Exploring the Modifiable Areal Unit Problem in Spatial Water Assessments: A Case of Water Shortage in Monsoon Asia
Abstract
:1. Introduction
2. The Modifiable Areal Unit Problem (MAUP)
3. Materials and Methods
3.1. Zoning
- river basins (“Basin”) [56],
- country boundaries (“Nation”) [57],
- Köppen–Geiger climate zones (“Köppen–Geiger”) [58],
- Global Agro-Ecological Zones (“GAEZ”) [59],
- groundwater basins (“GWbasin”) [60],
- province boundaries as one scale below from country boundaries (“Province”) [57] and finally
- subbasins, defined as the scale below river basin boundaries (“Subbasin”) [56].
Data for water shortage | Average annual runoff, 30 arc-minute resolution, source: WATCH 20th Century Ensemble [21,22]. Population (year 2010), 5 arc-minute, source: Grübler et al. [23] and Klein Goldewijk et al. [24]. Grid area, 30 arc-minute, source: HarvestChoice [61]. |
Data for zonings | Hydrological basins and subbasins: Hydrobasins [56]. Administrative boundaries: national and provincial level: GADM [57]. Köppen-Geiger Climate Zones [58]. Global Agro-ecological zones (GAEZ) [59]. Groundwater basins [60]. |
Zonings | |
Preparations in ArcGIS/R | Projection was set to WGS84 (if not originally); Data was converted to raster with ‘features to raster’ tool (if not originally), runoff raster was used as snap raster to ensure grid size and location was exactly the same for all rasters; Grid cells were assigned numerical values representing zone codes; Rasters were clipped according to the outer limits of the 10 major Asian river basins + including all river basins in China & India; Rasters were converted to ASCII; Average annual runoff was calculated in R based on the output of modelled daily surface and subsurface runoff for period of 1971–2000. |
Preparations and calculations in Matlab | Population for 2010 was calculated as combination of two 5 arc-minute datasets and aggregated to 30 arc-minute resolution; Datasets were further clipped according to the minimum coverage of the input data, i.e., to consider only those grid cells that have values for all 21 zonings; Meshes of zonings were created; Zonal analysis was performed to calculate water availability, population and water shortage indicator for each zoning; Water shortage indicator values assigned to each grid cell from each zoning were examined to calculate the average, standard deviation and coefficient of variation; Population under 1000m3/cap/yr was calculated for each zoning; The count of zonings when a grid cell fell under 1000m3/cap/yr was calculated; Results were mapped and tabulated. |
3.2. Water Shortage Calculations
4. Results
Zoning | Population Under High Water Shortage (in Billions) | % of Total Population (~3.52 Billion) | ||
