Land Use, Climate, and Water Resources—Global Stages of Interaction
Abstract
:1. The Emerging Global Water Crisis
2. Human Domination of Water-from Degradation to Restoration Cycles
3. Characterizing Interactive Stages of Land Use and Climate Change
3.1. Stage 1: Hydrologic Modifications and the Built Environment Amplify Water Losses via Runoff-Dominated Systems
3.2. Stage 2: Losses in Water Storage and Ecosystem Retention Reduce the Capacity of Ecosystems to Buffer Extremes in Water Quantity and Quality
3.3. Stage 3: Extremes in Water Quantity and/or Quality Lead to Local Losses in Ecosystem Services and Regional Water Security
3.4. Stage 4: Water Management and Restoration Strategies Aim to Regain Losses in Ecosystem Structure, Function, and Services
4. The Future of Water: Stepping into the Unknown
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ellis, E.C.; Ramankutty, N. Putting People in the Map: Anthropogenic Biomes of the World. Front. Ecol. Environ. 2008, 6, 439–447. [Google Scholar] [CrossRef]
- Kaushal, S.S.; McDowell, W.H.; Wollheim, W.M. Tracking Evolution of Urban Biogeochemical Cycles: Past, Present, and Future. Biogeochemistry 2014, 121, 1–21. [Google Scholar] [CrossRef]
- Kaushal, S.S.; McDowell, W.H.; Wollheim, W.M.; Johnson, T.A.N.; Mayer, P.M.; Belt, K.T.; Pennino, M.J. Urban Evolution: The Role of Water. Water 2015, 7, 4063–4087. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Mayer, P.M.; Vidon, P.G.; Smith, R.M.; Pennino, M.J.; Newcomer, T.A.; Duan, S.; Welty, C.; Belt, K.T. Land Use and Climate Variability Amplify Carbon, Nutrient, and Contaminant Pulses: A Review with Management Implications. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 585–614. [Google Scholar] [CrossRef]
- Field, C.B.; Michalak, A.M. Water, Climate, Energy, Food: Inseparable & Indispensable. Daedalus 2015, 144, 7–17. [Google Scholar]
- Taylor, R.G.; Scanlon, B.; Doll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground Water and Climate Change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Gleick, P.H. Water in Crisis: A Guide to the World’s Fresh Water Resources; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Jackson, R.B.; Carpenter, S.R.; Dahm, C.N.; Mcknight, D.M.; Naiman, R.J.; Postel, S.L.; Running, S.W. Water in a Changing World. Ecol. Appl. 2001, 11, 1027–1045. [Google Scholar] [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the Urban Landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P., II. The Urban Stream Syndrome: Current Knowledge and the Search for a Cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Meybeck, M.; Pastore, C.L. Impair-Then-Repair: A Brief History and Global-Scale Hypothesis Regarding Human-Water Interactions in The Anthropocene. Dædalus 2015, 144, 94–109. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity is Dead: Whither Water Management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.A.; Reidy Liermann, C.A.; Nilsson, C.; Flörke, M.; Alcamo, J.; Lake, P.S.; Bond, N. Climate Change and the World's River Basins: Anticipating Management Options. Front. Ecol. Environ. 2008, 6, 81–89. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Sahagian, D. Anthropogenic Disturbance of the Terrestrial Water Cycle. Bioscience 2000, 50, 753–765. [Google Scholar] [CrossRef]
