (8, x, y) Distribution	$f(x) = \frac{e^{\frac{-(x-\mu)}{s}}}{s\left(1 + e^{\frac{-(x-\mu)}{s}}\right)}$		
Weibull (β, γ) Distribution	<i>rreibuii</i> (p, γ , μ) Distribution	Gamma Distribution		
$f(x) = \frac{\beta}{\gamma} \left(\frac{x}{\gamma} \right)^{\beta - 1} e^{-\left(\frac{x}{\gamma} \right)^{\beta}}$	$f(x) = \frac{\beta}{\gamma} \left(\frac{x - \mu}{\gamma} \right)^{\beta - 1} e^{-\left(\frac{x - \mu}{\gamma} \right)^{\beta}}$	$f(x) = (x - \mu)^{k-1} \frac{e^{-(x-\mu)/\beta}}{\beta^k \Gamma(k)}$		
GEV (Generalized Extreme Values)	Distribution $f(x) = \frac{1}{\beta} \left(1 - k \frac{x - \mu}{\beta} \right)^{\frac{1}{k}}$	$exp\left(-\left(1-k\frac{x-\mu}{\beta}\right)^{\frac{1}{k}}\right)$		
Fisher-Tippet Distribution $f(x) = \frac{1}{\beta} exp\left(-\frac{x-\mu}{\beta} - exp\left(-\frac{x-\mu}{\beta}\right)\right)$				
Beta 4 Distribution $f(x) = \frac{1}{B(\alpha,\beta)} \frac{(x-c)^{\alpha-1}(d-x)}{(d-c)^{\alpha+\beta-1}}$	$\frac{1}{1}$, with $\alpha, \beta > 0$ and $x \in [c, d]$ as	$nd \ c, d \in R \ and \ B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$		

Figure S2. Proportion of inactivated collectors. This is the sum of total inactive collectors that were active at any one or more of the previous irrigation events (*i.e.*, it does not include collectors that were consistently inactive throughout the experiment).

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).