Water Age Responses to Weather Conditions in a Hyper-Eutrophic Channel Reservoir in Southern China
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area
2.2. Model Description
2.2.1. Watershed Model (SWAT)
2.2.2. Hydrodynamic Model of CTR
3. Calibration and Validation for the Coupled Watershed and Reservoir Model
4. Application of the Coupled SWAT and EFDC Model in CTR
4.1. Temporal and Spatial Distribution of Water Age in Typical Wet, Average, and Dry Years
4.1.1. Changes of Water Age over Seasons in Typical Wet, Average, and Dry Years
4.1.2. Spatial Distribution of Water Age in Typical Wet, Average, and Dry Years
4.2. The Impact of Short-Term Weather Conditions on Water Age in CTR
4.2.1. The Impact of Precipitation on Water Ages in CTR
4.2.2. The Impact of Winds on Water Ages in CTR
4.2.3. The Impact of Air Temperature and Humidity on Water Ages in CTR
4.3. The Potential Area for the Risk of Algal Bloom in CTR
5. Discussion
5.1. The Impact of Weather Conditions on Reservoir Management
5.2. Algal Bloom Response to Water Ages in Channel Reservoir
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ficklin, D.L.; Luo, Y.Z.; Luedeling, E.; Zhang, M.H. Climate change sensitivity assessment of a highly agricultural watershed using SWAT. J. Hydrol. 2009, 374, 16–29. [Google Scholar] [CrossRef]
- Thodsen, H. The influence of climate change on stream flow in Danish rivers. J. Hydrol. 2007, 333, 226–238. [Google Scholar] [CrossRef]
- Kong, Y.L.; Pang, Z.H. Evaluating the sensitivity of glacier rivers to climate change based on hydrograph separation of discharge. J. Hydrol. 2012, 434–435, 121–129. [Google Scholar] [CrossRef]
- Liu, W.C.; Chen, W.B.; Hsu, M.H. Using a three-dimensional particle-tracking model to estimate the residence time and age of water in tidal estuary. Comput. Geosci. 2011, 37, 1148–1161. [Google Scholar] [CrossRef]
- Nyenje, P.M.; Foppen, J.W.; Uhlenbrook, S.; Kulabako, R.; Muwanga, A. Eutrophication and nutrient release in urban areas of sub-Saharan Africa—A review. Sci. Total Environ. 2010, 408, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Kemp, W.M.; Boynton, W.R.; Adolf, J.E.; Boesch, D.F.; Boicourt, W.C.; Brush, G.; Cornwell, J.C.; Fisher, T.R.; Gilbert, P.M.; Hagy, J.D.; et al. Eutrophication of Chesapeake Bay: Historical trends and ecological interactions. Mar. Ecol. Prog. Ser. 2005, 303, 1–29. [Google Scholar] [CrossRef]
- Boynton, W.R.; Garber, J.H.; Summers, R.; Kemp, W.M. Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries 1995, 18, 285–314. [Google Scholar] [CrossRef]
- Wang, P.C.; Zhang, X.Q. Numerical study of water age influenced by tide and runoff in Daliaohe Estuary in China. J. Hydrodyn. 2013, 25, 39–47. [Google Scholar] [CrossRef]
- Xu, H.Z.; Lin, J.; Wang, D.X. Numerical study on pollutant transport in estuary based on age concept. Adv. Water Sci. 2009, 20, 92–98. (In Chinese) [Google Scholar]
- Shen, Y.M.; Wang, J.H.; Zheng, B.H.; Zhen, H.; Feng, Y.; Wang, Z.X.; Yang, X. Modeling study of residence time and water age in Dahuofang Reservoir in China. Sci. China Phys. Mech. Astron. 2011, 54, 127–142. [Google Scholar] [CrossRef]
- Ren, Y.H.; Lin, B.L.; Sun, J.; Pan, S.Q. Predicting water age distribution in the Pearl River Estuary using a three-dimensional model. J. Mar. Syst. 2014, 139, 276–287. [Google Scholar] [CrossRef]
- Gong, W.P.; Shen, J.; Hong, B. The influence of wind on the water age in the tidal Rappahannock River. Mar. Environ. Res. 2009, 68, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Wang, H.V. Determining the age of water and long-term transport timescale of the Chesapeake Bay. Estuar. Coast. Shelf Sci. 2007, 74, 585–598. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Y.C.; Wang, P.F.; Zhang, S.H.; Hou, J.; Qian, J. Eutrophication and characteristics of phytoplankton distributions in Changtan Reservoir, Guangdong Province. J. Lake Sci. 2013, 25, 749–755. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.R.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool, Theoretical Documentation: Version 2005; USDA Agricultural Research Service and Texas A&M Blackland Research Center: Temple, TX, USA, 2005.