---|---|---|---|---|
1 | “Basin” | 1.24 | 35% | |
2 | “Nation” | 1.45 | 41% | |
3 | “Köppen–Geiger” | 0.78 | 22% | (min) |
4 | “GAEZ” | 0.95 | 27% | |
5 | “GWbasin” | 1.97 | 56% | |
6 | “Province” | 1.93 | 55% | |
7 | “Subbasin” | 2.11 | 60% | (max) |
8 | “Basin & Nation” | 1.35 | 38% | |
9 | “Basin & Köppen–Geiger” | 1.55 | 44% | |
10 | “Basin & GAEZ” | 1.76 | 50% | |
11 | “Basin & GWbasin” | 1.96 | 56% | |
12 | “Basin & Province” | 2.06 | 58% | |
13 | “Nation & Köppen–Geiger” | 1.39 | 40% | |
14 | “Nation & GAEZ” | 1.20 | 34% | |
15 | “Nation & GWbasin” | 2.08 | 59% | |
16 | “Nation & Subbasin” | 2.06 | 58% | |
17 | “Köppen–Geiger & GWbasin” | 2.05 | 58% | |
18 | “GAEZ & GWbasin” | 1.89 | 54% | |
19 | “Basin & Nation & Köppen–Geiger” | 1.55 | 44% | |
20 | “Basin & Nation & GAEZ” | 1.87 | 53% | |
21 | “Basin & Nation & GWbasin” | 2.00 | 57% |
5. Discussion
5.1. Can We Solve the MAUP to Robustly Estimate the Water Shortage Indicator?
5.2. Factors to Consider in Estimating Water Shortage
5.3. A Way Forward
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Eade, J.D.O.; Moran, D. Spatial economic valuation: Benefits transfer using Geographical Information Systems. J. Environ. Manag. 1996, 48, 97–110. [Google Scholar] [CrossRef]
- Herr, A. Data integration issues in research supporting sustainable natural resource management. Geogr. Res. 2007, 45, 376–386. [Google Scholar] [CrossRef]
- Van Oel, P.R.; Odongo, V.O.; Mulatu, D.W.; Muthoni, F.K.; Ndungu, J.N.; Ogada, J.O.; van der Veen, A. Supporting IWRM through spatial integrated assessment in the Lake Naivasha basin, Kenya. Int. J. Water Resour. Dev. 2014, 30, 605–618. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Del Campo, A.G. GIS in environmental assessment: A review of current issues and future needs. J. Environ. Assess. Policy Manag. 2012, 14. [Google Scholar] [CrossRef]
- Chapman, L.; Thornes, J.E. The use of Geographical Information Systems in climatology and meteorology. Progress Phys. Geogr. 2003, 27, 313–330. [Google Scholar] [CrossRef]
- Díez, E.; McIntosh, B.S. A review of the factors which influence the use and usefulness of information systems. Environ. Model. Softw. 2009, 24, 588–602. [Google Scholar] [CrossRef]
- Volk, M.; Lautenbach, S.; van Delden, H.; Newham, L.T.; Seppelt, R. How can we make progress with decision support systems in landscape and river basin management? Lessons learned from a comparative analysis of four different decision support systems. Environ. Manag. 2010, 46, 834–849. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Kummu, M.; de Moel, H.; Eisner, S.; Flörke, M.; Guillaume, J.H.A.; Porkka, M.; Siebert, S.; Veldkamp, T.I.E.; Ward, P.J. Global water use and water scarcity trajectories for the 20th century. Available online: http://meetingorganizer.copernicus.org/EGU2014/EGU2014-12310.pdf (accessed on 28 February 2015).
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varis, O.; Kummu, M.; Salmivaara, A. Ten major river basins in Monsoon Asia-Pacific: An assessment of vulnerability. Appl. Geogr. 2012, 32, 441–454. [Google Scholar] [CrossRef]
- UN DESA. World Population Prospects: The 2012 revision. Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. Available online: http://esa.un.org/unpd/wpp/index.htm (accessed on 21 August 2014).
- Rockström, J.; Falkenmark, M.; Karlberg, L.; Hoff, H.; Rost, S.; Gerten, D. Future water availability for global food production: The potential of green water for increasing resilience to global change. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Perveen, S.; James, L.A. Scale invariance of water stress and scarcity indicators: Facilitating cross-scale comparisons of water resources vulnerability. Appl. Geogr. 2011, 31, 321–328. [Google Scholar] [CrossRef]
- Perveen, S.; James, L.A. Changes in correlation coefficients with spatial scale and implications for water resources and vulnerability data. Prof. Geogr. 2012, 64, 389–400. [Google Scholar] [CrossRef]
- Perveen, S.; James, L.A. Multiscale effects on spatial variability metrics in global water resources data. Water Resour. Manag. 2010, 24, 1903–1924. [Google Scholar] [CrossRef]
- Brown, A.; Matlock, M.D. A review of water scarcity indices and methodologies. Available online: http://www.sustainabilityconsortium.org/wp-content/themes/sustainability/assets/pdf/whitepapers/2011_Brown_Matlock_Water-Availability-Assessment-Indices-and-Methodologies-Lit-Review.pdf (accessed on 10 June 2014).
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef]
- Falkenmark, M.; Lundqvist, J.; Widstrand, C. Macro-scale water scarcity requires micro-scale approaches. Aspects of vulnerability in semi-arid development. Natl. Resour. Forum 1989, 13, 258–267. [Google Scholar] [CrossRef]
- Weedon, G. Watch Technical Report Number 37, Creation of the Watch 20th Century Ensemble Product; Technical Report. UK Met Office: Wallingford, UK, 2011. Available online: http://www.eu-watch.org/media/default.aspx/emma/org/10730457/Technical+Report+37+Creation+of+the+WATCH+20th+Century+Ensemble+Product.pdf (accessed on 18 January 2015).
