National Large-Scale Wetland Creation in Agricultural Areas—Potential versus Realized Effects on Nutrient Transports
Abstract
:1. Introduction
2. Methods
2.1. Nitrogen and Phosphorus Removal in Individual Created Wetlands
2.2. Large-Scale Effects of a National Wetland Creation Program
3. Results
3.1. Nitrogen and Hosphorus Removal in Individual Created Wetlands
3.2. Large-Scale Effects of a National Wetland Creation Program
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Appendix B
References
- Alvarez, S.; Asci, S.; Vorotnikova, E. Valuing the potential benefits of water quality improvements in watersheds affected by non-point source pollution. Water 2016, 8, 112. [Google Scholar] [CrossRef]
- Hefting, M.M.; van den Heuvel, R.N.; Verhoeven, J.T.A. Wetlands in agricultural landscapes for nitrogen attenuation and biodiversity enhancement: Opportunities and limitations. Ecol. Eng. 2013, 56, 5–13. [Google Scholar] [CrossRef]
- Newcomer Johnson, T.A.; Kaushal, S.S.; Mayer, P.M.; Smith, R.M.; Sivirichi, G.M. Nutrient retention in restored streams and rivers: A global review and synthesis. Water 2016, 8, 116. [Google Scholar] [CrossRef]
- Verhoeven, J.T.A.; Arheimer, B.; Yin, C.Q.; Hefting, M.M. Regional and global concerns over wetlands and water quality. Trends Ecol. Evol. 2006, 21, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Strand, J.A.; Weisner, S.E.B. Effects of wetland construction on nitrogen transport and species richness in the agricultural landscape—Experiences from Sweden. Ecol. Eng. 2013, 56, 14–25. [Google Scholar] [CrossRef]
- Fleischer, S.; Gustafson, A.; Joelsson, A.; Pansar, J.; Stibe, L. Nitrogen removal in created ponds. Ambio 1994, 23, 349–357. [Google Scholar]
- Jansson, M.; Andersson, R.; Berggren, H.; Leonardson, L. Wetlands and lakes and nitrogen traps. Ambio 1994, 23, 320–325. [Google Scholar]
- Thiere, G.; Milenkovski, S.; Lindgren, P.-E.; Sahlén, G.; Berglund, O.; Weisner, S.E.B. Wetland creation in agricultural landscapes: Biodiversity benefits on local and regional scales. Biol. Conserv. 2009, 142, 964–973. [Google Scholar] [CrossRef]
- Tonderski, K.S.; Arheimer, B.; Pers, C.B. Modeling the impact of potential wetlands on phosphorus retention in a Swedish catchment. Ambio 2005, 34, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Gao, X. Ecosystem services valuation of Lakeside Wetland Park beside Chaohu Lake in China. Water 2016, 8, 301. [Google Scholar] [CrossRef]
- Semeraro, T.; Giannuzzi, C.; Beccarisi, L.; Aretano, R.; De Marco, A.; Pasimeni, M.R.; Zurlini, G.; Petrosillo, I. A constructed treatment wetland as an opportunity to enhance biodiversity and ecosystem services. Ecol. Eng. 2015, 82, 517–526. [Google Scholar] [CrossRef]
- Jenkins, W.A.; Murray, B.C.; Kramer, R.A.; Faulkner, S.P. Valuing ecosystem services from wetlands restoration in the Mississippi Alluvial Valley. Ecol. Econ. 2010, 69, 1051–1061. [Google Scholar] [CrossRef]
- Hansson, A.; Pedersen, E.; Weisner, S.E.B. Landowners’ incentives for constructing wetlands in an agricultural area in south Sweden. J. Environ. Manag. 2012, 113, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Kamarinas, I.; Julian, J.; Hughes, A.O.; Owsley, B.C.; de Beurs, K.M. Nonlinear changes in land cover and sediment runoff in a New Zealand catchment dominated by plantation forestry and livestock grazing. Water 2016, 8, 436. [Google Scholar] [CrossRef]
