Flood Effect on Groundwater Recharge on a Typical Silt Loam Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experiment Design
2.3. Soil Properties
2.4. Numerical Simulation
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Morin, E.; Grodek, T.; Dahan, O.; Benito, G.; Kulls, C.; Jacoby, Y.; Van Langenhove, G.; Seely, M.; Enzel, Y. Flood routing and alluvial aquifer recharge along the ephemeral arid Kuiseb River, Namibia. J. Hydrol. 2009, 368, 262–275. [Google Scholar] [CrossRef]
- Kowsar, A. Desertification control floodwater spreading in Iran. Unasylva 1992, 43, 27–30. [Google Scholar]
- Unger, I.M.; Motavalli, P.P.; Muzika, R.M. Changes in soil chemical properties with flooding: A field laboratory approach. Agric. Ecosyst. Environ. 2009, 131, 105–110. [Google Scholar] [CrossRef]
- Workman, S.R.; Serrano, S.E. Recharge to alluvial valley aquifers from overbank flow and excess infiltration. J. Am. Water Resour. Assoc. 1999, 35, 425–432. [Google Scholar] [CrossRef]
- Dahan, O.; Shani, Y.; Enzel, Y.; Yechieli, Y.; Yakirevich, A. A direct measurements of floodwater infiltration into shallow alluvial aquifers. J. Hydrol. 2007, 344, 157–170. [Google Scholar] [CrossRef]
- Tazioli, A.; Mattioli, A.; Nanni, T.; Vivalda, P.M. Natural Hazard Analysis in the Aspio Equipped Basin. In Engineering Geology for Society and Territory—Volume 3; Springer: Cham, Switzerland, 2015; pp. 431–435. [Google Scholar]
- Hendrickx, J.M.H.; Khan, A.S.; Bannink, M.H.; Birch, D.; Kidd, C. Numerical-analysis of groundwater recharge through stony soils using limited data. J. Hydrol. 1991, 127, 173–192. [Google Scholar] [CrossRef]
- Vivalda, P.; Tazioli, A.; Nanni, T.; Mussi, M. The Mt Conero limestone ridge: The contribution of stable isotopes to the identification of the recharge area of aquifers. Ital. J. Geosci. 2017, 136, 1–31. [Google Scholar]
- Cervi, F.; Ronchetti, F.; Doveri, M.; Mussi, M.; Marcaccio, M.; Tazioli, A. The use of stable water isotopes from rain gauges network to define the recharge areas of springs: Problems and possible solutions from case studies from the northern Apennines. GEAM Geoing. Ambient. E Mineraria 2016, 149, 19–26. [Google Scholar]
- Yu, P.; Xu, H.; Ye, M.; Liu, S.; Gong, J.; An, H.; Fu, J. Effects of ecological water conveyance on the ring increments of populus euphratica in the lower reaches of Tarim River. J. For. Res.-Jpn. 2011, 17, 413–420. [Google Scholar] [CrossRef]
- Growing Georgia, A.N. Creating Floods to Refill Aquifers: How It Works. Available online: http://growinggeorgia.com/features/2017/01/creating-floods-refill-aquifers-how-it-works/?utm_source=Growing+Georgia&utm_campaign=0406fa2f0c-growinggeorgia-daily_newsletter&utm_medium=email&utm_term=0_4643f190f7-0406fa2f0c-296616933 (accessed on 20 January 2017).
- Han, M.; Zhao, C.Y.; Feng, G.; Shi, F.Z. Bayesian inference of the groundwater depth threshold in a vegetation dynamic model: A case study, lower reach, Tarim River. Quatern. Int. 2015, 380, 207–215. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, W.H.; Xu, C.C.; Ye, Z.X.; Chen, Y.P. Desert riparian vegetation and groundwater in the lower reaches of the Tarim River basin. Environ. Earth Sci. 2015, 73, 547–558. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Xu, C.; Li, W. The effects of groundwater depth on water uptake of populus euphratica and tamarix ramosissima in the hyperarid region of northwestern China. Environ. Sci. Pollut. Res. Int. 2016, 23, 17404–17412. [Google Scholar] [CrossRef] [PubMed]
- Lammerts, E.J.; Maas, C.; Grootjans, A.P. Groundwater variables and vegetation in dune slacks. Ecol. Eng. 2001, 17, 33–47. [Google Scholar] [CrossRef]
- Doble, R.; Simmons, C.; Jolly, I.; Walker, G. Spatial relationships between vegetation cover and irrigation-induced groundwater discharge on a semi-arid floodplain, Australia. J. Hydrol. 2006, 329, 75–97. [Google Scholar] [CrossRef]
- Snyder, K.A.; Williams, D.G. Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona. Agric. For. Meteorol. 2000, 105, 227–240. [Google Scholar] [CrossRef]
- Scanlon, B.R. Evaluation of Methods of Estimating Recharge in Semiarid and Arid Regions in the Southwestern US; AGU: Washington, DC, USA, 2004. [Google Scholar]
- Stonestrom, D.A.; Constantz, J.; Ferré, T.P.A.; Leake, S.A. Ground-Water Recharge in the Arid and Semi Arid Southwestern United States; U.S. Geological Survey: Menlo Park, CA, USA, 2007.