- Haddeland, I.; Clark, D.B.; Franssen, W.; Ludwig, F.; Voß, F.; Arnell, N.W.; Bertrand, N.; Best, M.; Folwell, S.; Gerten, D. Multimodel estimate of the global terrestrial water balance: Setup and first results. J. Hydrometeorol. 2011, 12, 869–884. [Google Scholar] [CrossRef]
- Grübler, A.; O’Neill, B.; Riahi, K.; Chirkov, V.; Goujon, A.; Kolp, P.; Prommer, I.; Scherbov, S.; Slentoe, E. Regional, national, and spatially explicit scenarios of demographic and economic change based on SRES. Technol. Forecast. Soc. Chang. 2007, 74, 980–1029. [Google Scholar] [CrossRef]
- Klein Goldewijk, K.; Beusen, A.; Janssen, P. Long-term dynamic modelling of global population and built-up area in a spatially explicit way: HYDE 3.1. Holocene 2010, 20, 565–573. [Google Scholar] [CrossRef]
- Gassert, F.; Reig, P.; Luo, T.; Maddocks, A. Aqueduct Country and River Basin Rankings: A Weighted Aggregation of Spatially Distinct Hydrological Indicators, Working Paper; World Resources Institute: Washington, DC, USA, 2013. [Google Scholar]
- Arnell, N.W. Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 31–52. [Google Scholar] [CrossRef]
- Kummu, M.; Ward, P.J.; de Moel, H.; Varis, O. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ. Res. Lett. 2010, 5. [Google Scholar] [CrossRef]
- Meybeck, M.; Kummu, M.; Dürr, H.H. Global hydrobelts and hydroregions: Improved reporting scale for water-related issues? Hydrol. Earth Syst. Sci. 2013, 17, 1093–1111. [Google Scholar] [CrossRef]
- Oki, T.; Agata, Y.; Kanae, S.; Saruhashi, T.; Yang, D.; Musiake, K. Global assessment of current water resources using total runoff integrating pathways. Hydrol. Sci. J. 2001, 46, 983–995. [Google Scholar] [CrossRef]
- Arnell, N.W.; van Vuuren, D.P.; Isaac, M. The implications of climate policy for the impacts of climate change on global water resources. Glob. Environ. Chang. 2011, 21, 592–603. [Google Scholar] [CrossRef]
- Gain, A.K.; Giupponi, C.; Renaud, F.G. Climate change adaptation and vulnerability assessment of water resources systems in developing countries: A generalized framework and a feasibility study in Bangladesh. Water 2012, 4, 345–366. [Google Scholar] [CrossRef] [Green Version]
- Goodchild, M.F. Scale in GIS: An overview. Geomorphology 2011, 130, 5–9. [Google Scholar] [CrossRef]
- Wong, D.W. Modifiable Areal Unit Problem. In International Encyclopedia of Human Geography; Rob, K., Nigel, T., Eds.; Elsevier: Oxford, UK, 2009; pp. 169–174. [Google Scholar]
- Dark, S.J.; Bram, D. The Modifiable Areal Unit Problem (MAUP) in Physical Geography. Prog. Phys. Geogr. 2007, 31, 471–479. [Google Scholar] [CrossRef]
- Gehlke, C.E.; Biehl, K. Certain effects of grouping upon the size of the correlation coefficient in census tract material. J. Am. Stat. Assoc. 1934, 29, 169–170. [Google Scholar]
- Fotheringham, A.S.; Wong, D.W.S. The Modifiable Areal Unit Problem in multivariate statistical analysis. Environ. Plan. A 1991, 23, 1025–1044. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Quattrochi, D.A. Scale, Multiscaling, Remote Sensing, and GIS; CRC Press LLC: Boca Raton, FL, USA, 1997. [Google Scholar]
- Amrhein, C.; Reynolds, H. Using spatial statistics to assess aggregation effects. Geogr. Syst. 1996, 3, 143–158. [Google Scholar]
- Arbia, G.; Benedetti, R.; Espa, G. Effects of the MAUP on image classification. Geogr. Syst. 1996, 3, 123–141. [Google Scholar]
- Marceau, D.J.; Gratton, D.J.; Fournier, R.A.; Fortin, J.-P. Remote sensing and the measurement of geographical entities in a forested environment. 2. The optimal spatial resolution. Remote Sens. Environ. 1994, 49, 105–117. [Google Scholar] [CrossRef]