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool, Input/Output File Documentation, Version 2009; Technical Report 365; Texas Water Resources Institute, Texas A&M University: College Station, TX, USA, 2011. [Google Scholar]
- Bijan, D.; Shimelis, G.S. Combined 3D hydrodynamic and watershed modelling of Lake Tana, Ethiopia. J. Hydrol. 2011, 398, 44–64. [Google Scholar]
- Hamrick, J.M. A Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects; Special Report No. 317 in Applied Marine Science and Ocean Engineering; Virginia Institute of Marine Science: Gloucester Point, VA, USA, 1992; p. 64. [Google Scholar]
- Hamrick, J.M. Application of the EFDC, Environmental Fluid Dynamics Computer Code to SFWMD Water Conservation Area 2A; Report JMH-SFWMD-94-01; J.M. Hamrick and Associates: Williamsburg, VA, USA, 1994; p. 126. [Google Scholar]
- Hamrick, J.M. User’s Manual for the Environmental Fluid Dynamics Computer Code; Special Report No. 331 in Applied Marine Science and Ocean Engineering; Virginia Institute of Marine Science: Gloucester Point, VA, USA, 1996. [Google Scholar]
- Craig, P.M. User’s Manual for EFDC_Explorer: A Pre/Post Processor for the Environmental Fluid Dynamics Code; Dynamic Solutions-International, LLC: Knoxville, TN, USA, 2011. [Google Scholar]
- Ji, Z.G.; Hu, G.D.; Shen, J.A.; Wan, Y.S. Three-dimensional modeling of hydrodynamic processes in the St. Lucie Estuary. Estuar. Coast. Shelf Sci. 2007, 73, 188–200. [Google Scholar] [CrossRef]
- Li, Y.P.; Tang, C.Y.; Wang, C.; Anim, D.O.; Yu, Z.B.; Acharya, K. Improved Yangtze River Diversions: Are they helping to solve algal bloom problems in Lake Taihu, China? Ecol. Eng. 2013, 51, 104–116. [Google Scholar] [CrossRef]
- Delhez, E.J.M.; Campin, J.M.; Hirst, A.C.; Deleersnijder, E. Toward a general theory of the age in ocean modelling. Ocean Model. 1999, 1, 17–27. [Google Scholar] [CrossRef]
- Deleersnijder, E.; Campin, J.M.; Delhez, E.J.M. The concept of age in marine modelling: I. Theory and preliminary model results. J. Mar. Syst. 2001, 28, 229–267. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. Development of a Turbulence Closure-Model for Geophysical Fluid Problems. Rev. Geophys. 1982, 20, 851–875. [Google Scholar] [CrossRef]
- Galperin, B.; Kantha, L.H.; Hassid, S.; Rosati, A. A Quasi-Equilibrium Turbulent Energy-Model for Geophysical Flows. J. Atmos. Sci. 1988, 45, 55–62. [Google Scholar] [CrossRef]
- Mellor, G.L.; Ezer, T.; Oey, L.Y. The Pressure Gradient Conundrum of Sigma Coordinate Ocean Models. J. Atmos. Ocean. Technol. 1994, 11, 1126–1134. [Google Scholar] [CrossRef]
- HydroQual Inc. A Primer for ECOMSED, Version 1.2: User Manual; HydroQual, Inc.: Mahwah, NJ, USA, 2001; p. 179. [Google Scholar]
- Risbey, J.S.; Entekhabi, D. Observed Sacramento Basin streamflow response to precipitation and temperature changes and its relevance to climate impact studies. J. Hydrol. 1996, 184, 209–233. [Google Scholar] [CrossRef]