- Hagedorn, B. Hydrochemical and 14C constraints on groundwater recharge and interbasin flow in an arid watershed: Tule Desert, Nevada. J. Hydrol. 2015, 523, 297–308. [Google Scholar] [CrossRef]
- Cooper, H.H.; Rorabaugh, M.I. Ground-Water Movements and Bank Storage due to Flood Stages in Surface Streams; Water-Supply Paper 1536-J; U.S. Government Printing Office: Washington, DC, USA, 1963; pp. 343–366.
- Hall, F.R.; Moench., A.F. Application of the convolution equation to stream-aquifer relationships. Water Resour. Res. 1972, 8, 487–493. [Google Scholar] [CrossRef]
- McCallum, J.L.; Cook, P.G.; Brunner, P.; Berhane, D. Solute dynamics during bank storage flows and implications for chemical base flow separation. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Sorman, A.U.; Abdulrazzak, M.J. Infiltration-recharge through wadi beds in arid regions. Hydrol. Sci. J. 1993, 38, 173–186. [Google Scholar] [CrossRef]
- Ghazavi, R.; Vali, A.; Eslamian, S. Impact of flood spreading on infiltration rate and soil properties in an arid environment. Water Resour. Manag. 2010, 24, 2781–2793. [Google Scholar] [CrossRef]
- Doble, R.C.; Crosbie, R.S.; Smerdon, B.D.; Peeters, L.; Cook, F.J. Groundwater recharge from overbank floods. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Goss, M.J.; Ehlers, W. The role of lysimeters in the development of our understanding of soil water and nutrient dynamics in ecosystems. Soil Use Manag. 2009, 25, 213–223. [Google Scholar] [CrossRef]
- Kumar, S.; Sekhar, M.; Reddy, D.V.; Kumar, M.S.M. Estimation of soil hydraulic properties and their uncertainty: Comparison between laboratory and field experiment. Hydrol. Process. 2010, 24, 3426–3435. [Google Scholar] [CrossRef]
- Song, Y.D.; Fan, Z.L.; Lei, Z.D. Research on Water Resources and Ecology of the Tarim River, China; Xinjiang Peoples Press: Urumqi, China, 2000. [Google Scholar]
- Cui, Y.; Shao, J. The role of ground water in arid/semiarid ecosystems, northwest China. Ground Water 2005, 43, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.N.; Chen, Y.P.; Xu, C.C.; Ye, Z.X.; Li, Z.Q.; Zhu, C.G.; Ma, X.D. Effects of ecological water conveyance on groundwater dynamics and riparian vegetation in the lower reaches of Tarim River, China. Hydrol. Process. 2010, 24, 170–177. [Google Scholar] [CrossRef]
- Cao, D.; Li, J.; Huang, Z.; Baskin, C.C.; Baskin, J.M.; Hao, P.; Zhou, W.; Li, J. Reproductive characteristics of a populus euphratica population and prospects for its restoration in China. PLoS ONE 2012, 7, e39121. [Google Scholar] [CrossRef] [PubMed]
- Wuethrich, B. Ecology-deliberate flood renews habitats. Science 1996, 272, 344–345. [Google Scholar] [CrossRef]
- Gabrielie, L.K.; Friedman, J.M.; Beatty, S.W. Delayed effects of flood control on a flood-dependent riparian forest. Ecol Appl. 2005, 15, 1019–1035. [Google Scholar]
- Li, X.; Feng, G.; Zhao, C.; Shi, F. Characteristics of soil infiltration in the Tarim River floodplain. Environ. Earth Sci. 2016, 75, 782. [Google Scholar] [CrossRef]
- Jansson, R.; Zinko, U.; Merritt, D.M.; Nilsson, C. Hydrochory increases riparian plant species richness: A comparison between a free-flowing and a regulated river. J. Ecol. 2005, 93, 1094–1103. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, X.; Bao, A. Analysis on the changing dynamics of groundwater level in the lower reaches of the Tarim River, Xinjiang. Arid Land Geogr. 2005, 28, 33–37. [Google Scholar]