- Ockenden, M.C.; Deasy, C.E.; Benskin, C.M.H.; Beven, K.J.; Burke, S.; Collins, A.L.; Evans, R.; Falloon, P.D.; Forber, K.J.; Hiscock, K.M.; et al. Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments. Sci. Total Environ. 2016, 548, 325–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, R.J.; Rawlins, B.G.; Krueger, T.; Leze, B.; Hiscock, K.M.; Pedentchouk, N. Contrasting controls on the phosphorus concentration of suspended particulate matter under baseflow and storm event conditions in agricultural headwater streams. Sci. Total Environ. 2015, 533, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johannesson, K.M.; Tonderski, K.S.; Ehde, P.M.; Weisner, S.E.B. Temporal phosphorus dynamics affecting retention estimates in agricultural constructed wetlands. Ecol. Eng. 2015. [Google Scholar] [CrossRef]
- Ulén, B.; von Brömssen, C.; Kyllmar, K.; Djodjic, F.; Forsberg, L.S.; Andersson, S. Long-term temporal dynamics and trends of particle-bound phosphorus and nitrate in agricultural stream waters. Acta Agric. Scand. Sect. B-Soil Plant. Sci. 2012, 62, 217–228. [Google Scholar] [CrossRef]
- McDowell, R.W.; Wilcock, R.J. Particulate phosphorus transport within stream flow of an agricultural catchment. J. Environ. Qual. 2004, 33, 2111–2121. [Google Scholar] [CrossRef] [PubMed]
- Ulén, B. Size and settling velocities of phosphorus-containing particles in water from agricultural drains. Water Air Soil Pollut. 2004, 157, 331–343. [Google Scholar] [CrossRef]
- Bowes, M.J.; House, W.A.; Hodgkinson, R.A. Phosphorus dynamics along a river continuum. Sci. Total Environ. 2003, 313, 199–212. [Google Scholar] [CrossRef]
- Uusitalo, R.; Yli-Halla, M.; Turtola, E. Suspended soil as a source of potentially bioavailable phosphorus in surface runoff waters from clay soils. Water Res. 2000, 34, 2477–2482. [Google Scholar] [CrossRef]
- Johannesson, K.M.; Kynkäänniemi, P.; Ulén, B.; Weisner, S.E.B.; Tonderski, K.S. Phosphorus and particle retention in constructed wetlands—A catchment comparison. Ecol. Eng. 2015, 80, 20–31. [Google Scholar] [CrossRef]
- Ockenden, M.C.; Deasy, C.; Quinton, J.N.; Surridge, B.; Stoate, C. Keeping agricultural soil out of rivers: Evidence of sediment and nutrient accumulation within field wetlands in the UK. J. Environ. Manag. 2014, 135, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Ockenden, M.C.; Deasy, C.; Quinton, J.N.; Bailey, A.P.; Surridge, B.; Stoate, C. Evaluation of field wetlands for mitigation of diffuse pollution from agriculture: Sediment retention, cost and effectiveness. Environ. Sci. Policy 2012, 24, 110–119. [Google Scholar] [CrossRef]
- Koskiaho, J.; Ekholm, P.; Räty, M.; Riihimäki, J.; Puustinen, M. Retaining agricultural nutrients in constructed wetlands—Experiences under boreal conditions. Ecol. Eng. 2003, 20, 89–103. [Google Scholar] [CrossRef]
- Braskerud, B.C. Factors affecting phosphorus retention in small constructed wetlands treating agricultural non-point source pollution. Ecol. Eng. 2002, 19, 41–61. [Google Scholar] [CrossRef]
- Eskelinen, R.; Ronkanen, A.-L.; Marttila, H.; Kløve, B. Assessment of uncertainty in constructed wetland treatment performance and load estimation methods. Environ. Monit. Assess. 2016, 188, 365. [Google Scholar] [CrossRef] [PubMed]
- Weisner, S.; Johannesson, K.; Tonderski, K. Näringsavskiljning i anlagda våtmarker i jordbrukslandskapet—Analys av mätresultat och effekter av landsbygdsprogrammet; Report 2015:7; Swedish Board of Agriculture: Jönköping, Sweden, 2015.
- Johnsson, H.; Larsson, M.; Lindsjö, A.; Mårtensson, K.; Persson, K.; Torstensson, G. Läckage av näringsämnen från svensk åkermark; Report 5823; Swedish Environmental Protection Agency: Stockholm, Sweden, 2008.