- Openshaw, S. A geographical solution to scale and aggregation problems in region-building, partitioning and spatial modelling. Trans. Inst. Br. Geogr. 1977, 459–472. [Google Scholar] [CrossRef]
- Openshaw, S. Ecological fallacies and the analysis of areal census data. Environ. Plan. A 1984, 16, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Openshaw, S.; Alvanides, S. Designing zoning system for the representation of socio-economic data. In Life and Motion of Socio-Economic Units, GISDATA 8 Series; Masser, I., Salgé, F., Frank, A., Raper, J., Cheylan, J.-P., Eds.; Taylor & Francis: London, UK, 2001; pp. 273–292. [Google Scholar]
- Openshaw, S.; Taylor, P.J. A million or so correlation coefficients: Three experiments on the Modifiable Areal Unit Problem. Stat. Appl. Spat. Sci. 1979, 21, 127–144. [Google Scholar]
- Kattelus, M.; Kummu, M.; Keskinen, M.; Salmivaara, A.; Varis, O. China’s south-bound transboundary river basins—A case of asymmetry. Water Int. 2015, 40, 113–138. [Google Scholar] [CrossRef]
- WWAP. The United Nations world water development report 2014: Water and energy. In United Nations World Water Assessment Programme; UNESCO: Paris, France, 2014. [Google Scholar]
- Lorenz, C.M.; Gilbert, A.J.; Cofino, W.P. Indicators for transboundary river management. Environ. Manag. 2001, 28, 115–129. [Google Scholar] [CrossRef]
- Gain, A.K.; Giupponi, C. A dynamic assessment of water scarcity risk in the lower Brahmaputra River basin: An integrated approach. Ecol. Indic. 2015, 48, 120–131. [Google Scholar] [CrossRef]
- Käkönen, M.; Hirsch, P. The anti-politics of Mekong knowledge production. In Contested Waterscapes in the Mekong Region-Hydropower, Livelihoods and Governance; Molle, F., Foran, T., Käkönen, M., Eds.; Earthscan: London, UK; Sterling, VA, USA, 2009. [Google Scholar]
- Mandelbrot, B.B. How long is the coast of Britain. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Openshaw, S. The Modifiable Areal Unit Problem; Geo Books: Norwich, UK, 1983. [Google Scholar]
- O’Sullivan, D.; Unwin, D.J. The pitfalls and potential of spatial data. In Geographic Information Analysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 33–53. [Google Scholar]
- Clark, W.A.; Avery, K.L. The effects of data aggregation in statistical analysis. Geogr. Anal. 1976, 8, 428–438. [Google Scholar] [CrossRef]
- King, G. A Solution to the Ecological Inference Problem: Reconstructing Individual Behavior from Aggregate Data; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Nelson, A. Analysing data across geographic scales in Honduras: Detecting levels of organisation within systems. Agric. Ecosyst. Environ. 2001, 85, 107–131. [Google Scholar] [CrossRef]
- Lehner, B.; Verdin, K.; Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos Trans. AGU 2008, 89, 93–94. [Google Scholar] [CrossRef]
- GADM Database for Global Administrative Areas, version 2.0. Available online: www.gadm.org (accessed on 24 March 2014).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Ramankutty, N.; Hertel, T.; Lee, H.-L.; Rose, S.K. Global agricultural land use data for integrated assessment modelling. In Human-Induced Climate Change—An Interdisciplinary Assessment; Schlesinger, M.E., Kheshgi, H.S., Smith, J., de la Chesnaye, F.C., Reilly, J.M., Wilson, T., Kolstad, C., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- BGR & UNESCO. Groundwater resources of the world 1:25,000,000. Hannover: Germany, Paris, France. Available online: http://www.whymap.org (accessed on 1 April 2014).
- HarvestChoice. HCID: Grid databases at multiple spatial resolutions. Available online: http://harvestchoice.org/node/2232 (accessed on 24 April 2014).