- Liu, D.; Tian, F.; Hu, H.; Lin, M.; Cong, Z. Ecohydrological evolution model on riparian vegetation in hyperarid regions and its validation in the lower reach of Tarim River. Hydrol. Process. 2012, 26, 2049–2060. [Google Scholar] [CrossRef]
- Hao, X.M.; Li, W.H.; Huang, X.; Zhu, C.G.; Ma, J.X. Assessment of the groundwater threshold of desert riparian forest vegetation along the middle and lower reaches of the Tarim River, China. Hydrol. Process. 2010, 24, 178–186. [Google Scholar] [CrossRef]
- Aishan, T.; Halik, U.; Cyffka, B.; Kuba, M.; Abliz, A.; Baidourela, A. Monitoring the hydrological and ecological response to water diversion in the lower reaches of the Tarim River, northwest China. Quatern. Int. 2013, 311, 155–162. [Google Scholar] [CrossRef]
- Chen, Y.N.; Wang, Q.A.; Li, W.H.; Ruan, X.; Chen, Y.P.; Zhang, L.H. Rational groundwater table indicated by the ecophysiological parameters of the vegetation: A case study of ecological restoration in the lower reaches of the Tarim River. Chin. Sci. Bull. 2006, 51, 8–15. [Google Scholar] [CrossRef]
- Chen, Y.N.; Ye, Z.X.; Shen, Y.J. Desiccation of the Tarim River, Xinjiang, China, and mitigation strategy. Quatern. Int. 2011, 244, 264–271. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, X.H.; Singh, V.P.; Sun, P.; Chen, X.H.; Kong, D.D. Magnitude, frequency and timing of floods in the Tarim River basin, China: Changes, causes and implications. Glob. Planet Chang. 2016, 139, 44–55. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, C.; Chen, Y.; Liu, Y.; Li, W. Progress, challenges and prospects of eco-hydrological studies in the Tarim River basin of Xinjiang, China. Environ. Manag. 2013, 51, 138–153. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Chen, Y.; Li, W. The driving forces of environmental change during the last 50 years in the Tarim River basin. Acta Geogr. Sin. 2006, 61, 262–272. [Google Scholar]
- Yang, J.; Guan, X.; Li, X.; Wen, Q.; Zhang, F. Study on the relations between the lucc and demographic factors in the past 10 years of Tarim River basin. J. Arid Land Resour. Environ. 2006, 20, 114–117. [Google Scholar]
- Zhao, R.; Chen, Y.; Shi, P.; Zhang, L.; Pan, J.; Zhao, H. Land use and land cover change and driving mechanism in the arid inland river basin: A case study of Tarim River, Xinjiang, China. Environ. Earth Sci. 2012, 68, 591–604. [Google Scholar] [CrossRef]
- Li, X.; Feng, G.; Sharratt, B.S.; Zheng, Z.; Pi, H.; Gao, F. Soil wind erodibility based on dry aggregate-size distribution in the Tarim Basin. Soil Sci. Soc. Am. J. 2014, 78, 2009. [Google Scholar] [CrossRef]
- Li, X.; Feng, G.; Sharratt, B.; Zheng, Z. Aerodynamic properties of agricultural and natural surfaces in northwestern Tarim Basin. Agric. For. Meteorol. 2015, 204, 37–45. [Google Scholar] [CrossRef]
- Xu, H.L.; Ye, M.; Li, J.M. The ecological characteristics of the riparian vegetation affected by river overflowing disturbance in the lower Tarim River. Environ. Geol. 2009, 58, 1749–1755. [Google Scholar] [CrossRef]
- Schendel, U. A newly developed groundwater lysimeter for measuring evapotranspiration from different groundwater levels in a small catchment area of the north german coastal region. IAHS Publ. 1971, 96, 53–59. [Google Scholar]
- Simunek, J.; Van Genuchten, M.T.; Sejna, M. The Hydrus-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, Andmultiple Solutes in Variably-Saturated Media; Version 3.0; Department of Environmental Sciences: Riverside, CA, USA, 2005. [Google Scholar]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulicconductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Nieber, J.L.; Walter, M.F. Two-dimensional soil-moisture flow in a sloping rectangular region-experimental and numerical-studies. Water Resour. Res. 1981, 17, 1722–1730. [Google Scholar] [CrossRef]