- Arheimer, B.; Brandt, M. Modelling nitrogen transport and retention in the catchments of southern Sweden. Ambio 1998, 27, 471–480. [Google Scholar]
- Land, M.; Granéli, W.; Grimvall, A.; Hoffmann, C.C.; Mitsch, W.J.; Tonderski, K.S.; Verhoeven, J.T.A. How effective are created or restored freshwater wetlands for nitrogen and phosphorus removal? A systematic review. Environ. Evid. 2016, 5. [Google Scholar] [CrossRef]
- Shih, S.-S.; Hong, S.-S.; Chang, T.-J. Flume experiments for optimizing the hydraulic performance of a deep-water wetland utilizing emergent vegetation and obstructions. Water 2016, 8, 265. [Google Scholar] [CrossRef]
- Li, P.; Zhang, J.; Xie, H.; Hu, Z.; He, H.; Wang, W. Effects of Misgurnus anguillicaudatus and Cipangopaludina cathayensis on pollutant removal and microbial community in constructed wetlands. Water 2015, 7, 2422–2434. [Google Scholar] [CrossRef]
- Weisner, S.E.B.; Thiere, G. Effects of vegetation state on biodiversity and nitrogen retention in created wetlands: A test of the biodiversity—Ecosystem functioning hypothesis. Freshwater Biol. 2010, 55, 387–396. [Google Scholar] [CrossRef]
- Braskerud, B.C. The influence of vegetation on sedimentation and resuspension of soil particles in small constructed wetlands. J. Env. Qual. 2001, 30, 1447–1457. [Google Scholar] [CrossRef]
- Engelhardt, K.A.M.; Ritchie, M.E. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 2001, 411, 687–689. [Google Scholar] [CrossRef] [PubMed]
- Weisner, S.E.B.; Eriksson, P.G.; Granéli, W.; Leonardson, L. Influence of macrophytes on nitrate removal in wetlands. Ambio 1994, 23, 363–366. [Google Scholar]
- Weisner, S.; Thiere, G. Mindre fosfor och kväve från jordbrukslandskapet; Report 2010:21; Swedish Board of Agriculture: Jönköping, Sweden, 2010.
Effect Scale | N1 | N2 | P1 | P2 |
---|---|---|---|---|
Removal in wetlands | 46 | 32 | 3.5 | 6.0 |
Decreased transport to the sea | 38 | 27 | 2.7 | 4.5 |
Main Purpose | N1 | N2 | P1 | P2 |
---|---|---|---|---|
Improved biodiversity 1 (n = 37) | 21 | 10 | 1.8 | 3.9 |
Nutrient removal only (n = 23) | 337 | 298 | 30 | 45 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weisner, S.E.B.; Johannesson, K.; Thiere, G.; Svengren, H.; Ehde, P.M.; Tonderski, K.S. National Large-Scale Wetland Creation in Agricultural Areas—Potential versus Realized Effects on Nutrient Transports. Water 2016, 8, 544. https://doi.org/10.3390/w8110544
Weisner SEB, Johannesson K, Thiere G, Svengren H, Ehde PM, Tonderski KS. National Large-Scale Wetland Creation in Agricultural Areas—Potential versus Realized Effects on Nutrient Transports. Water. 2016; 8(11):544. https://doi.org/10.3390/w8110544
Chicago/Turabian StyleWeisner, Stefan E. B., Karin Johannesson, Geraldine Thiere, Henrik Svengren, Per Magnus Ehde, and Karin S. Tonderski. 2016. "National Large-Scale Wetland Creation in Agricultural Areas—Potential versus Realized Effects on Nutrient Transports" Water 8, no. 11: 544. https://doi.org/10.3390/w8110544
APA StyleWeisner, S. E. B., Johannesson, K., Thiere, G., Svengren, H., Ehde, P. M., & Tonderski, K. S. (2016). National Large-Scale Wetland Creation in Agricultural Areas—Potential versus Realized Effects on Nutrient Transports. Water, 8(11), 544. https://doi.org/10.3390/w8110544