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M.; Treidel, H.; Aureli, A. Beneath the Surface of Global Change: Impacts of Climate Change on Groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. IPCC Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Karl, T.R.; Knight, R.W. Secular Trends of Precipitation Amount, Frequency, and Intensity in the United States. Bull. Am. Meteorol. Soc. 1998, 79, 231–241. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Groffman, P.M.; Band, L.E.; Shields, C.A.; Morgan, R.P.; Palmer, M.A.; Belt, K.T.; Swan, C.M.; Findlay, S.E.; Fisher, G.T. Interaction between Urbanization and Climate Variability Amplifies Watershed Nitrate Export in Maryland. Environ. Sci. Technol. 2008, 42, 5872–5878. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.S.; Likens, G.E.; Jaworski, N.A.; Pace, M.L.; Sides, A.M.; Seekell, D.; Belt, K.T.; Secor, D.H.; Wingate, R.L. Rising Stream and River Temperatures in the United States. Front. Ecol. Environ. 2010, 8, 461–466. [Google Scholar] [CrossRef]
- Shrestha, L.; Shrestha, N.K. Assessment of Climate Change Impact on Crop Yield and Irrigation Water Requirement of Two Major Cereal Crops (Rice and Wheat) in Bhaktapur District, Nepal. J. Water Clim. Chang. 2017, 8, 320–335. [Google Scholar] [CrossRef]
- Dadson, S.; Kirkby, M.; Irvine, B.; Nicholas, A.; Quine, T.; Boddy, L. Impacts of Climate Change on Erosion, Sediment Transport and Soil Carbon in the UK and Europe: Final Report; Centre for Ecology & Hydrology: Wallingford, UK, 2010. [Google Scholar]
- Kerkhoven, E.; Gan, T.Y. Differences and Sensitivities in Potential Hydrologic Impact of Climate Change to Regional-Scale Athabasca and Fraser River basins of the Leeward and Windward Sides of the Canadian Rocky Mountains Respectively. Clim. Chang. 2011, 106, 583–607. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Leta, O.T.; De Fraine, B.; van Griensven, A.; Bauwens, W. Openmi-Based Integrated Sediment Transport Modelling of the River Zenne, Belgium. Environ. Model. Softw. 2013, 47, 193–206. [Google Scholar] [CrossRef]
- Blann, K.L.; Anderson, J.L.; Sands, G.R.; Vondracek, B. Effects of Agricultural Drainage on Aquatic Ecosystems: A Review. Crit. Rev. Environ. Sci. Technol. 2009, 39, 909–1001. [Google Scholar] [CrossRef]
- Elmore, A.J.; Kaushal, S.S. Disappearing Headwaters: Patterns of Stream Burial Due to Urbanization. Front. Ecol. Environ. 2008, 6, 308–312. [Google Scholar] [CrossRef]
- Hammer, T.R. Stream Channel Enlargement Due to Urbanization. Water Resour. Res. 1972, 8, 1530–1540. [Google Scholar] [CrossRef]
- Weitzell, R.E.; Kaushal, S.S.; Lynch, L.M.; Guinn, S.M.; Elmore, A.J. Extent of Stream Burial and Relationships to Watershed Area, Topography, and Impervious Surface Area. Water 2016, 8, 538. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Belt, K.T. The Urban Watershed Continuum: Evolving Spatial and Temporal Dimensions. Urban Ecosyst. 2012, 15, 409–435. [Google Scholar] [CrossRef]
- Beaulieu, J.J.; Golden, H.E.; Knightes, C.D.; Mayer, P.M.; Kaushal, S.S.; Pennino, M.J.; Arango, C.P.; Balz, D.A.; Elonen, C.M.; Fritz, K.M.; et al. Urban Stream Burial Increases Watershed-Scale Nitrate Export. PLoS ONE 2015, 10, e0132256. [Google Scholar] [CrossRef] [PubMed]
- Pennino, M.J.; Kaushal, S.S.; Beaulieu, J.J.; Mayer, P.M.; Arango, C.P. Effects of Urban Stream Burial on Nitrogen Uptake and Ecosystem Metabolism: Implications for Watershed Nitrogen and Carbon Fluxes. Biogeochemistry 2014, 121, 247–269. [Google Scholar] [CrossRef]
- Gannon, J.P.; Kinner, D.A.; Lord, M.L. Beyond the Clean Water Rule: Impacts of a Non-Jurisdictional Ditch on Headwater Stream Discharge and Water Chemistry. Water 2016, 8, 607. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Duan, S.; Doody, T.R.; Haq, S.; Smith, R.M.; Johnson, T.A.N.; Newcomb, K.D.; Gorman, J.; Bowman, N.; Mayer, P.M.; et al. Human-Accelerated Weathering Increases Salinization, Major Ions, and Alkalinization in Fresh Water across Land Use. Appl. Geochem. 2017, 83, 121–135. [Google Scholar] [CrossRef]