- Bernard, R.; Vauclin, M.; Vidal-Madjar, D. Possible use of active microwave remote sensing data for prediction of regional evaporation by numerical simulation of soil water movement in the unsaturated zone. Water Resour. Res. 1981, 17, 1603–1610. [Google Scholar] [CrossRef]
- Lange, J. Dynamics of transmission losses in a large arid stream channel. J. Hydrol. 2005, 306, 112–126. [Google Scholar] [CrossRef]
- Wu, J.Q.; Zhang, R.D.; Yang, J.Z. Estimating infiltration recharge using a response function model. J. Hydrol. 1997, 198, 124–139. [Google Scholar] [CrossRef]
- Dahan, O.; Tatarsky, B.; Enzel, Y.; Kulls, C.; Seely, M.; Benito, G. Dynamics of flood water infiltration and ground water recharge in hyperarid desert. Ground Water 2008, 46, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Chen, Y.; Li, W. Study on response of groundwater after ecological water transport at the lower reaches of the Tarim River. Res. Environ. Sci. 2003, 16, 19–22. [Google Scholar]
- Warrick, A.W. Additional solutions for steady-state evaporation from a shallow-water table. Soil Sci. 1988, 146, 63–66. [Google Scholar] [CrossRef]
- Gardner, W.R.; Fireman, M. Laboratory studies of evaporation from soil columns in the presence of a water table. Soil Sci. 1958, 85, 244–249. [Google Scholar] [CrossRef]
- Thorburn, P.J.; Hatton, T.J.; Walker, G.R. Combining measurements of transpiration and stable isotopes of water to determine groundwater discharge from forests. J. Hydrol. 1993, 150, 563–587. [Google Scholar] [CrossRef]
- Rennolls, K.; Carnell, R.; Tee, V. A descriptive model of the relationship between rainfall and soil-water table. J. Hydrol. 1980, 47, 103–114. [Google Scholar] [CrossRef]
- Viswanathan, M.N. Recharge characteristics of an unconfined aquifer from the rainfall water-table relationship. J. Hydrol. 1984, 70, 233–250. [Google Scholar] [CrossRef]
- Barnes, C.J.; Jacobson, G.; Smith, G.D. The distributed recharge mechanism in the Australian arid zone. Soil Sci. Soc. Am. J. 1994, 58, 31–40. [Google Scholar] [CrossRef]
- Glenn, E.P.; Morino, K.; Nagler, P.L.; Murray, R.S.; Pearlstein, S.; Hultine, K.R. Roles of saltcedar (Tamarix spp.) and capillary rise in salinizing a non-flooding terrace on a flow-regulated desert river. J. Arid Environ. 2012, 79, 56–65. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
Residual Soil Water Content | Saturated Soil Water Content | Parameter | Exponent | Saturated Hydraulic Conductivity |
---|---|---|---|---|
θr (-) | θs (-) | α (cm−1) | n | Ks (cm·day−1) |
0.16 | 0.48 | 0.0026 | 1.64 | 61.68 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Feng, G.; Li, X.; Xie, C.; Pi, X. Flood Effect on Groundwater Recharge on a Typical Silt Loam Soil. Water 2017, 9, 523. https://doi.org/10.3390/w9070523
Zhang G, Feng G, Li X, Xie C, Pi X. Flood Effect on Groundwater Recharge on a Typical Silt Loam Soil. Water. 2017; 9(7):523. https://doi.org/10.3390/w9070523
Chicago/Turabian StyleZhang, Guohua, Gary Feng, Xinhu Li, Congbao Xie, and Xiaoyu Pi. 2017. "Flood Effect on Groundwater Recharge on a Typical Silt Loam Soil" Water 9, no. 7: 523. https://doi.org/10.3390/w9070523
APA StyleZhang, G., Feng, G., Li, X., Xie, C., & Pi, X. (2017). Flood Effect on Groundwater Recharge on a Typical Silt Loam Soil. Water, 9(7), 523. https://doi.org/10.3390/w9070523