- Li, Y.P.; Tang, C.Y.; Zhu, J.T.; Pan, B.Z.; Anim, D.O.; Ji, Y.; Yu, Z.B.; Acharya, K. Parametric uncertainty and sensitivity analysis of hydrodynamic processes for a large shallow freshwater lake. Hydrol. Sci. J. 2015, 60, 1078–1095. [Google Scholar] [CrossRef]
- Li, Y.P.; Qiu, L.; Tang, C.Y.; Bu, M.S.; Tian, W.; Yu, Z.B.; Acharya, K. Uncertainty and sensitivity analysis of input conditions in large shallow lake hydrodynamic model. China Environ. Sci. 2014, 34, 410–416. [Google Scholar]
- Li, Y.P.; Acharya, K.; Chen, D.; Stone, M. Modeling water ages and thermal structure of Lake Mead under changing water levels. Lake Reserv. Manag. 2010, 26, 258–272. [Google Scholar] [CrossRef]
- Coveney, M.F.; Hendrickson, J.C.; Marzolf, E.R.; Fulton, R.S.; Di, J.J.; Neubauer, C.P.; Dobberfuhl, D.R.; Hall, G.B.; Paerl, H.W.; Phlips, E.J. Plankton; Technical Report; St. Johns River Water Management District: Palatka, FL, USA, 2011; pp. 8–46. [Google Scholar]
Parameter | Definition | Value |
---|---|---|
SURLAG | Surface runoff lag coefficient | 0 |
ESCO | Soil evaporation compensation factor | 0.95 |
AWC | Available water capacity of the soil layer | 0.12 |
GW_REVAP | Groundwater “revap” coefficient | 0.8 |
RCHRG_DP | Deep aquifer percolation fraction | 0.35 |
GW-ALPHA | Base flow recession constant | 0.1 |
MSK_X | Muskingum Method weighting factor | 0.2 |
Parameter | Definition | Value |
---|---|---|
Z0 | Bottom roughness height (m) | 0.02 |
AHO | Constant Horizontal Momentum and Mass Diffusivity (m2 s−1) | 1.0 |
AHD | Dimensionless Horizontal Momentum Diffusivity | 0.2 |
AVO | Background, Constant or Molecular Kinematic Viscosity (m2 s−1) | 0.001 |
ABO | Background, Constant or Molecular Diffusivity (m2 s−1) | 1 × 10−9 |
AVMN | Minimum Kinematic Eddy Viscosity (m2 s−1) | 1 × 10−4 |
AN | Minimum Eddy Diffusivity (m2 s−1) | 1× 10−8 |
WSC | Wind shelter coefficient | 1.0 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, W.; Li, Y.; Hua, L.; Wang, C.; Wang, P.; Wang, J.; Wang, Y.; Chen, L.; Bofah Buoh, R.; Jepkirui, M.; et al. Water Age Responses to Weather Conditions in a Hyper-Eutrophic Channel Reservoir in Southern China. Water 2016, 8, 372. https://doi.org/10.3390/w8090372
Du W, Li Y, Hua L, Wang C, Wang P, Wang J, Wang Y, Chen L, Bofah Buoh R, Jepkirui M, et al. Water Age Responses to Weather Conditions in a Hyper-Eutrophic Channel Reservoir in Southern China. Water. 2016; 8(9):372. https://doi.org/10.3390/w8090372
Chicago/Turabian StyleDu, Wei, Yiping Li, Lei Hua, Chao Wang, Peifang Wang, Jingyu Wang, Ying Wang, Li Chen, Robert Bofah Buoh, Mercy Jepkirui, and et al. 2016. "Water Age Responses to Weather Conditions in a Hyper-Eutrophic Channel Reservoir in Southern China" Water 8, no. 9: 372. https://doi.org/10.3390/w8090372
APA StyleDu, W., Li, Y., Hua, L., Wang, C., Wang, P., Wang, J., Wang, Y., Chen, L., Bofah Buoh, R., Jepkirui, M., Pan, B., Jiang, Y., & Acharya, K. (2016). Water Age Responses to Weather Conditions in a Hyper-Eutrophic Channel Reservoir in Southern China. Water, 8(9), 372. https://doi.org/10.3390/w8090372