- Brooks, P.D.; Williams, M.W. Snowpack Controls on Nitrogen Cycling and Export in Seasonally Snow-Covered Catchments. Hydrol. Process. 1999, 13, 2177–2190. [Google Scholar] [CrossRef]
- Yin, Z.; Feng, Q.; Zou, S.; Yang, L. Assessing Variation in Water Balance Components in Mountainous Inland River Basin Experiencing Climate Change. Water 2016, 8, 472. [Google Scholar] [CrossRef]
- Johannsen, I.M.; Hengst, J.C.; Goll, A.; Höllermann, B.; Diekkrüger, B. Future of Water Supply and Demand in the Middle Drâa Valley, Morocco, Under Climate and Land Use Change. Water 2016, 8, 313. [Google Scholar] [CrossRef]
- Walter, R.C.; Merritts, D.J. Natural Streams and the Legacy of Water-Powered Mills. Science 2008, 319, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Stanley, E.H.; Doyle, M.W. Trading off: The Ecological Effects of Dam Removal. Front. Ecol. Environ. 2003, 1, 15–22. [Google Scholar] [CrossRef]
- Gold, A.J.; Addy, K.; Morrison, A.; Simpson, M. Will Dam Removal Increase Nitrogen Flux to Estuaries? Water 2016, 8, 522. [Google Scholar] [CrossRef]
- Awal, R.; Bayabil, H.K.; Fares, A. Analysis of Potential Future Climate and Climate Extremes in the Brazos Headwaters Basin, Texas. Water 2016, 8, 603. [Google Scholar] [CrossRef]
- Gu, C.; Mu, X.; Zhao, G.; Gao, P.; Sun, W.; Yu, Q. Changes in Stream Flow and Their Relationships with Climatic Variations and Anthropogenic Activities in the Poyang Lake Basin, China. Water 2016, 8, 564. [Google Scholar] [CrossRef]
- Kamarinas, I.; Julian, J.P.; Hughes, A.O.; Owsley, B.C.; De Beurs, K.M. Nonlinear Changes in Land Cover and Sediment Runoff in a New Zealand Catchment Dominated by Plantation Forestry and Livestock Grazing. Water 2016, 8, 436. [Google Scholar] [CrossRef]
- Johnson, T.A.N.; Kaushal, S.S.; Mayer, P.M.; Grese, M.M. Effects of Stormwater Management and Stream Restoration on Watershed Nitrogen Retention. Biogeochemistry 2014, 121, 81–106. [Google Scholar] [CrossRef]
- Pennino, M.J.; Kaushal, S.S.; Mayer, P.M.; Utz, R.M.; Cooper, C.A. Stream Restoration and Sewers Impact Sources and Fluxes of Water, Carbon, and Nutrients in Urban Watersheds. Hydrol. Earth Syst. Sci. Discuss. 2016, 20, 3419. [Google Scholar] [CrossRef]
- Duan, S.; Newcomer-Johnson, T.; Mayer, P.; Kaushal, S. Phosphorus Retention in Stormwater Control Structures across Streamflow in Urban and Suburban Watersheds. Water 2016, 8, 390. [Google Scholar] [CrossRef]
- Newcomer Johnson, T.A.; Kaushal, S.S.; Mayer, P.M.; Smith, R.M.; Sivirichi, G.M. Nutrient Retention in Restored Streams and Rivers: A Global Review And Synthesis. Water 2016, 8, 116. [Google Scholar] [CrossRef]
- Shen, H.; Leblanc, M.; Frappart, F.; Seoane, L.; O’Grady, D.; Olioso, A.; Tweed, S. A Comparative Study of GRACE with Continental Evapotranspiration Estimates in Australian Semi-Arid and Arid Basins: Sensitivity to Climate Variability and Extremes. Water 2017, 9, 614. [Google Scholar] [CrossRef]
- Spera, S.A.; Galford, G.L.; Coe, M.T.; Macedo, M.N.; Mustard, J.F. Land-Use Change Affects Water Recycling in Brazil’s Last Agricultural Frontier. Glob. Chang. Biol. 2016, 22, 3405–3413. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.H.; Liu, D.D.; Wang, Z.L.; Zhao, Q.; Zou, H.; Hou, Y.K.; Liu, P.; Xiong, L.H. Runoff Responses to Climate and Land Use/Cover Changes under Future Scenarios. Water 2017, 9, 475. [Google Scholar] [CrossRef]
- Scavone, G.; Sánchez, J.M.; Telesca, V.; Caselles, V.; Copertino, V.A.; Pastore, V.; Valor, E. Pixel-Oriented Land Use Classification in Energy Balance Modelling. Hydrol. Process. 2014, 28, 25–36. [Google Scholar] [CrossRef]
- Parker, D.E. Urban Heat Island Effects on Estimates of Observed Climate Change. Clim. Chang. 2010, 1, 123–133. [Google Scholar] [CrossRef]