- Falkenmark, M.; Widstrand, C. Population and water resources: A delicate balance. Popul. Bull. 1992, 47, 1–36. [Google Scholar] [PubMed]
- Shah, T.; Singh, O.P.; Mukherji, A. Some aspects of South Asia’s groundwater irrigation economy: Analyses from a survey in India, Pakistan, Nepal Terai and Bangladesh. Hydrogeol. J. 2006, 14, 286–309. [Google Scholar] [CrossRef]
- Shahid, S.; Behrawan, H. Drought risk assessment in the western part of Bangladesh. Nat. Hazards 2008, 46, 391–413. [Google Scholar] [CrossRef]
- Siebert, S.; Burke, J.; Faures, J.-M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar]
- Wang, J.; Huang, J.; Blanke, A.; Huang, Q.; Rozelle, S. The development, challenges and management of groundwater in rural China. In The Agricultural Groundwater Revolution: Opportunities and Threats to Development; Giordano, M., Villholt, K.G., Eds.; International Water Management Institute: Colombo, Sri Lanka; CAB International: Wallingford, UK, 2007; pp. 37–62. [Google Scholar]
- Wada, Y.; Bierkens, M.F.P. Sustainability of global water use: Past reconstruction and future projections. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; van Beek, L.P.H. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; van Beek, L.P.H.; Bierkens, M.F.P. Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Wada, Y.; van Beek, L.P.H.; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Weeks, J.R. The role of spatial analysis in demographic research. In Spatially Integrated Social Science; Goodchild, M.F., Janelle, D.G., Eds.; Oxford University Press: Oxford, UK, 2004; pp. 381–399. [Google Scholar]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Salmivaara, A.; Kummu, M.; Varis, O.; Keskinen, M. Socio-economic changes in Cambodia’s unique Tonle Sap lake area: A spatial approach. Appl. Spat. Anal. Policy 2015. submitted for publication. [Google Scholar]
- Allan, J.A. Virtual water: A strategic resource global solutions to regional deficits. Ground Water 1998, 36, 545–546. [Google Scholar] [CrossRef]
- Jelinski, D.E.; Wu, J. The Modifiable Areal Unit Problem and implications for landscape ecology. Landsc. Ecol. 1996, 11, 129–140. [Google Scholar] [CrossRef]
- Tobler, W. Cellular geography. In Philosophy in Geography; Gale, S., Olsson, G., Eds.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1979. [Google Scholar]
- Marceau, D.J.; Hay, G.J. Remote sensing contributions to the scale issue. Can. J. Remote Sens. 1999, 25, 357–366. [Google Scholar] [CrossRef]
- Openshaw, S.; Alvanides, S. Applying geocomputation to the analysis of spatial distributions. Geogr. Inf. Syst. Princ. Tech. Issues 1999, 1, 267–282. [Google Scholar]
- Openshaw, S.; Rao, L. Algorithms for reengineering 1991 census geography. Environ. Plan. A 1995, 27, 425–446. [Google Scholar] [CrossRef] [PubMed]
- Viegas, J.M.; Martínez, L.M.; Silva, E.A. Effects of the Modifiable Areal Unit Problem on the delineation of traffic analysis zones. Environ. Plan. B Plan. Des. 2009, 36, 625–643. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salmivaara, A.; Porkka, M.; Kummu, M.; Keskinen, M.; Guillaume, J.H.A.; Varis, O. Exploring the Modifiable Areal Unit Problem in Spatial Water Assessments: A Case of Water Shortage in Monsoon Asia. Water 2015, 7, 898-917. https://doi.org/10.3390/w7030898
Salmivaara A, Porkka M, Kummu M, Keskinen M, Guillaume JHA, Varis O. Exploring the Modifiable Areal Unit Problem in Spatial Water Assessments: A Case of Water Shortage in Monsoon Asia. Water. 2015; 7(3):898-917. https://doi.org/10.3390/w7030898
Chicago/Turabian StyleSalmivaara, Aura, Miina Porkka, Matti Kummu, Marko Keskinen, Joseph H. A. Guillaume, and Olli Varis. 2015. "Exploring the Modifiable Areal Unit Problem in Spatial Water Assessments: A Case of Water Shortage in Monsoon Asia" Water 7, no. 3: 898-917. https://doi.org/10.3390/w7030898
APA StyleSalmivaara, A., Porkka, M., Kummu, M., Keskinen, M., Guillaume, J. H. A., & Varis, O. (2015). Exploring the Modifiable Areal Unit Problem in Spatial Water Assessments: A Case of Water Shortage in Monsoon Asia. Water, 7(3), 898-917. https://doi.org/10.3390/w7030898