- Tam, B.Y.; Gough, W.A.; Mohsin, T. The Impact of Urbanization and the Urban Heat Island Effect on Day to Day Temperature Variation. Urban Clim. 2015, 12, 1–10. [Google Scholar] [CrossRef]
- Duan, S.W.; Kaushal, S.S. Warming Increases Carbon and Nutrient Fluxes from Sediments in Streams across Land Use. Biogeosciences 2013, 10, 1193–1207. [Google Scholar] [CrossRef]
- Williams, M.; Wessel, B.; Filoso, S. Sources of Iron (Fe) and Factors Regulating the Development of Flocculate from Fe-Oxidizing Bacteria in Regenerative Streamwater Conveyance Structures. Ecol. Eng. 2016, 95, 723–737. [Google Scholar] [CrossRef]
- Bolte, J.; McKane, R.; Phillips, D.; Schumaker, N.; White, D.; Brookes, A.; Olszyk, D.M. In Oregon, the EPA Calculates Nature’s Worth Now and in the Future. Solut. Sustain. Desirable Future 2011, 2, 35–41. [Google Scholar]
- Argent, R.M. An Overview of Model Integration for Environmental Application—Components, Frameworks and Semantics. Environ. Model. Softw. 2004, 19, 219–234. [Google Scholar] [CrossRef]
- Moore, R.V.; Tindall, C.I. An Overview of the Open Modelling Interface and Environment (the OpenMI). Environ. Sci. Policy 2005, 8, 279–286. [Google Scholar] [CrossRef]
- Van Griensven, A.; Vandenberghe, V.; Bols, J.; De Pauw, N.; Goethals, P.; Meirlaen, J.; Vanrolleghem, P.A.; Van Vooren, L.; Bauwens, W. Experience and Organisation of Automated Measuring Stations for River Water Quality Monitoring. In Proceedings of the 1st World Congress of the International Water Association, Paris, France, 3–7 July 2000. [Google Scholar]
- Shrestha, N.K.; Leta, O.T.; Bauwens, W. Development of RWQM1-Based Integrated Water Quality Model in OpenMI with Application to the River Zenne, Belgium. Hydrol. Sci. J. 2017, 62, 774–799. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Palmer, M.A.; Hart, D.D.; Richter, B.D.; Arthington, A.H.; Rogers, K.H.; Meyer, J.L.; Stanford, J.A. River Flows And Water Wars: Emerging Science For Environmental Decision Making. Front. Ecol. Environ. 2003, 1, 298–306. [Google Scholar] [CrossRef]
- Groffman, P.M.; Stylinski, C.; Nisbet, M.C.; Duarte, C.M.; Jordan, R.; Burgin, A.; Previtali, M.A.; Coloso, J. Restarting the Conversation: Challenges at the Interface between Ecology and Society. Front. Ecol. Environ. 2010, 8, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Pace, M.L.; Hampton, S.E.; Limburg, K.E.; Bennett, E.M.; Cook, E.M.; Davis, A.E.; Grove, J.M.; Kaneshiro, K.Y.; Ladeau, S.L.; Likens, G.E.; et al. Communicating with the Public: Opportunities and Rewards for Individual Ecologists. Front. Ecol. Environ. 2010, 8, 292–298. [Google Scholar] [CrossRef]
- Inamdar, S.; Shanley, J.B.; McDowell, W.H. Aquatic Ecosystems in a Changing Climate. Eos 2017, 98. [Google Scholar] [CrossRef]
- Palmer, M.A.; Liu, J.; Matthews, J.H.; Mumba, M.; D’odorico, P. Manage Water in a Green Way. Science 2015, 349, 584–585. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaushal, S.S.; Gold, A.J.; Mayer, P.M. Land Use, Climate, and Water Resources—Global Stages of Interaction. Water 2017, 9, 815. https://doi.org/10.3390/w9100815
Kaushal SS, Gold AJ, Mayer PM. Land Use, Climate, and Water Resources—Global Stages of Interaction. Water. 2017; 9(10):815. https://doi.org/10.3390/w9100815
Chicago/Turabian StyleKaushal, Sujay S., Arthur J. Gold, and Paul M. Mayer. 2017. "Land Use, Climate, and Water Resources—Global Stages of Interaction" Water 9, no. 10: 815. https://doi.org/10.3390/w9100815
APA StyleKaushal, S. S., Gold, A. J., & Mayer, P. M. (2017). Land Use, Climate, and Water Resources—Global Stages of Interaction. Water, 9(10), 815. https://doi.org/10.3390/w9100815